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Stirring olive oil and vinegar to make salad dressing creates an emulsion of vinegar
droplets in oil. More vigorous stirring gives smaller droplets, while if left to sit the
droplets will begin to coalesce and the two fluids will separate. In this vein, Dodd
& Ferrante (J. Fluid Mech., vol. 806, 2016, pp. 356–412) present a new analysis of
how homogeneous turbulence in a carrier fluid interacts with a suspension of droplets
of an immiscible liquid. Based on a set of direct numerical simulations, the authors
provide new insights on how turbulence affects the motion of the droplets, their shape
and size; then in turn how the droplets alter the flow including effects of interfacial
surface energy on the kinetic energy of the flow.
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1. Introduction

Much of the recent work on dispersed two-phase turbulence has focused on solid
particles in a gas or liquid flow. The questions asked relate to how the turbulence
causes particles to disperse or interact with each other and how the turbulence itself
may be modified by their presence. Key parameters are the density ratio of the solid to
the carrier fluid, ϕ=ρd/ρc, and the volume fraction that the particles occupy, φv. Even
if φv is low, a substantial portion of the total kinetic energy can reside in the particle
phase if the particles are denser than the carrier fluid. Such particles are inertial and
there is a lag in their response to changes in the surrounding flow that leads not
only to a net slip in the velocity between the two phases but also to an inertial bias
where the particles tend to accumulate in regions of high strain rate or low vorticity in
the flow (Balachandar & Eaton 2010). So even if the particles are initially randomly
dispersed they can develop clusters at scales larger than the particle size which in turn
can have a dynamic effect back on the turbulence. Whether it a jet flow, a boundary
layer flow or convection in an atmospheric cloud, there is a large length scale L that
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characterizes the energetic forcing of the turbulence and then a continuous spectrum of
scales down to the smallest Kolmogorov length scale ηK associated with the eventual
dissipation of kinetic energy by viscous forces. The smallest particles with diameter
D 6 ηK enhance the viscous dissipation range of the turbulence. Larger particles can
inject energy at a length scale comparable to D. This is associated with a local wake
flow and disturbance the particles generate in the carrier phase turbulence as fluid is
deflected around them, as shown for example by Lucci, Ferrante & Elghobashi (2010).

When we move from solid particles to liquid droplets as considered by Dodd &
Ferrante (2016), new phenomena and parameters are introduced. One is the surface
tension, σ between the droplets and carrier fluid while another is the ratio of the
dynamic viscosities of the dispersed and carrier fluids, γ = µd/µc. A liquid droplet
can deform due to variations in pressure and normal viscous stresses across the droplet
surface. A representative scale for the pressure variations in a turbulent flow, at least
for large scales, is ρcU2

rms where Urms is the root-mean-square velocity fluctuation
in the turbulence. So a gauge for the degree of deformation is the ratio of inertial
pressure variations to the pressure difference given by the Young–Laplace relation,
namely the Weber number Werms = ρcDU2

rms/σ . A droplet of diameter D will tend
to remain spherical and so minimize the interfacial surface energy if Werms � 1. If
the viscosity ratio γ is large the circulation inside a droplet is limited. Both of these
conditions would apply to a 50 µm water droplet in an atmospheric cloud, where it
is effectively a rigid particle. The story is different though for larger droplets or in
liquid–liquid flows.

Droplets do not just deform but can breakup or coalesce with another drop, so
changing the topology and the number of droplets involved. Atomization of a liquid
jet with a coaxial gas stream will rapidly generate a fine spray of droplets with
a range of sizes depending on the Reynolds number of the flow and the Weber
number (Lasheras & Hopfinger 2000). Individual droplets in an air flow can undergo
oscillations in shape and may fragment via different modes, again depending on We
and γ (Flock et al. 2012). These features are included in engineering models and
correlations but there is still limited information from first-principles direct numerical
simulations. Such simulations are important as they can address questions not easily
accessible in currently available experiments. It is against this background that the
present paper presents a new perspective.

2. Overview

Dodd & Ferrante (2016), hereafter DF, explore the dynamics of liquid droplets
added to an isotropic turbulent flow and they specifically go beyond the context of
neutrally buoyant droplets. Isotropic turbulence is chosen as representative of the
mid-range and small scales of most high Reynolds number turbulent flows and it has
been the basis of many prior numerical simulations of dispersed two-phase flow. The
large eddies in the base flow are characterized by the integral length scale l of the
velocity fluctuations and there is the intermediate Taylor microscale λ, which here
is close to 20ηK . There is no forcing of the flow so as to avoid possible spurious
correlations of the droplet dynamics, and so the turbulence decays over time. The
flow is allowed to develop first before the droplets are introduced, at which point the
Reynolds number Reλ = Urmsλ/ν = 83. As the turbulence decays over the period of
the simulations, t = 1 to t = 6, Reλ drops to 54, for the base flow without droplets
and the mean turbulent kinetic energy k drops by 60 %.

