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Abstract
In this paper, we study the optimal VIX-linked target benefit (TB) pension design. By applying the dynamic pro-
gramming approach, we show the optimal risk-sharing structure for the benefit payment exhibits a linear form that
consists of three components: (1) a model-robust performance adjustment, (2) a counter-cyclical volatility adjust-
ment that depends on the VIX index, and (3) a TB level that is partially indexed to the cost-of-living adjustment.
Differences between our results and the previous literature are highlighted via both theoretical derivations and
numerical illustrations.

1. Introduction and motivation
Recently, intergenerational risk-sharing pension plans have been gaining increasing attention from both
the industry and academia. Unlike the traditional defined benefit (DB) and defined contribution (DC)
pension plans, risk-sharing plans spread the risks over multiple generations, which ensures relatively
stable retirement incomes while maintaining the sustainability of the pension fund. For example, the
target benefit (TB) pension plan in Canada (a.k.a. the Defined Ambition plan in the UK) aims to provide
retirees with a DB-type benefit but allows the benefit payments to be adjustable based on the perfor-
mance of the pension assets. In this situation, the risks are shared across different generations rather than
retained by each individual (e.g., DC plans) or transferred entirely to future generations (e.g., DB plans).
While extensive studies have demonstrated the advantages of risk-sharing plans,1 the risk-sharing struc-
tures from most of the existing literature lack either transparency (i.e., easy to understand) or theoretical
justification.2

1 Properly designed risk-sharing pension plans are shown to be welfare-enhancing for all participants (e.g., Gollier, 2008), sus-
tainable for the pension asset (e.g., Chen et al., 2017), adequate for the retirement income (e.g., Hardy et al., 2020), affordable for
the active workers (e.g., Cui et al., 2011), and fair across generations (e.g., Bégin, 2020). The risk-sharing mechanism introduces
additional complexity to the pension plan, but studies such as Cui et al. (2011), Khorasanee (2012), and Bégin (2020) make efforts
in proposing more transparent designs than the current practice for a DB plan.

2 For example, Cui et al. (2011), Khorasanee (2012), and Bégin (2020) presume a linear risk-sharing structure for the contribu-
tions and the benefits without theoretically justifying the form of the structure. Goecke (2013), Bovenberg and Mehlkopf (2014),
Boes and Siegmann (2018), Bams et al. (2016), and Chen et al. (2017) propose more complicated non-linear risk-sharing struc-
tures that might undermine the transparency of the structures. Beetsma and Lans Bovenberg (2009) and Beetsma et al. (2012)
explore the equilibrium strategies for risk-sharing pensions using a two-period model.

C© The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association.

https://doi.org/10.1017/asb.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.33
https://orcid.org/0000-0002-7489-2844
mailto:dpli@fem.ecnu.edu.cn
https://doi.org/10.1017/asb.2023.33


76 Lv Chen et al.

In this paper, we explore an optimal VIX3 -linked risk-sharing pension design. In contrast to some of
the existing literature, we apply the stochastic control approach to derive the optimal benefit payment
strategy for a stylized TB plan without pre-specifying the risk-sharing structure. As for the specific anal-
ysis, we consider a TB plan where the retirement benefit is adjustable according to both the pension
asset performance and the VIX index. The optimal TB design is constructed by maximizing the welfare
function of retirees. Following the work of Pan (2002), we model the equity market using a stochastic
volatility model with jumps to incorporate the volatility index. We also investigate the optimal future
cost-of-living adjustment (COLA) by modeling the future inflation index using an Ornstein–Uhlenbeck
(OU) process, which is similar to Luo (2017).

In summary, we find a linear risk-sharing structure for the benefit payment in terms of two compo-
nents, that is, the performance adjustment and the volatility adjustment. Specifically, any surplus/deficit
of the pension asset or any deviation of the volatility index (VIX) from a reference point will be evenly
distributed to all retirees in the form of benefit promotion/reduction. Note that our linear risk-sharing
structure is consistent with the proposal made by the relevant literature (see, e.g., Cui et al., 2011 and
Bégin, 2020). It is also worth mentioning that the linearity of the risk-sharing structure makes it easy
to understand and implement in practice. Introducing the volatility adjustment does not undermine the
transparency of the structure as it is still linear and the volatility adjustment depends on the VIX, which
is observable and exogenous to the pension plan.

We present our findings in the following. First, we find that the volatility adjustment is counter-
cyclical in the sense that it provides a hedging effect during the market crash, which indicates that
incorporating the volatility adjustment can effectively stabilize retirees’ future income. Specifically, we
demonstrate that the volatility adjustment term is non-positive. This is in contrast with the non-negative
assumption of this term in Bégin (2020), which is based on the changing cost of the embedded options
in most collective pension plans.4

In addition, we show that the volatility adjustment is strictly negative and plays a notable role in the
risk-sharing structure when the equity premia are significantly affected by the volatility value (a situation
that is evidenced by Pan, 2002). In fact, our numerical experiments suggest that the optimal TB design
proposed by Cui et al. (2011) that contains the performance adjustment only is a special case under our
framework when the equity premia are assumed to be independent of the volatility. This observation also
replicates the zero-valued volatility adjustment in Bégin (2020) where the equity premia are assumed to
be a constant.

The reason for a non-positive volatility adjustment in our optimal benefit payment structure can be
attributed to the fact that our objective is to maximize the expected utility of the current generation
while the utility of the future generations is also considered. Indeed, a counter-cyclical (i.e., negative)
volatility adjustment indicates that our benefit structure increases intergenerational risk-sharing, which
is in the interest of the current generation. On the contrary, Bégin (2020) considers a frozen pension
plan where no future generations are allowed. It is therefore natural to assume a non-negative volatility
adjustment so that intergenerational risk-sharing is reduced since no other generations are considered.

Second, we find that the performance adjustment is independent of most of the economic assump-
tions, in particular the stochastic volatility and the jump-diffusion processes. This model-robust feature
may facilitate the practical implementation of the risk-sharing pension plans without being overly con-
cerned about the sensitivity of the model assumptions. In addition, we explicitly express the relationship
between the risk aversion parameters and the performance adjustment and provide natural restrictions
in selecting the risk aversion parameters regarding individuals’ income risk and the pension fund’s
sustainability risk.

