Bull. Austral. Math. Soc. Vol. 60 (1999) [129-135]

QUASI-PROJECTIVITY OVER DOMAINS

DMITRI ALEXEEV

Let R be an integral domain with quotient field Q. We investigate quasi- and Qprojective ideals, and properties of domains all ideals of which are quasi-projective. It is shown that the so-called $1\frac{1}{2}$ -generated ideals are quasi-projective, moreover, projective. A module M is quasi-projective if and only if, for a projective ideal P of R, the tensor product $M \otimes_R P$ is quasi-projective. Domains whose all ideals are quasiprojective are characterised as almost maximal Prüfer domains. Q is quasi-projective if and only if every proper submodule of Q is complete in its R-topology.

INTRODUCTION

Quasi-projective (sometimes called "self-projective") modules were introduced by Miyashita [7] as a generalisation of projective modules. These modules have been studied by a number of authors over a variety of rings. In particular, Herrmann [3] investigated quasi-projective modules over valuation domains. This paper contains generalisations of some of his results to arbitrary integral domains.

Let R be an integral domain with quotient field Q. In the case of valuation domains, quasi-projectivity of an ideal is equivalent to its Q-projectivity. This does not seem to be true over general domains, although it holds if the ideal is finitely generated. Qprojectivity of ideals always implies their quasi-projectivity. We show that a submodule V of Q is quasi-projective if and only if $\operatorname{Ext}^{1}_{R}(V, U) = 0$ for each submodule U of Q.

For an ideal I of R, this characterisation of quasi-projectivity reduces to vanishing $\operatorname{Ext}_{R}^{1}(I, J)$ for each ideal J of R. This is used to identify the domains all of whose ideals are quasi-projective: these are exactly the almost maximal Prüfer domains. If we only assume the finitely generated ideals of R to be quasi-projective, then R becomes a Prüfer domain (not necessarily almost maximal).

Finally, we study the quasi-projectivity of Q. Q is quasi-projective if and only if every proper submodule of Q is complete in its R-topology.

Received 14th January, 1999

This paper is a part of the author's Ph.D. thesis written under supervision of Professor Laszlo Fuchs at Tulane University.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

D. Alexeev

1. PRELIMINARIES

Let R be an integral domain, that is, a commutative ring with no zero divisors. Unless otherwise noted, we assume all modules to be unital R-modules, all ideals to be ideals of R, and all maps to be R-homomorphisms.

DEFINITION. Let M and N be R-modules. M is called N-projective or projective relative to N if it is projective relative to all exact sequences of the form $0 \to N' \to N \xrightarrow{\pi} N/N' \to 0$, where N' is a submodule of N and π is the canonical projection. That is, for every homomorphism $f: M \to N/N'$ there exists a map $\overline{f}: M \to N$ such that the following diagram commutes:

Thus, a module M is projective if and only if it is N-projective for all R-modules N. The module M is called *self*- or *quasi-projective* if it is M-projective.

We shall need the following lemma from Anderson and Fuller [1, p.188].

LEMMA 1.1. Let M be an R-module.

- (a) If $0 \to A \to B \to C \to 0$ is an exact sequence of R-modules and M is B-projective, then M is projective relative to A and C as well.
- (b) If M is projective relative to M_i for each i in a finite index set I, then M is ⊕ M_i-projective. Moreover, if M is finitely generated, this holds for an arbitrary index set I.

The following corollary is a direct consequence of Lemma 1.1.

COROLLARY 1.2. Let I be an ideal of domain R and V a submodule of Q.

- (a) If V is Q-projective, then V is U-projective for every submodule U of Q.
- (b) If I is quasi-projective, then I is J-projective for every ideal J of R.

Unlike projective ideals, quasi-projective ideals need not be finitely generated. In fact, Theorem 4.2 shows that if R is an almost maximal Prüfer domain, then *all* ideals of R are quasi-projective.

2. Q-projectivity

We now turn our attention to Q-projectivity.

LEMMA 2.1. Let R be an integral domain. For a submodule V of Q the following statements are equivalent.

(a) V is Q-projective.

Quasi-projectivity

- (b) $\operatorname{Ext}^{1}_{R}(V, U) = 0$ for all submodules U of Q.
- (c) V is U-projective for all submodules U of Q.

Moreover, if V = I is an ideal of R, then these conditions are equivalent to:

(d) For every submodule U of Q, Q/U has the injective property relative to the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$.

