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Diet-related diseases are the leading cause of death globally and strategies to tailor effective
nutrition advice are required. Personalised nutrition advice is increasingly recognised as
more effective than population-level advice to improve dietary intake and health outcomes.
A potential tool to deliver personalised nutrition advice is metabotyping which groups indi-
viduals into homogeneous subgroups (metabotypes) using metabolic profiles. In summary,
metabotyping has been successfully employed in human nutrition research to identify sub-
groups of individuals with differential responses to dietary challenges and interventions
and diet–disease associations. The suitability of metabotyping to identify clinically relevant
subgroups is corroborated by other fields such as diabetes research where metabolic profiling
has been intensely used to identify subgroups of patients that display patterns of disease pro-
gression and complications. However, there is a paucity of studies examining the efficacy of
the approach to improve dietary intake and health parameters. While the application of meta-
botypes to tailor and deliver nutrition advice is very promising, further evidence from rando-
mised controlled trials is necessary for further development and acceptance of the approach.

Metabotypes: Personalised nutrition: Diabetes: Biomarkers

Suboptimal diets are responsible for the highest rates of
morbidity and mortality globally, with recent data indi-
cating that improvement in dietary intake could poten-
tially prevent one in every five deaths(1). Concomitant
with this, the burden of some diet-related diseases, espe-
cially diabetes, continues to increase(2). This scenario has
led to questions regarding the effectiveness of the current
dietary guidelines for populations in improving
health(3,4). In recent years, the importance of metabolic
interindividual variability emerged as a key factor that
drives differential responses to food. Indeed, CVs
between 59 and 103 % were reported for postprandial

TAG, glucose and insulin in response to identical meals
with the contribution of clinical, microbiome and life-
style factors differing greatly among outcomes(5). To
account for interindividual variability, a variety of
approaches providing personalised nutrition were devel-
oped and achieved positive results(6–12). For example,
an algorithm to personalise diets that used clinical and
microbiome factors resulted in improvement in gly-
caemic control compared to a Mediterranean diet(7).
The Food4Me study reported that personalised advice
based on dietary intake data only or in combination
with phenotype and genotype improved dietary quality
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compared to generic advice(9). Genetically tailored
advice applied to weight management resulted in greater
reductions in total fat intake and better long-term adher-
ence to total fat and saturated fat guidelines compared to
generic advice(12). Across the majority of these studies,
complex data were employed to personalise nutrition
advice. While this is effective at an individual level,
there is an urgent need to develop more personalised strat-
egies for the prevention of diet-related diseases that are
feasible and affordable for implementation in populations.

In pursuit of this goal, metabotyping is an approach
for the identification of individuals that could benefit
from tailored nutrition advice. Metabotyping uses meta-
bolic parameters to group individuals into subgroups
with similar metabolic profiles(13–15). For the purpose
of this review, we will refer to subgroups of individuals
with similar metabolic characteristics as metabotypes,
while acknowledging that other terms such as data-
driven clusters, subphenotypes and metabolic subgroups
are also used in the literature. Metabotypes are strongly
anchored on underlying physiological mechanisms and
reflect the individual interactions between internal and
external exposures and genes(14,15). In human nutrition
research, metabotypes emerged by demonstrating that
subgroups of individuals with similar metabolic profiles
have differential responses to dietary challenges and
interventions(16–19). Subsequently, metabotypes were
associated with differential prevalence and incidence of
diseases thus suggesting that they could be used to tailor
prevention strategies(20–22). These studies provided the
evidence base for the development of frameworks to
deliver personalised nutrition using group characteristics.
Currently, the major focus of the application of metabo-
typing is the identification of homogeneous and clinically
relevant subgroups for which optimal interventions could
be designed to positively impact health outcomes
(Fig. 1). This review will discuss the evidence supporting
the use of metabotyping to tailor nutrition advice draw-
ing on the broader literature including emerging studies
in the diabetes field.

Ability of metabotyping to identify differential response
to dietary challenges and interventions

Metabotyping can be applied to nutrition studies to
examine the responses of groups to dietary challenges
and interventions. These studies constitute an important
step to understanding the variability existing among indi-
viduals and the rationale of using metabotyping to
obtain information to tailor nutrition advice based on
group characteristics.