3 The Chicago Board Options Exchange (CBOE) Volatility Index, known as the VIX by its ticker symbol, is a real-time index
that represents the market’s expectation for volatility (derived from S&P 500 index options) over the coming 30 days.

4 Specifically, most collective pension plans include a protective put option and a written call option. When the VIX is large,
these options are expensive and the generation should receive less benefit while the generation should receive more benefit when
the VIX is low for the options are cheap.
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Third, we show that our model can explain the partial indexation of the benefit payment in the current
market practice for DB pension plans. Indeed, we find that the optimal benefit payment strategy contains
a third adjustment term representing the COLA. The TB level is partially indexed in the sense that it
consists of both a fixed amount and a full COLA term. Our numerical analysis illustrates that a partial
indexation is always preferred. This observation establishes a closer and more realistic link between the
theoretical TB design and the existing DB plans.

To align with the literature, we also consider the risk-sharing structure with the contribution adjust-
ment and prove that the optimal contribution schedule also preserves a linear form with both the
performance and the volatility adjustment. We prove that the risk-sharing coefficients exhibit a con-
stant multiplier relation between the benefit and the contribution (a similar finding in Zhu et al., 2021
which minimizes the income instability and uses Wilkie’s Economic Scenario Generator).

In the end, sensitivity tests over the salary risk, the jump risk, and the changes in the population
structure have been examined. While the main findings remain valid for a large range of parameter
values, our numerical analysis demonstrates that ignoring the jump risk leads to an underestimation of
the volatility adjustment, which reduces the risk-hedging effect of the risk-sharing structure.

Risk-sharing plans have been an important topic among existing literature, see, for example, Cui et al.
(2011), Gollier (2008), and related literature in Footnote 1. Nevertheless, the risk-sharing structures from
most of the literature are either not transparent enough or based on some pre-specified forms that lack
theoretical justification (see Footnote 1). In contrast, we search for the optimal risk-sharing pension
design without pre-specifying the structure of the design. We obtain a transparent linear risk-sharing
structure for the benefit payment, which is consistent with the presumed forms in Cui et al. (2011) and
Bégin (2020). In other words, our results can provide a theoretical justification for the presumed linear
risk-sharing structure proposed by the literature.

Applying the stochastic control approach to study the optimal TB design is not new, see, for example,
Wang et al. (2018), Wang and Lu (2019), Wang et al. (2019), Chen et al. (2023), Zhao and Wang (2022),
and Rong et al. (2023). In particular, Wang et al. (2018) derive the risk-sharing design that minimizes
retirees’ income risk and confirms the optimality of the linear risk-sharing structure proposed by Cui
et al. (2011). The aforementioned studies rely on a Geometric Brownian Motion to model the equity risk
and thus only the performance adjustment is considered. Optimal control problems that are based on a
stochastic volatility model with jumps are only studied in other contexts, such as portfolio optimization,
see, for instance, Egloff et al. (2010), Jin and Zhang (2012; 2013), Escobar et al. (2015), and Hong and
Jin (2022). Our paper can help fill this void for the literature regarding risk-sharing pension plans.

There are only limited studies regarding the VIX index in the actuarial context. Aside from the novel
contribution of Bégin (2020) in the risk-sharing pension design, Cui et al. (2017) and Kouritzin and
MacKay (2018) utilize the VIX index in the fee design of variable annuities. We contribute to the litera-
ture on actuarial applications of the VIX index. Moreover, the VIX index is associated with the cyclicality
of the financial market. Our results, where the performance adjustment indicates a pro-cyclicality and
the volatility adjustment exhibits a counter-cyclicality, partially align with the cyclical design of the
risk-sharing pension in Chen et al. (2023).

The remainder of this paper is organized as follows. Section 2 presents the financial framework, the
stylized pension plan, and the objective function studied in this paper. Section 3 presents our theoret-
ical results. Section 4 provides the numerical analysis of our main findings. Section 5 examines the
assumptions used in this study. Section 6 concludes.

2. Model
In this section, we introduce the models and assumptions used in this paper. To incorporate the volatility
index into the risk-sharing design, a stochastic volatility model is applied. We follow a similar setup as
in Bégin (2020) with some modifications to enhance the reasonableness of our framework and facilitate
the derivation of the explicit solution. The assumptions on the population and pension provisions are
standard as in the literature (e.g., Wang et al., 2018; 2019; Chen et al., 2021b, etc.).
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2.1 Financial market
Denote (�, F , F, P) as a complete filtered probability space, where P is a real-world probability measure
and F := {Ft}t≥0 is a right-continuous and P-complete filtration, representing all the information up to
time t. The stochastic processes in this paper are supposed to be well defined in the probability space
and the moments of random variables are made under the probability measure P. In addition, we denote
by E[·] the expectation of the random variables under probability P.

The financial market consists of two assets, one risk-free asset S0(t) and one risky asset S(t). We
assume that S0(t) is growing at a constant interest rate r, that is,

dS0(t)

S0(t)
= rdt,

and S(t) is modeled by a general jump-diffusion model that allows for stochastic volatility and returns
jumps (e.g., Bates, 2000; Pan, 2002 and Bégin, 2020),

dS(t)

S(t −)
= [r + λ× ν(t) + θ × ν(t) × (μ−μQ)]dt +√

ν(t)dWS(t) + d

(
Nt∑

n=1

(eZn − 1)

)
−μ× θ × ν(t)dt,

dν(t) = κν(ν̄ − ν(t))dt + σν
√
ν(t)

[
ρνdWS(t) +√

1 − ρ2
ν
dWν(t)

]
. (2.1)

Here, (WS(t), Wν(t), Wl(t)) is a three-dimensional standard Brownian Motion and we assume that
WS(t), Wν(t), and Wl(t) are mutually independent. The instantaneous variance is modeled by ν(t) which
is assumed to be a mean-reverting process with a long-run mean ν̄, a mean-reverting rate of κν , and a
volatility coefficient of σν , where |ρν | ≤ 1 is a correlation coefficient between the volatility and the risky
asset. We assume the parameters satisfy the condition 2κνν̄ ≥ σ 2

ν
that ensures the positivity of ν(t) (see

also Cox et al., 1985; Chen et al., 2018, and Chen et al., 2021a for a similar condition). In addition,
following Bégin (2020), we include a jump component that follows a Poisson process {Nt}t≥0 with a
jump intensity of θν(t). The jump size process {Zn}n∈N follows a normal distribution with mean μz and
standard deviation σz, and we define μ=E(exp(Zn) − 1) as the expected jump return. The definition of
the expected jump return under the risk-neutral measure μQ is given in Section 2.2. Furthermore, we
assume that the Poisson process {Nt}t≥0 and the jump size process {Zn}n∈N are both independent of the
Brownian motions.