PROOF: [(a) \Leftrightarrow (b)] By applying functor $\operatorname{Hom}_{R}(V, *)$ to the exact sequence

$$0 \to U \to Q \to Q/U \to 0,$$

we obtain the exact sequence

$$0 \to \operatorname{Hom}_{R}(V, U) \to \operatorname{Hom}_{R}(V, Q) \xrightarrow{p} \operatorname{Hom}_{R}(V, Q/U) \to \operatorname{Ext}^{1}_{R}(V, U) \to \operatorname{Ext}^{1}_{R}(V, Q) = 0.$$

Here $\operatorname{Ext}_{R}^{1}(V, U) = 0$ if and only if p is an epimorphism.

 $[(a) \Leftrightarrow (c)]$ This is Corollary 1.2 (a).

 $[(b) \Leftrightarrow (d)]$ By applying the functors $\operatorname{Hom}_R(*, U)$ and $\operatorname{Hom}_R(R/I, *)$, respectively, to the exact sequences

$$0 \to I \to R \to R/I \to 0$$
 and $0 \to U \to Q \to Q/U \to 0$,

we obtain the exact sequences

$$0 = \operatorname{Ext}^{1}_{R}(R, U) \to \operatorname{Ext}^{1}_{R}(I, U) \to \operatorname{Ext}^{2}_{R}(R/I, U) \to \operatorname{Ext}^{2}_{R}(R, U) = 0,$$

$$0 = \operatorname{Ext}_{R}^{1}(R/I, Q) \to \operatorname{Ext}_{R}^{1}(R/I, Q/U) \to \operatorname{Ext}_{R}^{2}(R/I, U) \to \operatorname{Ext}_{R}^{2}(R/I, Q) = 0.$$

It follows that $\operatorname{Ext}^1_R(I,U) \cong \operatorname{Ext}^1_R(R/I,Q/U)$. From the exact sequence

$$0 \to \operatorname{Hom}_{R}(R/I, Q/U) \to \operatorname{Hom}_{R}(R, Q/U) \xrightarrow{p} \operatorname{Hom}_{R}(I, Q/U) \\ \to \operatorname{Ext}^{1}_{R}(R/I, Q/U) \to \operatorname{Ext}^{1}_{R}(R, Q/U) = 0$$

we conclude that p is epic if and only if $\operatorname{Ext}^{1}_{R}(R/I, Q/U) = 0$.

۵

3. QUASI-PROJECTIVITY

We begin this section by introducing a class of quasi-projective ideals.

DEFINITION. An ideal I of R is called $1\frac{1}{2}$ -generated if it is two-generated, but one of the generators can be chosen to be any non-zero element of I. In other words, every proper homomorphic image of I is a cyclic module. This is equivalent to saying that for any non-zero ideal J < I we can find an $a \in I$ such that I = Ra + J.

LEMMA 3.1. $1\frac{1}{2}$ -generated ideals of a domain R are quasi-projective.

D. Alexeev

[4]

PROOF: Let I be a $1\frac{1}{2}$ -generated ideal. Suppose we are given a subideal $0 \neq K < I$, the canonical projection $\pi: I \to I/K$, and a homomorphism $f: I \to I/K$. To prove quasi-projectivity of I we find a map $\overline{f}: I \to I$ such that $\pi \overline{f} = f$. The map f factors as the canonical projection $\pi': I \to I/J$, where J = Ker f, followed by an embedding $\varphi: I/J \to I/K$. The cyclic module I/J is isomorphic to a submodule of cyclic module I/K. Therefore, there exists an $r \in R$ such that $r(I/K) = f(I) = \varphi(I/J)$. We claim that $\overline{f}: I \to I$ defined by $\overline{f}(t) = rt$ $(t \in I)$ is a lifting of f making the diagram

commutative.

To prove this claim, choose an $a \in R$ such that $I = Ra + (K \cap J)$. Then I = Ra + J = Ra + K. For the diagram to commute, it suffices to have $rJ \subset K$. We have the following isomorphisms:

$$\frac{I}{K} = \frac{Ra + K}{K} \cong \frac{Ra}{Ra \cap K}, \quad f(I) \cong \frac{I}{J} = \frac{Ra + J}{J} \cong \frac{Ra}{Ra \cap J}$$

Now r(I/K) = f(I) implies that

$$\frac{rRa}{rRa \cap K} \cong \frac{Ra}{Ra \cap J} \cong \frac{rRa}{rRa \cap rJ}$$

We conclude that $rRa \cap K = rRa \cap rJ$. It remains to note that

$$J = (Ra \cap J) + (J \cap K)$$
 and $K = (Ra \cap K) + (J \cap K)$

to conclude $rJ = (rRa \cap rJ) + r(J \cap K) = (rRa \cap K) + r(J \cap K) \subset K$. This completes the proof.

Rangaswamy and Vanaja [9] show that finitely generated torsion-free quasi-projective modules over a domain are projective. This immediately implies the following theorem.

THEOREM 3.2. $1\frac{1}{2}$ -generated ideals of any domain are projective.