For example, overweight and obese women were clus-
tered based on their glucose, insulin and leptin responses
to meals differing in the glycaemic index to investigate
patterns of subclinical glycaemic disruptions(16). While
the most populated metabotype presented little deviation
from the expected responses to the dietary challenges, the
two minor metabotypes were one suggestive of hyperlep-
tinaemia with high leptin and glucose and the other sug-
gestive of sub-clinical insulin resistance with lower

postprandial leptin and higher insulin and glucose
responses. A similar approach clustered overweight
Asian women into three metabotypes based on their glu-
cose, insulin and TAG responses to two high-protein
meal challenges high in fructose or glucose(23). In add-
ition to a metabotype with average responses, the same
stimulus revealed other two metabotypes with adverse
metabolic responses. The group susceptible to visceral
fat and liver fat accumulation presented the highest
TAG response and waist-to-hip ratio and worst lipid
profile whereas the group vulnerable to prediabetes pre-
sented the highest glucose response, fasting glucose,
BMI, fat percentage and hip circumference. Using only
blood glucose response curves to an oral glucose toler-
ance test to cluster healthy individuals, another study
found an ‘at-risk’ metabotype among four identified
metabotypes(18). The at-risk metabotype had the most
adverse metabolic profile with reduced β-cell function,
impaired insulin and C-peptide responses to the oral glu-
cose tolerance test and impaired glucose, insulin,
C-peptide and TAG responses to an additional oral
lipid tolerance test. These studies demonstrate that meta-
botyping may be useful for detecting subclinical meta-
bolic dysfunctions and could contribute to developing
and optimising personalised nutrition interventions.

Metabotypes have also been defined using fasting vari-
ables and their patterns of metabolic responses investi-
gated using dietary challenges. Using a series of blood
metabolites from postmenopausal women a metabotype
suggestive of insulin resistance was identified(24).
Compared to a healthier metabotype, the insulin resist-
ance group initially characterised by higher levels of fast-
ing leucine and isoleucine and lower levels of fasting
sphingomyelins and phosphatidylcholines had the highest
insulin despite similar glucose concentrations in response
to challenges with different types of bread. In a study
designed to investigate the vascular effects of a high-
saturated fat meal and a mixed Mediterranean-type
meal individuals were clustered based on age, BMI and
lipid parameters(25). The high-saturated fat meal pro-
duced endothelial dysfunction only in the unhealthy
metabotype characterised by higher BMI, insulin resist-
ance, total cholesterol and TAG. In both groups, the
mixed Mediterranean-type meal did not significantly
impact postprandial endothelial function suggesting that
the unhealthy metabotype could benefit even more from
a Mediterranean diet.

Retrospective application of metabotyping to inter-
ventions revealed a responsive metabotype in a number
of studies. In a 12-week weight loss intervention, positive
changes to a mixed meal tolerance test were evident only
after the classification of individuals into metabotypes
using plasma levels of metabolites (markers of lipolysis,
fatty acid β-oxidation and ketogenesis)(19). The respon-
sive metabotype, which was considered prediabetic with
a modestly impaired insulin action at baseline, presented
reductions in postprandial glycaemia, adipose tissue
depots and plasma levels of amino acids and acylcarni-
tine becoming more similar to the individuals in the non-
responsive group. Similarly, improvements in markers of
metabolic syndrome were observed with a 4-week
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vitamin D supplementation only in a responsive metabo-
type identified among five using thirteen biochemical
markers at baseline(17). The metabotype characterised
by low concentrations of vitamin D and higher concen-
trations of adipokines at baseline presented an inverse
relationship between the change in serum vitamin D
and glucose and significant reductions in C-reactive pro-
tein, insulin and homoeostatic model assessment for insu-
lin resistance. In the 10-year RCT Look AHEAD,
post-hoc analysis defined metabotypes for patients with
diabetes using four clinical variables (age at diabetes
diagnosis, BMI, waist circumference and glycated Hb)
and a poor glucose control metabotype that received an
intensive lifestyle (dietary and exercise) intervention
(LI) was associated with an increased risk of CVD events
compared to the same metabotype that received a diabetes
support and education intervention(26). In the three
remaining metabotypes, the risk of CVD events was simi-
lar between study groups, but the intensive LI improved
multiple CVD risk factors. These findings demonstrate
that metabotyping may play a role in determining the
appropriate intervention for subgroups of individuals.