The risk premium now consists of two components, λν(t) and θ × ν(t) × (μ−μQ), corresponding
to the premium for the return risks and the jump risks, respectively, and both are expressed as a constant
multiplier of the volatility term ν(t). We refer the readers to Pan (2002) for a thorough discussion on the
specification of the risk premium and model calibration.

Furthermore, we model the salary uncertainty L(t) using an OU process, similar to Wang (2006;
2009) and Luo (2017), that is,

dL(t) = κl(L̄(t) − L(t))dt + σl

√
ν(t)

[
ρlSdWS(t) + ρlνdWν(t) +

√
1 − ρ2

lS − ρ2
lνdWl(t)

]
. (2.2)

Here, κl > 0 governs the speed of convergence to a deterministic function L̄(t) and we use an exponen-
tial function L̄(t) = exp(ψ t) to roughly align with the average nominal salary growth over the past few
decades.5 σl × √

v(t) is the volatility of the salary, and ρlS and ρlν are the correlation coefficients between
the salary and the risky asset and between the salary and the volatility, respectively. Without loss of gen-
erality, we unitize the salary such that L(0) = 1. Alternatively, L(t) can be regarded as the inflation index,
which reflects the average cost of living of retirees. In this paper, we do not differentiate the salary and
the inflation risks.

5 In the benchmark scenario, we use ψ = 0.0274 to align with the average wage index (AWI) in the USA from 2000 to 2020; see
https://www.ssa.gov/oact/cola/awidevelop.html.
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2.2 Risk-neutral dynamics and volatility index
The estimate of the risk premium and the benchmark VIX2 involves the specification of the risk-neutral
dynamics. Due to the additional sources of uncertainty (i.e., the stochastic volatility and the random
jump sizes), the market is incomplete in our setting. As a result, the state-price density is not unique. We
follow the method from Pan (2002) by focusing on a candidate state-price density that prices the two
important sources of risks: diffusive price shocks and jump risks. Our candidate state-price density is
specified in Appendix B.1. Under the risk-neutral measure Q associated with the candidate state-price
density, the dynamics of the risky asset are in the following.

dS(t)

S(t −)
= rdt +√

ν(t)dWQ

S (t) + d

⎛
⎝ NQ

t∑
n=1

(
eZQ

n − 1
)⎞⎠−μQθν(t)dt

dν(t) = κν(ν̄ − ν(t))dt + σν
√
ν(t)

[
ρνdWQ

S (t) +√
1 − ρ2

ν
dWQ

ν
(t)

]
, (2.3)

where μQ =EQ
(
exp(ZQ

n ) − 1
)
. Here,

(
WQ

S (t), WQ
ν

(t), WQ

l (t)
)
, {NQ

t }t≥0, and {ZQ
n }n∈N are a three-

dimensional standard Brownian Motion, the Poisson process with jump intensity of θ · ν(t), and the
jump size process with mean μQ

z and variance σ 2
z under Q, respectively.6

Given the risk-neutral dynamic, the volatility index that measures the market’s expectation of the
annualized volatility over the next 30 days has been derived explicitly by Lin (2007). Here, we present
the results only and refer interested readers to Lin (2007) for details. The squared volatility index VIX2

t

can be expressed as
VIX2

t = aVIX × ν(t) + bVIX,

where

aVIX = 1002 × (
1 + 2θ · (μQ −μQ

z )
) · 1 − eκν ·τ

κν · τ ,

bVIX = 1002 × (
1 + 2θ · (μQ −μQ

z )
) · ν̄ ·

[
1 − 1 − eκν ·τ

κν · τ
]

,

and τ = 30
365

.
The benchmark used for volatility adjustment in Bégin (2020) is the asymptotic mean of VIX2

t under
the risk-neutral measure, that is,

VIX2 = lim
t→∞

EQ[VIX2
t ] = aVIX × ν̄ + bVIX.

2.3 Population and pension plan provision
In this paper, we consider a continuous population where all employees join the work at age A and
retire at age R with a maximum attainable age of ω. We assume there is no other pre-exit of the pension
plan except death. Denote ny(t) as the number of members aged y at time t, which is assumed to be a
deterministic function of time t. We use the standard actuarial notation tpy to represent the probability
for a person aged y that survives for the next t years. We do not consider the longevity risk and assume
the mortality risk is fully diversifiable, that is, ny(t) = nA(t − (y − A)) × y−ApA.

The pension plan is assumed to be fully funded by the existing members, where a fixed contribution
rate of c applies to all active members. The benefit is quoted in terms of the instantaneous replacement

6 Pan (2002) has discussed the difficulty in identifying the risk premium for jump-timing uncertainty. To facilitate our sensitivity
test in later chapters, we try to keep our model as simple as possible and set the risk premium for jump-timing risk and salary risk
to zero. In addition, Pan (2002) shows that introducing a volatility-risk premium in addition to the jump-risk premium will not
result in any significant improvement in the goodness of fit to the options data. Therefore, we only include premiums for return
and jump risks.
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rate b(t), which is not a guaranteed amount.7 Later in this paper, we will include a discussion on the
contribution adjustment (CA) scheme and the hybrid scheme that have been studied in Cui et al. (2011)
and Bégin (2020). The aggregate contribution and the aggregate benefit at time t are defined as

Aggregate contribution(t) =
∫ R

A

ny(t) × c × L(t) × eηa(y−A)dy = c × L(t) ×A(t),

Aggregate benefit(t) =
∫ ω

A

ny(t) × b(t) × L(t) × eηa(R−A)dy = b(t) × L(t) ×R(t),

where ηa ≥ 0 is the promotional adjustment such that employees with longer career life generally have
a higher salary. When ηa = 0, the aggregate contribution and benefits are simply multipliers of the
population sizes of the active workers A(t) and the retirees R(t), respectively.