The result also appears in [4] in a more general setting. Observe that over Prüfer domains of finite character, projective ideals are $1\frac{1}{2}$ -generated.

THEOREM 3.3. Let P be a non-zero projective ideal of a domain R and M an R-module. M is quasi-projective if and only if $P \otimes_R M$ is quasi-projective.

PROOF: Suppose that $P \otimes_R M$ is quasi-projective. For a given map $f: M \to M/N$ $(N \subset M)$, we need to find a lifting $f': M \to M$. Tensoring with P preserves exact sequences. The quasi-projectivity of $P \otimes_R M$ implies that there exists a map $\varphi: P \otimes_R M \to P \otimes_R M$ such that the following diagram is commutative.

$$0 \longrightarrow P \otimes_R N \xrightarrow{1 \otimes_R i} P \otimes_R M \xrightarrow{1 \otimes_R i} P \otimes_R M \xrightarrow{1 \otimes_R p} P \otimes_R M/N \longrightarrow 0$$

To show that φ induces a map $f': M \to M$, we tensor the above diagram with the inverse P^{-1} of P. Since $P^{-1} \otimes_R P \cong R$ and $R \otimes_R M \cong M$ for any R-module M naturally, the map $\overline{f} = 1_{P^{-1}} \otimes_R \varphi \colon M \to M$ is a desired lifting for f.

Conversely, suppose that M is a quasi-projective module. We have

$$P^{-1}\otimes_R (P\otimes_R M)\cong M,$$

where P^{-1} is projective. By the first part of the proof, this implies that $P \otimes_R M$ is quasi-projective.

It is worth while mentioning a consequence of Theorem 3.3 to the *class semigroup* of R. This is the semigroup of isomorphy classes of fractional ideals where identity is represented by R and whose operation is ideal multiplication. Isomorphy classes of invertible ideals form a subgroup, the *class group*, of this semigroup. Theorem 3.3 asserts that quasi-projective ideals form complete orbits in the ideal semigroup of R under the action of the class group.

4. PRÜFER DOMAINS

We formulate a close analogue of Lemma 2.1. The proof is similar to the original and is omitted.

LEMMA 4.1. The following are equivalent for an ideal I of R.

- (a) I is quasi-projective.
- (b) $\operatorname{Ext}^{1}_{R}(I, J) = 0$ for every ideal J of R.
- (c) For every ideal J of R, Q/J has the injective property relative to the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$.

Lemmas 2.1 and 4.1, allow us to obtain a characterisation of domains all of whose ideals are quasi-projective; this characterisation is similar to that of valuation domains obtained by Herrmann in [3]. He has shown that a valuation domain each of whose ideals is quasi-projective is almost maximal. We precede the results with necessary definitions.

DEFINITION. Let M be a module over a commutative ring R. M is said to be *semi-compact* if every finitely solvable set of congruences

$$x \equiv x_{\alpha} \pmod{M_{\alpha}},$$

where $x_{\alpha} \in M$ and M_{α} are submodules of M which are annihilators of ideals of R, has a simultaneous solution in M. M is called *linearly compact* if every family of cosets of submodules of M that has the finite intersection property has a nonempty intersection.

Following Brandal [2], we call a domain R maximal if every homomorphic image of R is linearly compact, and almost maximal if every proper homomorphic image of R is linearly compact.

THEOREM 4.2. For an integral domain R, all of the following are equivalent.

- (a) $\operatorname{Ext}^{1}_{R}(I, U) = 0$ for every ideal I of R and submodule U of Q.
- (b) $\operatorname{Ext}_{R}^{1}(I, J) = 0$ for every pair I, J of ideals of R.
- (c) Every ideal of R is Q-projective.
- (d) Every ideal of R is quasi-projective.
- (e) Every epimorphic image of Q is injective.
- (f) R is a Prüfer domain and every homomorphic image of Q is semi-compact.
- (g) R is an almost maximal Prüfer domain.

PROOF: First, (a) implies (b) and (c) implies (d) trivially. (a) \Leftrightarrow (c) is the statement of Lemma 2.1. (b) \Leftrightarrow (d) is Lemma 4.1. Lemma 2.1 and Baer's criterion prove (c) \Leftrightarrow (e). Matlis [5, Theorem 5] implies (e) \Leftrightarrow (f). Finally, Olberding [8] shows the equivalence of (b), (e), and (g).

5. QUOTIENT FIELDS

In this section we generalise a characterisation of valuation domains with quasiprojective quotient fields to the case of arbitrary integral domains. Herrmann [3] shows that a valuation domain R is complete in its R-topology if and only if Q is quasiprojective. We show that the same holds in general, almost unchanged.