In a German cohort, BMI and thirty-two biochemical
markers were used to identify three metabotypes with

different levels of metabolic impairment and incidence
of diet-related diseases(21). The metabotype with the
most unfavourable biomarker profile and the highest
BMI and prevalence of cardiometabolic diseases at base-
line also presented the highest incidence of hypertension,
type 2 diabetes, hyperuricaemia/gout, dyslipidaemia and
all cardiometabolic diseases in a 7-year follow-up. The
work supports the role of metabotyping as a robust
tool for risk stratification and consequently for tailoring
prevention strategies. In the same cohort, three metabo-
types were defined with a reduced set of variables
(HDL-C, non-HDL-C, uric acid, fasting glucose and
BMI) and investigated for their responses to an oral glu-
cose tolerance test and a 12-week fibre intervention(27).
Compared to the healthy metabotype, participants in
the intermediate and unfavourable metabotypes pre-
sented impaired glucose responses to the oral glucose tol-
erance test with significantly higher postprandial glucose
concentrations. Although the fibre intervention did not
significantly change metabolic parameters across meta-
botypes, the group with an unfavourable profile had
the greatest reductions in insulin, cholesterol parameters
(total cholesterol, LDL-C and non-HDL-C) and blood
pressure. These metabotypes were also applied to

Fig. 1. Overview of the evidence development on metabotyping for the delivery of tailored nutrition advice.
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investigate their effect on associations between diet and
DNA methylation(28). While only a few significant asso-
ciations were observed in the total cohort, many were
observed when the analyses were stratified by metabo-
types; most of them between methylation sites and the
intake of cruciferous, cheese, whole grain products, mar-
garine, eggs and total meat. This highlights the import-
ance of including information on the metabolic profile
of participants in diet–epigenome association studies.

In summary, there is compelling evidence that metabo-
typing can stratify individuals into homogeneous groups
with differential responses to dietary challenges and
interventions. This provides a solid base for further inves-
tigation of metabotypes as a means to tailor nutrition
advice at a group level.

Potential of metabotyping to personalise healthcare
illustrated by diabetes research

The investigation of metabotypes to provide personalised
healthcare extends now to a variety of medical fields(29–34).
There is growing interest and important advances espe-
cially in applying metabotypes to unravel the complexity
of prediabetes and diabetes by defining subgroups that dis-
play patterns of phenotypes and complications. These
health conditions are currently recognised as highly het-
erogeneous in their pathophysiological mechanisms
which result in differences in the patients’ clinical presen-
tations already at diagnosis(35,36). In this context, the iden-
tification of metabotypes with the ability to predict disease
prognosis illustrates the potential of this tool for preventa-
tive healthcare strategies (Table 1).

In patients with diabetes from the Swedish Cohort
ANDIS, metabotypes identified at disease diagnosis
were associated with the risk of developing diabetic com-
plications(37). Six readily available clinical variables were
used to define five clusters related to autoimmune dia-
betes, insulin deficiency, insulin resistance, obesity and
age. In a 4-year follow-up, the clusters differed in disease
progression and complications. Of note, the insulin
resistance cluster exhibited the highest risk of diabetic
kidney disease and the insulin deficiency cluster exhibited
the highest risk of retinopathy. These clusters have been
extensively replicated in several cohorts of diverse ethni-
cities(35,38–41) and associated with genetics(42) and
response to medical treatment(43). Further characterisa-
tion of these clusters could provide useful information
to design tailored nutrition interventions to assist the
management of diabetes and its complications.

Although the ANDIS clusters have been replicated in
several populations, a study in a Singaporean cohort
highlights the impact of certain ethnicities on disease
profile and progression and the importance of testing
the metabotyping model in the target population before
considering its application(44). Using the same ANDIS
method and markers (except for glutamate decarboxylase
antibody that determined autoimmune diabetes), a total
of three clusters were reported. The cluster characterised
by obesity and insulin resistance contained the highest
proportion of patients (45 %) indicating that prevention

and treatment of these conditions are the major factors
to slow down the increasing prevalence of diabetes in
this Singaporean population. However, the most notable
difference was the absence of a cluster exclusively charac-
terised by insulin deficiency; instead, this trait was dif-
fused into two clusters related one to insulin resistance
and the other to age. Patients in the cluster with insulin
insufficiency and resistance, despite being more than 10
years younger and having similar diabetes duration to
the other clusters, presented the highest risk for chronic
kidney disease and the same risks of major CVD events
and all-cause mortality suggesting a high-risk cluster
that should be closely followed up.