2.4 Pension asset and liability
Given the financial models and the aggregate contributions and benefits, the pension asset X(t) has the
following dynamics:

dX(t) = (X(t) − π (t))
dS0(t)

S0(t)
+ π (t)

dS(t)

S(t −)
+ c × L(t) ×A(t)dt − b(t) × L(t) ×R(t)dt

= [
rX(t) + π (t)ν(t)(λ− θμQ) + (cA(t) − b(t)R(t)) × L(t)

]
dt

+ π (t)
√
ν(t)dWS(t) + π (t)d

(
Nt∑

n=1

(eZn − 1)

)
, (2.4)

with the initial asset level X(0) = x0. The amount invested in the risky asset π (t) and the replacement
rate b(t) are control variables that are dynamically decided by the pension sponsor.

In this paper, we use the traditional unit credit (TUC) method to valuate the actuarial liability (AL).
Since the benefit level is not guaranteed, we apply the TUC to a benchmark benefit level b̂ such that

AL(t) =
∫ ω

A

ny(t) × min(R, y) − A

R − A
× b̂︸ ︷︷ ︸

= Benefit Accrual

× L(t) × eηa(min(R,y)−A) ×
∫ ω−y

max (0,R−y)
spy × e−φsdsdy

=H(t) × L(t),

where φ is the actuarial discount rate and H(t) represents the AL value at time t in the real term.

2.5 Objective
We search for a welfare-enhancing risk-sharing design. We follow the standard approach to define the
welfare function as the aggregate discounted expected utility function for all members during a planning
horizon of T years. To avoid the situation where the interests of the future generations beyond the time
T are sacrificed for the benefits of the current and nearby generations, we include a penalty term that
depends on the terminal asset level X(T ).

7 This is a stylized version of the Canadian target benefit plan. Cui et al. (2011) and Bégin (2020) name such a design as the
“benefit adjustment” (BA) scheme.
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The objective is to maximize the welfare function by controlling the investment and the benefit
payment strategies. Define the value function H(t, x, ν, l) as

H(t, x, ν, l) = sup
(π ,b)∈�

Et,x,ν,l

[∫ T

t

e−ζ (s−t) ×R(s) × U(b(s) × L(s); γr)ds + �× e−ζ (T−t) × U(X(T); γT)

]
,

(2.5)
where Et,x,ν,l := E[ · |t, X(t) = x, ν(t) = ν, L(t) = l], ζ is the discount rate for the time preference, � is
the preference weight given to the utility function of the terminal asset level, and � is the admissible
set defined in Appendix B.2. We adopt an exponential utility function such that U(x; γ ) = − 1

γ
exp(−

γ x), where γ is the risk aversion parameter. Note that we specify different values of the risk aversion
parameters for the individual retirement benefit and the asset level at the terminal time, namely γr and γT .

3. Optimal risk-sharing structure
We present the main results and their economic implications in this section. The details of the derivation
are given in Appendix B.3.

3.1. Optimal benefit payment structure
To solve Problem (2.5), we use the Hamiltonian–Jacobi–Bellman approach and derive the explicit solu-
tion. The explicit solution and the optimal benefit payment strategy are summarized in the following
theorem.

Theorem 3.1. The optimal instantaneous replacement rate b∗(t) is

b∗(t) = − 1

γrL(t)
ln
γT�A(t)

γr

+ γT

γrL(t)
[A(t)X(t) + Ā(t)ν(t) + Â(t)L(t) + Ã(t)], (3.1)

the optimal investment strategy π ∗(t) satisfies the following equation:

π ∗(t) · γTA(t) − θE[e−γT A(t)π∗(t)·(eZn −1)(eZn − 1)] = (λ− θμQ) − σνρνγT Ā(t) − σlρlSγT Â(t), (3.2)

and the corresponding value function H(t, x, ν, l) has an exponential form such that

H(t, x, ν, l) = − �

γT

e−γT [A(t)x+Ā(t)ν+Â(t)l+Ã(t)].

Here A(t), Ā(t), Â(t), and Ã(t) are the solution of the following system of differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At(t) = −rA(t) + R(t)γTA2(t)

γr

Ât(t) = −cA(t)A(t) + κlÂ(t) + R(t)γTA(t)Â(t)

γr

Āt(t) = −π ∗(t)(λ− θμQ)A(t) + κνĀ(t) + 1

2
(π ∗)2γTA2(t) + 1

2
σ 2
ν
γT Ā2(t) + 1

2
σ 2

l γTÂ2(t)

+π ∗(t)σνρνγTA(t)Ā(t) + π ∗(t)σlρlSγTA(t)Â(t) + σlσν(ρlSρν + ρlν

√
1 − ρ2

ν
)γTĀ(t)Â(t)

+ θ

γT

E[e−γT A(t)π∗(t)·(eZn −1) − 1] + R(t)γTA(t)Ā(t)

γr

Ãt(t) = − ζ

γT

− κνν̄Ā(t) − κlL̄(t)�Â(t) − R(t)A(t)

γr

ln (�A(t)) + R(t)γTA(t)Ã(t)

γr

+ R(t)A(t)

γr

,

(3.3)

with terminal conditions A(T) = 1 and Ā(T) = Â(T) = Ã(T) = 0.8

8 Note that all the functions in the theorem should also depend on the choice of T (e.g., b∗(t;T)). Since T can be omitted without
any confusion, we suppress it to keep our notation simple.
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The solution for the optimal investment strategy aligns well with other stochastic control studies
using an exponential utility function (e.g., Merton, 1969; Yang and Zhang, 2005, and Wang, 2007).
More importantly, we focus on the risk-sharing structure of the benefit payment. Rearranging Equation
(3.1), we have the following important remark.

Remark 1. The optimal benefit payment can be written in the following structure:

benefit(t) = b∗(t) · L(t) = b̄(t) + βA(t)
X(t) − ξA(t) × AL(t)

R(t)
− βVIX(t)

VIX2
t − ξVIX(t) × VIX2

R(t)
, (3.4)

where the risk-sharing parameters βA(t) and βVIX are defined as

βA(t) = γTR(t)A(t)

γr

, βVIX(t) = −γTR(t)Ā(t)

γraVIX
,

and the values for ξA(t) and ξVIX(t) can be arbitrarily chosen such that the TB level b̄(t) is defined as

b̄(t) = − 1

γr

ln

(
γT

γr

�A(t)

)
+ γT

γr

Ã(t) − γTĀ(t)

γraVIX
(bVIX − ξVIX(t) × VIX2) + γT

γr

(
A(t)ξA(t)H(t) + Â(t)

)
L(t).