DF consider a range of parameter values for Werms, ϕ, γ but here we will just
comment on cases B–D from DF where Werms = 0.1, 1, 5 and the droplets are denser
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FIGURE 1. Results from Dodd & Ferrante (2016) for a planar section of a subregion of
the flow at t= 1.5 showing the droplets for case C with Werms= 1, ϕ= 10 and µd/µc= 10.
In (a) contours of turbulent kinetic energy are shown with the black arrows giving the
instantaneous velocity vectors projected onto the plane, as shown in figure 8(b) of DF.
In (b), the corresponding contours are shown for the instantaneous local rate of viscous
dissipation ε ′ as given in figure 11(b) of DF.

(ϕ = 10) and more viscous (γ = 10) than the carrier fluid. In all cases, the droplet
volume fraction is φv = 5 % and for this set of cases the mass fraction is 34 %. When
the droplets are added to the flow, they are spherical with no internal circulation and
their diameter D is set to be 20ηK . DF use a form of immersed interface method with
a fixed numerical mesh and a volume of fluid scheme, taking care in evaluating the
forces due to surface tension, the droplet shape and handling the rapid changes in
fluid density and viscosity across the droplet interface. Fuster et al. (2009) describe
the technical challenges of computing these two-phase flows.

Figure 1 shows a sample of the droplets for case C from DF, Werms= 1, soon after
they are introduced into the flow. The pressure and normal viscous stresses cause the
droplets to flatten into almost spherical caps, while the tangential stresses generate an
internal circulation in the droplets. As these droplets are inertial there is an initial
adjustment as they acquire translational and angular momentum. A local disturbance
flow forms around them producing net fluid forces and torques from the carrier phase
which tends to align the droplets broadside to this flow. Beyond these forces and
associated wakes there is a force dipole (stresslet) generated that would give rise to
an effective Einstein viscosity in a dilute viscous suspension. Both factors enhance
the local instantaneous viscous dissipation rate ε ′ near each droplet as illustrated by
figure 1.

A key feature of DF is the analysis of the mean turbulent kinetic energy k(t), as
given in (3.6) and in more detail by the appendices of DF. Figure 5 of DF illustrates
the partition of k(t) between the continuous phase, kc and droplet phase, kd, together
with the mean rate of conversion to internal energy by viscous dissipation in each
phase, ε = εc + εd. A significant amount of energy is stored as interfacial surface
energy and the power of surface tension Ψσ is defined as the rate of work by surface
tension forces, being positive as the total surface area of the droplets decreases. The
rate of increase of kinetic energy k(t) is −ε + Ψσ . The initial droplet deformation
which increases the interfacial area actually represents a small energy loss compared
to viscous dissipation ε as shown in figure 10 of DF. More significant is the droplet
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coalescence that occurs later on. In cases B and C (Werms=0.1, 1), the total number of
droplets and the interfacial area decrease steadily as the droplets collide and eventually
coalesce. The effect is more pronounced for case B, where σ is ten times greater than
for case C, and Ψσ becomes an appreciable source of energy. Droplets continue to
coalesce forming increasingly larger ones as indicated by figure 17 of DF.

The deformation of droplets is not steady and they undergo shape oscillations
excited by the turbulent fluctuations. These tend to be damped by viscosity which
can add to the total dissipation ε. They also influence the rate of droplet coalescence,
which depends on both near contacts of droplets and the drainage of the intervening
fluid film. Shape oscillations and deformation contribute to breakup of the droplets,
as seen for both cases D and F. For case D, Werms = 5, the authors observe flattened
droplets and thin ligaments forming at the edges that then exhibit a Rayleigh
instability and shed several small droplets.

Beyond these physical observations, DF provides an in-depth analysis of the energy
budgets for both the carrier phase and the droplets, separately accounting for pressure
Tp,c, Tp,d and viscous stresses Tv,c, Tv,d. These control the exchange of kinetic energy
between the phases and taken together balance Ψσ , as in (3.12). The analysis is a new
level of detail that gives insight into the links between interfacial surface energy and
the turbulence.

3. Future

Continuing advances in methods for large-scale simulations with better control
of mass conservation, adaptive refinement and the ability to handle large density
and viscosity ratios are making it feasible to explore more deeply the dynamics of
turbulent liquid–liquid or liquid–gas disperse two-phase flow. The work of DF is
significant in terms of the large number of droplets, 3130 initially, and resolution
(D = 321x) which makes meaningful statistical analysis possible. Many questions
remain open for both droplet and bubble flows. One of these is the evolution of
the droplet spectrum and the observation by Lasheras & Hopfinger (2000) that in a
stationary flow a balance between breakup and coalescence results in an equilibrium
size distribution independent of the initial spectrum. The experiments by Bateson &
Aliseda (2012) address this for small droplets (D 6 ηK) at very low volume fractions
for conditions relevant to atmospheric clouds. It remains to be seen what happens in
more general engineering (and culinary) contexts.
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