Recently, using a soft-clustering approach on thirty-
two anthropometric, clinical and biochemical variables
four main clusters were identified in patients newly diag-
nosed with diabetes(45). This approach classifies indivi-
duals with a top score in one specific cluster but allows
those with lower scores to be members of multiple clusters
(mixed phenotype). Analysis of a 36-month follow-up
revealed that patients from a cluster characterised by
obesity, dyslipidaemia, insulin resistance and β-cell dys-
function presented the fastest disease progression and
the highest demand for anti-diabetic treatment. Mixed
phenotype patients with this cluster as a primary or sec-
ondary cluster showed a trend towards faster progression
except when combined with a cluster characterised as lean
and insulin deficient. This study demonstrates that mul-
tiple phenotypes modulate disease progression and under-
standing the interaction between them may help to
stratify patients and guide targeted interventions.

In individuals with prediabetes, metabotyping was
applied with the concept of developing preventative mea-
sures(46). In a cohort of German individuals with
increased risk for type 2 diabetes, six clusters were
defined and differed in the progression to the disease.
Although three clusters were similarly characterised by
increased glycaemia, only two clusters were associated
with imminent risk of diabetes in a 4-year follow-up:
one with the highest genetic risk for diabetes and the low-
est insulin secretion and another with characteristics of
well-established metabolic syndrome. In contrast, the
third cluster presented a low incidence of diabetes but
severe insulin resistance had an increased risk of kidney
disease and all-cause mortality. Based on the characteris-
tics of the at-risk clusters, the authors suggested that LIs
tailored to each cluster could prevent the progression to
diabetes. Importantly, the clusters previously defined
using a series of complex variables, including clinical bio-
chemistry, body and organ fat content and genetics, were
replicated in a British cohort using simpler proxy vari-
ables and worked impressively well, suggesting that clin-
ical variables may be sufficient to predict the same health
outcomes. This study provides an elegant example of the
opportunities that metabotyping offers for screening and
the development of interventions to prevent diabetes in
at-risk individuals.

In addition to the key studies abovementioned, several
others have been published using metabotypes in predia-
betes and diabetes patients(47–49). Overall, there is an
agreement that this is a promising approach to refining
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Table 1. Examples of studies identifying metabotypes in prediabetes and diabetes populations

Author Objective Population
Clustering method

and variables Replication study Metabotypes Main findings

Ahlqvist et al.(37) Describe
subgroups of
individuals with
diabetes and
compare them
metabolically,
genetically, and
clinically.

8980 adults newly
diagnosed with
diabetes (<2
years) from the
ANDIS cohort in
Sweden.
Follow-up: n
8980, 4⋅0 years.

GADA, age at
diagnosis, BMI,
HbA1c, HOMA-IR
and HOMA-B were
clustered using
k-means and
hierarchical
clustering.

The same
variables and
clustering
method were
applied to 3
cohorts in
Sweden. All
individuals had
data for
follow-up. SRD:
n 1466, 11⋅0
years; DIREVA: n
3485, 10⋅2 years;
ANDIU: n 844,
unknown
follow-up.

Five clusters: (1) severe autoimmune
diabetes SAID (6⋅4% of individuals)
with early-onset disease, relatively
low BMI, poor metabolic control,
insulin deficiency and GADA
positive, (2) SIDD (17⋅5%) with a
similar profile to metabotype 1 but
GADA negative, (3) SIRD (15⋅3%)
with high HOMA-IR and BMI, (4)
MOD (21⋅6%) with high BMI but not
HOMA-IR, (5) MARD (39⋅1%) with a
similar profile to metabotype 4 but
older.

SAID and SIDD had high HbA1c,
frequent ketoacidosis and the
shortest time for sustained
insulin use. SIDD had the highest
risk of retinopathy. SIRD was
associated with a PRS for T2D
and the highest risk of
nephropathy. SIDD, MOD and
MARD were associated with a
PRS for insulin secretion.

Wang et al.(44) Describe
subgroups of
individuals with
diabetes and
determine if they
carry distinct
genetic and
lipidomic features
and predict risks
for cardio-renal
complications.

687 adults newly
diagnosed with
diabetes (<5
years) from the
SMART2D
cohort in
Singapore.
Follow-up: n 687,
7⋅3 years

Age at diagnosis, BMI,
HbA1c, HOMA-IR
and HOMA-B were
clustered using
k-means clustering.

N/A Three clusters: (1) MOD (45% of
individuals) with IR, (2) MARD with
insulin insufficiency (MARD-II, 36%)
and without obesity or IR, (3) SIRD
with relative insulin insufficiency
(SIRD-RII, 19%) and poor glycaemic
control.