In general, the structure of the optimal benefit payment (a.k.a. Equation (3.4)) coincides with the
proposal made by Bégin (2020), except that all the risk-sharing parameters (i.e., βA(t) and βVIX(t)) in
Equation (3.4) are deterministic functions of time t instead of constants when the planning time horizon
is finite or when the population structure changes in the future. Therefore, the implication of the optimal
structure is straightforward, that is, the actual benefit (b(t) · L(t)) deviates from the target level b̄(t) when
the asset level is different from a certain threshold (ξA(t)) of the AL or when the VIX index is different
from a certain threshold (ξVIX) of the benchmark VIX2. To further align with the proposal in Bégin
(2020) and simplify the following numerical analysis, we set ξA(t) = ξVIX = 1 to represent that the risk-
sharing threshold is 100% of the AL and the volatility benchmark. We keep the terms ξA(t) and ξVIX(t)
in Equation (3.4) to stress that these thresholds are allowed to be different from 100%.9 In what follows,
we examine each of the three components in Equation (3.4), namely the performance adjustment βA, the
volatility adjustment βVIX, and the TB level b̄.

3.2. Performance adjustment βA

The performance adjustment βA(t) can be explicitly expressed as

βA(t) = R(t)
γr

γT
e−(T−t)r + ∫ T

t
e−(s−t)rR(s)ds

, (3.5)

which is independent of most of the economic parameters and guaranteed to be positive. In fact, it is
only affected by the choice of the risk-free rate r, the ratio between the risk aversion parameters γT

γr
, and

the size of the retired population R(t). The effect of the risk aversion ratio γT

γr
becomes insignificant for

a sufficiently long horizon. In particular, we have

lim
T→∞

βA(t;T) = R(t)∫ ∞
t

e−(s−t)rR(s)ds
. (3.6)

We can observe from Equation (3.6) that βA only depends on the relative population size of the current
retirees compared with that of the future retirees. If we have a fast-growing population, then future
generations have more ability in absorbing the pension deficit. Therefore, it is optimal to stabilize the
retirement income for current retirees with more deficit transferred to the future, which results in a
smaller βA. Notice that the discount rate for the time preference (or intergenerational discount rate) ζ is

9 A threshold different from 100% is also common in the practice. For example, the threshold is 130% for full indexation for
the pension plan in the Netherlands, and 80% funding level in the USA is often considered fully funded (American Academy of
Actuaries, 2012).
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not involved in Equation (3.6), which means that the sponsor does not need to worry about the issues of
intergenerational fairness when determining the performance adjustment.

It is important to emphasize that the performance adjustment βA is determined independently of the
stochastic volatility assumption. We can show that βA(t) still has the same formula when the risky asset
is assumed to follow a geometric Brownian motion as Merton (1969).10 This suggests that the perfor-
mance adjustment term is model-robust. The volatility adjustment can be regarded as a supplementary
adjustment on top of the performance adjustment.

3.3. Volatility adjustment βVIX

We first show that the volatility adjustment parameter βVIX(t) is guaranteed to be non-positive when the
jump and salary risks are excluded. This result is summarized in the following remark.

Remark 2. If the jump and salary risks are not considered, then

βVIX(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γT

γr

R(t)

aVIX

ν1 − ν1e− σ2
ν (1−ρ2

ν )γT (ν1−ν2)
2 (T−t)

1 − ν1
ν2

e− σ2
ν (1−ρ2

ν )γT (ν1−ν2)
2 (T−t)

, ρν 
= ±1,

−R(t)

aVIX

λ2

2γr

∫ T

t
e− ∫ w

0 (λσν+κν+βA(s))·(1+1s≤t)dsdw, ρν = 1, λσνρν + κν 
= −βA(t),

−R(t)

aVIX

λ2

2γr

∫ T

t
e− ∫ w

0 (−λσν+κν+βA(s))·(1+1s≤t)dsdw, ρν = −1, λσνρν + κν 
= −βA(t),

−R(t)

aVIX

λ2

2γr

(T − t), ρν = ±1, λσνρν + κν = −βA(t),

(3.7)

where

ν1,2 = −λσνρν − κν − βA(t) ±√
(λσνρν + κν + βA(t))2 + λ2σ 2

ν
(1 − ρ2

ν
)

σ 2
ν
(1 − ρ2

ν
)γT

.

It is clear from Remark 2 that

βVIX(t) ≤ 0

by observing that ν1 ≥ 0 ≥ ν2. The derivation of Equation (3.7) can be found in Appendix C.2. We can
also show that βVIX(t) is non-positive numerically when both the jump and the salary risks are included
in Section 4 (see Figures 2 and 3).

The non-positivity of βVIX(t) indicates that the actual benefit will be increased when the volatility
index is higher than the long-term benchmark (i.e., VIX2 >VIX2) if all other items are kept unchanged
in Equation (3.4). It can be explained by the positive choices in the risk premium λ, where a higher risk
premium increases the equity’s investment return and raises the benefit level further. Interestingly, the
findings imply that retirees will receive compensation for potential benefit reductions during a market
crash where the value of the pension asset is likely to decline sharply and the volatility index is typically
quite high. This observation suggests a counter-cyclical risk-sharing policy and is in line with Chen et al.
(2023). Notice that the non-positive values of βVIX(t) are the direct result of our optimization problem.
This is in contrast with the non-negative assumption made in Bégin (2020). While Bégin (2020) sets the
assumption due to financial fairness, our welfare-maximizing design provides a different interpretation
on the volatility adjustment βVIX(t).