We observe that Q is projective relative to any ideal I of R, or, more generally, to any proper submodule of itself. In fact, Q is divisible and I/J is bounded for ideals J < I. The only map $f: Q \to I/J$ is the trivial one, which can obviously be lifted. Of course, this property is far from being a sufficient condition for Q to be quasi-projective. EXAMPLE. Let R be the ring of integers \mathbb{Z} . Then $Q = \mathbb{Q}$, the field of rationals. For the localisation \mathbb{Z}_p of \mathbb{Z} at a prime $p \neq 0$, we have $\mathbb{Q}/\mathbb{Z}_p \cong \mathbb{Z}(p^{\infty})$. By the above remark, \mathbb{Q} is I-projective for each ideal I of \mathbb{Z} . Since there are only countably many maps $\overline{f}: \mathbb{Q} \to \mathbb{Q}$, but uncountably many endomorphisms $\varphi: \mathbb{Z}(p^{\infty}) \to \mathbb{Z}(p^{\infty})$, we conclude that it is impossible to lift every $f: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}_p$ to a map $\overline{f}: \mathbb{Q} \to \mathbb{Q}$ such that $\pi \overline{f} = f$. Hence, \mathbb{Q} is not quasi-projective.

DEFINITION. We may consider an *R*-module *M* as a topological module equipped with the *R*-topology, in which a subbase for the open neighbourhoods of zero is formed by submodules rM ($0 \neq r \in R$). The *R*-topology is a uniform topology. An *R*-module *M* is said to be *R*-complete if it is Hausdorff and complete in its *R*-topology.

THEOREM 5.1. For any domain R, the following statements are equivalent:

(a) Q is quasi-projective.

Quasi-projectivity

- (b) $\operatorname{Ext}^{1}_{R}(Q, U) = 0$ for every submodule U of Q.
- (c) Every proper submodule of Q is complete in its R-topology.

 $[(a) \Leftrightarrow (b)]$ We may assume $U \neq 0, Q$. By applying the functor $\operatorname{Hom}_R(Q, *)$ to the exact sequence $0 \to U \to Q \to Q/U \to 0$, we obtain the exact sequence

$$\operatorname{Hom}_{R}(Q,Q) \xrightarrow{p} \operatorname{Hom}_{R}(Q,Q/U) \to \operatorname{Ext}^{1}_{R}(Q,U) \to \operatorname{Ext}^{1}_{R}(Q,Q) = 0.$$

Thus we see that p is epic if and only if $\operatorname{Ext}^{1}_{R}(Q, U) = 0$.

[(b) \Leftrightarrow (c)] Matlis [6] shows that a reduced torsion-free *R*-module *M* is *R*-complete if and only if $\operatorname{Ext}^{1}_{R}(Q, M) = 0$. Letting M = U completes the proof.

We conclude this section with the following theorem.

THEOREM 5.2. Let R be an integral domain. If Q is quasi-projective, then Q/R is indecomposable.

PROOF: Let Q be quasi-projective such that Q/R is decomposable. Then, there are submodules A and B of Q properly containing R such that $Q/R = A/R \oplus B/R$. Consider the projection $f: Q \to A/R \oplus B/R$ on the first summand. By assumption, there exists a lifting $f': Q \to Q$ of f; this must be a multiplication by some non-zero element $q \in Q$. If $\pi: Q \to A/R \oplus B/R$ denotes the canonical projection, then $f = \pi f'$ means that $qB \subseteq R$. Thus, B is a fractional ideal, and so is A. But then Q = A + B is impossible, a contradiction.

References

- [1] F. Anderson and K. Fuller, *Rings and categories of modules*, (second edition) (Springer-Verlag, Berlin, Heidelberg, New York, 1992).
- W. Brandal, 'Almost maximal integral domains and finitely generated modules', Trans. Amer. Math. Soc. 183 (1973), 203-222.
- [3] P. Herrmann, 'Self-projective modules over valuation rings', Arch. Math. 43 (1984), 332-339.
- [4] D.C. Lantz and M.B. Martin, 'Strongly two-generated ideals', Comm. Alg. 16 (1988), 1759-1777.
- [5] E. Matlis, 'Injective modules over Prüfer rings', Nagoya Math. 15 (1959), 57-69.
- [6] E. Matlis, 'Cotorsion modules', Mem. Amer. Math. Soc. 49 (1964).
- [7] Y. Miyashita, 'Quasi-projective modules, perfect modules and a theorem for modular lattices', J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 86-110.
- [8] B. Olberding, 'Almost maximal Prüfer domains' (to appear).
- K. M. Rangaswamy and N. Vanaja, 'Quasi projectives in Abelian and module categories', Pacific J. Math. 43 (1972), 221-238.

Department of Mathematics Tulane University New Orleans LA 70118 United States of America e-mail: alexeev@math.tulane.edu