MARD-II had the highest PRS for
β-cell dysfunction. SIRD-RII had
the highest risk for CKD and
compared to other clusters,
2-fold higher incidence of heart
failure and same risk for major
CVD events and all-cause
mortality despite having similar
diabetes duration. A total of 75
lipid species differed across
metabotypes: MARD-II had low
levels of GLP, SM and CER but
the highest levels of LPC;
SIRD-RI had high levels of GLP,
SM and CER but the lowest
levels of LPC; MOD had
intermediate levels GLP, SM,
CER and LPC.

E
.
H
illesheim

and
L
.
B
rennan

134

Proceedings of the Nutrition Society

https://doi.org/10.1017/S0029665123000058 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0029665123000058


Wesolowska-Andersen
et al.(45)

Characterise the
heterogeneity of
T2D using a
method that
recognises the
continuum of
phenotypes and
aligns with the
palette model.

726 adults newly
diagnosed with
diabetes (<2
years) from the
IMI-DIRECT
cohort in Europe.
Follow-up: n 423,
3⋅0 years.

32 anthropometric,
clinical and
biochemical
variables were
clustered using a
soft-clustering
approach.

N/A Four clusters: (A) lean and insulin
deficient (14⋅2% of individuals) with
low BMI, older age, high insulin
sensitivity and TC and great overall
genetic predisposition. (B) Obese
and insulin sensitive (3⋅0%) with
favourable lipid profile and low
fasting creatinine levels. (C) Obese
and insulin resistant (11⋅6%) with
high fasting andMMTT insulin levels;
high TAG, ALT and AST and low
overall genetic predisposition. (D)
Global severe (6⋅2%) with younger
age, obesity, IR, worst glucose
control and low glucose sensitivity,
high TAG, ALT and AST. (MIX) 65%
of individuals were not scored in the
extreme clusters and presented
mixed characteristics.

The approach identified 5
combinatorial aetiological
processes: insulin secretion
(cluster A), obesity (B, C and D),
IR (C and D), dyslipidaemia (C
and D) and reduced β-cell
glucose sensitivity (D). Cluster A
had the overall lowest risk of
disease progression, assessed
by HbA1c increase, likelihood of
receiving glucose-lowering
medication and medication
dosage increase. A higher score
for cluster D was associated with
the fastest disease progression,
in particular within the
lifestyle-treated subset. The
mixed clusters BD and CB had
the higher progression on
glucose-lowering treatment.

Wagner et al.(46) Describe
subgroups of
metabolic risk in
individuals at
increased risk of
diabetes.

899 adults at
increased risk of
diabetes (history
of prediabetes or
gestational
diabetes, family
history of
diabetes, BMI
≥27 kg/m2), from
the TUEF/TULIP
cohort in
Germany.
Follow-up: n 421,
4⋅1 years.

Glycaemia, ISI and
insulin secretion
derived from an
OGTT, HDL-C, liver
fat content,
subcutaneous
adipose tissue
volumes and a PRS
(including 484 788
SNPs) were clustered
using partitioning
clustering.

6810 white adults
without diabetes
at baseline, from
the Whitehall-II
cohort in the UK.
Proxy variables
for clustering
were glycaemia,
ISI and insulin
secretion derived
from an OGTT,
insulin, TAG,
HDL-C, WC, HC
and BMI.
Follow-up: n
6810, 16⋅3 years.

Six clusters: (1) low risk (19⋅2% of
individuals), (2) very low risk (17⋅2
%), (3) β-cell failure (16⋅2%), (4) low
risk obese (17⋅0%), (5) high risk
insulin-resistant fatty liver (10⋅1%)
and (6) high risk visceral fat
nephropathy (20⋅2%).

Clusters were associated as
follows: 3, 5 and 6 with increased
glycaemia (fasting glucose,
post-OGTT glucose, HbA1c),
lower disposition index and
higher risk of kidney disease;
only 3 and 5 with imminent T2D
risk; 5 and 6 with all-cause
mortality; 3 with higher PRS for
T2D, and 6 with lower PRS for
β-cell function.