10 The solution of the optimal risk-sharing strategy without stochastic volatility is given in the Appendix E. We omit the details
of the proof as it is a special case of our general result.
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3.4. Partial indexation of TB b̄

The TB level b̄(t) in Remark 1 can be decomposed in the following:

b̄(t) = b̄F(t) + b̄L(t) × L(t),

where

b̄F(t) = − 1

γr

ln

(
γT

γr

�A(t)

)
+ γT

γr

Ã(t) − γTĀ(t)

γraVIX

(
bVIX − ξVIX(t) × VIX2

)
represents the fixed amount of the TB that is independent of the salary risk, and

b̄L(t) = γT

γr

(
A(t)ξA(t)H(t) + Â(t)

)
stands for the variable amount that reflects the COLA. The benefit is fully indexed to a wage index when
b̄F = 0, and no indexation is applied when b̄L = 0. It is evident that both b̄F and b̄L are strictly positive
when ξA = ξVIX = 1. This indicates that the optimal retirement benefit adopts a partial COLA, which
aligns well with the market practice for many existing DB plans.11 In contrast, most of the literature
finds either full indexation or no indexation.

3.5. Hybrid scheme with adjustable contribution rate c(t)
In this section, we include a short discussion on the optimal CA. Specifically, we now set the contribution
rate as an additional control variable c(t) and the objective is still to maximize the welfare function.
Active members’ utility is based on their disposable income after the contribution, and an exponential
utility function with risk aversion parameter γa is used. Here, we summarize the results in the following
remark; the details of the problem formulation along with the derivation are deferred to Appendix D.

Remark 3. The optimal contribution c(t) · L(t) and benefit payment b(t) · L(t) can be written in a similar
structure as in Bégin (2020),

Contribution(t) = c̄(t) − αA(t)
X(t) − AL(t)

A(t)
+ αVIX(t)

VIX2
t − VIX2

A(t)
,

Benefit(t) = b̄(t) + βA(t)
X(t) − AL(t)

R(t)
− βVIX(t)

VIX2
t − VIX2

R(t)
,

where the risk-sharing parameters α and β and the target contribution c̄(t) and TB b̄(t) are defined in
Appendix D with the same interpretation and the same structure as β in Remark 2.

The remark justifies the linear risk-sharing proposals made by Cui et al. (2011) and Bégin (2020) on
the optimal hybrid design. Most observations on the TB plan remain valid for the hybrid plan and more
importantly, the relationship of the risk-sharing parameters between the contribution and the benefit
exhibits the following constant ratio:

αA(t)

βA(t)
= αVIX(t)

βVIX(t)
= γrA(t)

γaR(t)
.

This indicates the values for α and β differ only due to the difference in the population size and risk
aversion between active workers and retirees. In particular, when γr = γa, the amount of risk borne by
any group is proportional to the group population size.12 In the usual circumstance where A(t)>R(t)
and γa < γr, active workers will carry relative higher risks than retirees. Moreover, the constant ratio
relationship implies that αVIX should be non-positive, in contrast with the non-negative assumption used

11 For example, the pension plan at the University of Waterloo has a 50% indexation, and the pension plan at the University of
Columbia has a 75% indexation.

12 Zhu et al. (2021)have documented a similar finding with an aim to minimize the expected future income instability.
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in Bégin (2020). In the end, when γa = γr it can be shown that

contribution(t) + benefit(t) = L(t).

This means that the after-contribution income for the active worker is the same as the retirement income
for the retirees, which implies a 100% replacement rate. Clearly, this is not the general consensus for a
pension design as a replacement rate around 60% is often deemed to be reasonable for a lifetime worker
and therefore it would be reasonable to set γa ≈ 60% × γr.

4. Numerical analysis
In this section, we conduct numerical analysis on the risk-sharing structure of the optimal benefit
payment, namely the performance adjustment (i.e., βA), the volatility adjustment (i.e., βVIX), and the
cost-of-living adjustment (i.e., b̄).

Due to a large number of notations, we summarize all notations in Table A.1. For each of the parame-
ters, we also include the benchmark values. The economic model parameters are based on the calibration
in Pan (2002). In what follows, we briefly discuss the benchmark values for some important parameters.
First, we set the benchmark replacement rate for liability valuation (a.k.a. b̂) to be 65% of the salary
to match with an actuarially fair DB plan.13 Second, γr, the risk aversion coefficient of the individual
benefit, is assumed to be 50. This value corresponds to a relative risk aversion of 32.79, which is the
upper bound of the calibrated values for the relative risk aversion of an exponential utility function using
S&P 500 option data by Bliss and Panigirtzoglou (2004).14 We choose the upper bound to reflect the
fact that pensioners have a higher risk aversion than the general population (see, for instance, Van Rooij
et al., 2007). More discussions on the choices of values for γr, γT , �, and ζ will be given in the following
numerical analysis. Last, the actuarial discount rate φ is set to be 2.5% to align with the practice in the
solvency liability valuation.

4.1. Performance adjustment βA

Due to the decreasing relative risk aversion of the exponential utility function, it is appropriate to set
different values for the risk aversion parameters of the retirement income and the terminal asset level
because they are significantly different in scale.15 However, the choices of γr and γT are not straightfor-
ward because (1) they represent two different quantities that are not comparable, with the former one
focusing on an individual’s income adequacy while the latter one on the overall pension solvency and
(2) both the retirement income and the terminal asset level are random. Therefore, we use an alternative
approach to provide a new interpretation between γr and γT . Recall that βA(t) represents the percentage
of deficit/surplus that will be distributed to the retirees and that βA(T) = γTR(T)

γr
. The choice of γT

γr
has a

natural upper limit of 1
R(T)

so that the pension fund cannot distribute more than 100% of the deficit to the
retirees. Although the choices of γr and γT under this approach deviate from their original definitions
with respect to utility functions, they reconcile with the objective of balancing the conflicting interests
between different generations. The value of βA (and hence the ratio of γT over γr) represents the level of
risk bored by the current generations and thus indirectly reflects the risk transfer to the future.

Figure 1 displays the effect of γT

γr
(expressed in term of βA(T) within the range 1–100%) on βA(t). We

select βA(T) = 3% in our benchmark scenario to match the optimal value obtained in Bégin (2020). Note

13 An actuarial fair DB plan satisfies

c ×
∫ R

A
e−φ(t−E) × x−ApAdx = b̂ ×

∫ ω

R
e−φ(t−A) × x−ApAdx.

14 Bliss and Panigirtzoglou (2004) find that the relative risk aversion values are between 0.65 and 32.79.
15 Cautions must be made for scaling under the exponential utility, see, for example, Mania and Schweizer (2005).
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that this value also provides the most time-stable performance adjustment as shown in the graph. This
figure demonstrates that βA is relatively stable for all four cases (at least for the initial period of roughly
twenty years). The shape of βA(t) is usually flat over the initial period of time and increases/decreases
sharply when the time approaches T (with speed controlled by the risk-free rate and the population
growth rate of the retirees).

4.2. Volatility adjustment βVIX

Figure 2 demonstrates the values of the volatility adjustment across time under different values of γT

(expressed in terms of βA(T)). First, we can observe that βVIX appears to be more stable over a longer
period of time than βA(t) for all four cases. It stays flat for over 35 years before a sharp convergence to 0
near maturity. Second, the volatility adjustment is robust with respect to different choices of γT within a
reasonable range, which is similar to the performance adjustment. Third, the volatility adjustment βVIX

is negative and significantly differs away from zero for all the cases, which echoes Remark 2 where the
jump and salary risks are not considered. This indicates that the volatility adjustment in fact possesses
the features of counter-cyclical risk-sharing policies.

Figure 3 displays the value of βVIX with different risk premia (λ) and different correlation coefficients
between the volatility and the risky asset (ρν) at time t = 0. We can observe that the effect of volatility
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Figure 3. βVIX(0) under different λ.

adjustment is most significant (i.e., largest in the absolute term |βVIX|) when the risk premia are high
and ρν is highly negative, which highlights the hedging effect of the volatility adjustment term during
the bear market. When we move from negative correlation coefficients to positive, we can observe that
the hedging effect of the volatility adjustment diminishes since the high-risk premia will offset the mar-
ket crash. In addition, the higher the risk premia λ, the better the expected investment returns will be
achieved, and thus more surplus are expected to be available for distribution to the retirees.

With a non-negative constraint, Bégin (2020) obtain obtain an optimal benefit structure that does not
have a volatility adjustment (βVIX = 0).16 We deem that this is partly because of misspecification in the
risk premia. If we adopt the same assumption as Bégin (2020) such that the risk premia are independent
of the volatility term (i.e., λ= 0), then we would also obtain a zero volatility adjustment as shown in
Figure 3. However, as demonstrated by Pan (2002), investors seek a higher expected return on riskier
assets, and therefore a large positive λ is more consistent with the market expectation. In such a case,
the optimal risk-sharing design should always contain a negative βVIX in its benefit adjustment (BA).

Figure 4 illustrates the historical BA based on the optimal βA(t) and βVIX using the monthly S&P
500 data from 2006 to 2014. The equity market has done poorly during this time (i.e., behind infla-
tion), and BAs have been persistently negative. All terms are expressed in real values (by dividing the
average wage index) and we adopt a 50-50 investment strategy in risky and risk-free assets in this illus-
tration. We can observe that the performance adjustment is dominating the overall adjustment and the
volatility adjustment becomes significant only during the 2008 financial crisis. The volatility adjust-
ment is clearly counter-cyclical to provide a hedge on top of the performance adjustment, which is
pro-cyclical. Indeed, we find that the variation in the benefit adjustment (i.e., the standard deviation of
Adjustmentt+� − Adjustmentt) is reduced by 13% when the volatility adjustment is introduced and the
adjustment volatility (i.e., the standard deviation of BA) is reduced by 9%.

4.3. Partial indexation of the optimal benefit
To measure the partial indexation level of the TB, recall that given L(0) = 1 we have

b̄(t) = b̄F(t) + b̄L(t) · L(t) = (
b̄F(t) + b̄L(t)

) ·
[

1 + b̄L(t)

b̄F(t) + b̄L(t)
· (L(t) − 1)

]
.

16 Bégin (2020) obtained a zero volatility adjustment in the benefit payment for both a target benefit plan and a hybrid plan.
However, the optimal contribution adjustment in a hybrid plan has a positive volatility adjustment term.
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Figure 4. Sample of historical benefit adjustments.
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Figure 5. Partial indexation b̄L×L(t)
b̄F+b̄L×L(t)

for t = 0.

Since L(t) − 1 is the cumulative inflation growth up to time t, we define I(t) = b̄L(t)
b̄F (t)+b̄L(t)

as the partial
indexation rate.17

Figure 5 plots the levels of partial indexation at time t = 0 over different � (weight given to the
terminal asset) and ζ (time preference). Since � and ζ only appear in the ordinary differential equation
(ODE) of Ã(t) and thus do not affect the risk-sharing parameters β or b̄L, Figure 5 also illustrates the
sensitivity of b̄F with respect to � and ζ . We first find that the indexation level is within the acceptable
range for DB practice, that is, between 59% and 63%, and is comparatively constant. Second, the higher
the terminal penalty � is, the relatively lesser weight is assigned to the generations up to time T , and
therefore the retirement income level will be lower. Since b̄L is unaffected by �, this implies a lower b̄F

and thus a higher indexation level. The same argument applies to the time preference rate since a lower
ζ assigns relatively lower weights to the current generation. Due to the insignificant effects of ζ and �,
we set ζ = 0 and �= 1 for the numerical analysis later on.

17 This definition is based on the cumulative COLA, slightly different from practice as partial indexation is often applied to
the growth rate of the inflation index (or the price index) during each time period. The partial indexation adopted in this paper
is an approximation to the real world, and if the planning horizon T is long enough where b̄F(t) ≈ b̄F and b̄L(t) ≈ b̄L, inflation
indexation on the cumulative basis would be close to the on-going basis.
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Figure 6. Impact of salary risk on partial indexation b̄F
b̄F+b̄L

and βVIX.

We emphasize that the values of the TB level b̄(t) depend on the sponsors’ subjective choices of the
risk-sharing thresholds ξA and ξVIX. A lower TB level is anticipated as a result of lower criteria because
they imply that surplus payouts are triggered more frequently. There is no such thing as a free lunch, so
it is unrealistic to anticipate having both a bigger surplus distribution and a higher TB level.

5. Sensitivity analysis
This section provides sensitivity tests over economic and demographic parameters such as the salary
risk, the jump risk, and changes in population structure.

5.1. Salary uncertainty
Figure 6 presents the effects of the salary risk on the percentage of partial indexation and the volatility
adjustment βVIX over different values of the mean-reverting speed κl for the salary process and different
values of the salary volatility σl. It can be observed from the left panel that the mean-reverting speed
κl is crucial in determining the partial indexation level while the salary volatility is rather insignificant.
We can also observe that the partial indexation stays within a practical range for different values of κl

and βVIX (i.e., approximately between 35% and 55%).
The partial indexation level decreases as the mean-reverting speed κl increases. This might be because

the salary L is more likely to be close to the long-term mean L under a larger κl and thus indicates that
the benefit payment is less related to the wage index. The impact of the salary volatility σl on the partial
indexation is rather insignificant compared with κl. In addition, the volatility adjustment βVIX is shown
to be stable if the salary index is close to what is anticipated (when κl is large or when σl is small).

5.2. Jump risk
Figure 7 presents the effect of jump risks on βVIX(t) and b̄F(t) via the jump intensity θ and the expected
jump sizeμz. Overall, we can observe the monotone decreasing relationships between θ and both βVIX(t)
and b̄F(t) in the two panels, while the expected jump size μz has only insignificant impact. In the left
panel, the higher jump risk premia allow the sponsor to set a higher overall TB level, and thus a higher
b̄F. Since b̄L is unaffected, the level of partial indexation will be lower. In the right panel, the volatility
adjustment is significantly affected by the amount of jump risk premia. Specifically, a higher θ represents
both a higher frequency of downward shock and a higher jump risk premia, which in either case leads to a
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Figure 7. Impact of jump risk on partial indexation b̄F
b̄F+b̄L

and βVIX.
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Figure 8. United Nation Projection in old-age dependency ratio.

higher volatility adjustment. This observation aligns with our interpretation on the volatility adjustment
in the previous section. Therefore, ignoring the relationship between the jump risk and the stochastic
volatility would significantly underestimate the volatility adjustment in the optimal benefit structure.

5.3. Dependency ratio
Most optimal control literature on pension plans assume a stationary population, which clearly does not
match with the current experience of the aging society. We examine the impact of the aging population
on both the performance adjustment and the volatility adjustment in this section.

Based on the projection of United Nations (2022), the population growth for developed regions is
virtually zero. Therefore, to study the impact of the changing population structure, we set A(t) =A
and solely focus on the improvement in the old age mortality rate. Figure 8 plots the projections of
the old-age dependency ratio18 for the selected developed countries. Although the projection values are
significantly different across different countries, they generally are of an S-shape, which means most of
the countries are experiencing a rapidly growing aging population and the growth will eventually slow

18 Old-age dependency ratio here represents the ratio between the population aged over 65 and the population aged between
25 and 64.
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Figure 9. United Nation Projection in old-age dependency ratio.

down. It is therefore natural to use a Sigmoid function19 to approximate the dynamic of the dependency
ratio. Define the old-age dependency ratio as D(t) = R(t)

A(t)
with ODE

dD(t) = ε ×
(
D̄ −D(t)

D̄

)
×D(t)dt,

where ε is the base growth rate and D̄ is the maximum dependency ratio can be achieved.
Figure 9 displays the effects of population growth rate on both the performance adjustment βA and the

volatility adjustment βVIX, where D̄ = 73% is based on the UN’s projection on Canadian data. From the
left panel, we can observe a higher growth rate (corresponding to a larger retiree population throughout
time) leads to a lower performance adjustment at initial periods of time (i.e., approximately 15–20 years)
since the initial population size is relatively small. As time t increases, when the growth of the retiree
population slows down, the relative position of the population at time t may become smaller for large ε
and the population experiences a larger performance adjustment. Notice also that as long as ε > 0, the
difference is rather insignificant in the sense that βA is rather stable once the long-term projection of the
dependency ratio can be accurately estimated.

The right panel displays a significantly different trend in volatility adjustment under different popula-
tion dynamics, compared to the performance adjustment. However, if we scale the volatility adjustment
by the number of retirees

(
βVIX(t)
R(t)

)
to examine the volatility adjustment for each individual, then the dif-

ference is much less significant. This is not surprising since the volatility index VIX2
t only appears in

measuring the utility of each retirement benefit not in the terminal penalty. Thus, βA is rather stable in
terms of the aggregate adjustment, while βVIX is more stable in terms of the individual adjustment.

6. Conclusion and future work
This paper studies the optimal risk-sharing pension plan by modeling the equity market using a stochastic
volatility model with jumps and the inflation index using an OU process. We obtain an explicit solution
for the benefit payment strategy, which consists of a performance adjustment, a volatility adjustment,
and a cost-of-living adjustment.

We show that the performance adjustment is model-robust and illustrate its relationship with the
risk aversion parameters regarding income and sustainability risk. We also find the volatility adjustment
exhibits a counter-cyclical feature that acts as an income risk hedge during the financial crisis. Last, we
demonstrate that the optimal TB level is partially indexed to the COLA.

19 Sigmoid function has a long history in population modeling, for example, Berkson (1944) and Yin et al. (2003) among many
others.
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Many aspects of the risk-sharing pension plans can be considered in future work. First, the downside
deviation of the retirement income should be treated differently from the upside rewards and reflected
in the objective function due to the counter-cyclical feature of the optimal pension design. Second,
stochastic interest rate models may be considered to explain the time-invariant performance adjustment
strategy when the risk-sharing coefficient equals the risk-free rate and the population is stationary. Third,
regime-switching models may be considered to avoid a volatile structure using VIX as the only indicator
when the reference point VIX2 is high, that is, when the pension design can be regarded as having a
regime-dependent benefit structure.

In addition, an important topic that we cannot address in the scope of this paper is the intergenera-
tional fairness for risk-sharing pension plans. Several studies demonstrate the actuarial fairness across
different generations for an initially fully funded risk-sharing plan. However, this leads to the commit-
ment problem when the fund is severely underfunded such that members may prefer to opt out of the
plan, threatening the sustainability of the fund. To properly address intergenerational fairness without
threatening the sustainability of the pension fund, a more complicated pension design may be considered
(e.g., including a vesting period or age-dependent risk-sharing structure) and the involvement of a third
party may be necessary (e.g., risk-sharing of the pension sponsor or intervention from the government).
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