GADA, glutamate decarboxylase antibodies; HbA1c, glycated Hb; HOMA-IR, homoeostatic model assessment for insulin resistance; HOMA-B, homoeostatic model assessment of β-cell function; SRD, Scania
Diabetes Registry; DIREVA, Diabetes Registry Vaasa; ANDIU, All New Diabetics in Uppsala; PRS, polygenic risk score; T2D, type 2 diabetes; N/A, not available; IR, insulin resistance; CKD, chronic kidney disease;
GLP, glycerophospholipids; SM, sphingomyelins; CER, ceramides; LPC, lysophosphatidylcholines; TC, total cholesterol; MMTT, mixed meal tolerance test; ALT, alanine transaminase; AST, aspartate
aminotransferase; ISI, insulin sensitivity index; OGTT, oral glucose tolerance test; HDL-C, HDL cholesterol; SNP, single-nucleotide polymorphisms; WC, waist circumference; HC, hip circumference; SIDD, severe
insulin-deficient diabetes; SIRD, severe insulin-resistant diabetes; MOD, mild obesity-related diabetes; MARD, mild age-related diabetes; SAID, severe autoimmune diabetes.
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the current disease classifications beyond levels of glucose
and insulin. Altogether, these studies demonstrate that
metabotyping is a stepping stone towards providing per-
sonalised healthcare which could be further developed to
include nutrition advice for preventative measures.

Metabotyping as a tool to deliver personalised nutrition

Developing frameworks to deliver targeted or persona-
lised nutrition and testing their effectiveness in rando-
mised controlled trials (RCTs) is an essential step to
translate the metabolic information provided by metabo-
types into clinical application. However, evidence in this
field is in its infancy with only a few protocols and studies
published which are diverse in the objectives and popula-
tion investigated (Table 2).

One of the first frameworks published to deliver perso-
nalised nutrition using metabotypes targeted generally
healthy individuals in Ireland(50). By applying k-means
clustering to four routinely measured markers of meta-
bolic health (TAG, total cholesterol, HDL-C and glu-
cose), three metabotypes were obtained. To deliver
nutrition advice, decision tree algorithms were designed
with the incorporation of metabotype information and
individual BMI, waist circumference and blood pressure.
The metabotypes were later successfully replicated in the
German cohort KORA with additional analyses reveal-
ing differences in the habitual dietary intake across meta-
botypes and, most importantly, in the incidence of
cardiometabolic diseases(20). Metabotype 3, initially
characterised by the most unfavourable metabolic
profile, was further characterised by the poorest diet
and the highest incidence of cardiometabolic diseases.
These findings supported further development of the
framework and an update of the dietary messages was
performed to incorporate more specific recommenda-
tions on nutrient intake and management of cardiometa-
bolic diseases(51). Compared to individualised advice, the
updated metabotype framework showed good perform-
ance with an agreement of 83 % between dietary mes-
sages. Application of this framework to deliver
personalised nutrition is currently under study using a
12-week RCT (n 107)(52). The primary outcome will
determine if personalised nutrition advice delivered
through the metabotype framework is more effective
compared to population-level nutrition advice at improv-
ing dietary quality.

The PERSonalized Glucose Optimization Through
Nutritional Intervention (PERSON) study is currently
underway to examine the ability of metabotypes to
deliver nutrition advice(53). The 12-week RCT includes
240 overweight or obese individuals to investigate the
effects of a macronutrient intervention on glucose metab-
olism parameters according to metabotypes of tissue-
specific insulin resistance. Using cut-off values of muscle
insulin sensitivity index and hepatic insulin resistance
index two metabotypes are defined: muscle insulin resist-
ance and liver insulin resistance. In each metabotype,
participants are randomised to a diet considered optimal
or suboptimal for their metabolic profile: an optimal diet

for muscle insulin resistance and suboptimal for liver
insulin resistance is high in monounsaturated fat and a
suboptimal diet for muscle insulin resistance and optimal
liver insulin resistance is low in total fat and high in pro-
tein and fibre. The primary outcome is the difference in
change in disposition index, a measure of β-cell function,
between participants who will receive their hypothesised
optimal or suboptimal diet. The results from the study
will be important to support the use of metabotype
approaches for the development of tailored diets to
improve glucose homoeostasis.

With a focus on improving body composition of over-
weight and obese individuals through personalised nutri-
tion based on metabotypes, the efficacy of the
PREVENTOMICS platform was compared to generic
dietary advice(54). Using fifty-one urine and blood biomar-
kers and thirty-five single-nucleotide polymorphisms
assessed in saliva samples, the PREVENTOMICS algo-
rithm calculates scores for each individual in five meta-
bolic processes that name the metabotypes: oxidative
stress, inflammation, carbohydrate metabolism, lipid
metabolism and gut microbiota metabolism. Individuals
are classified into the metabotype with their highest
score and dietary plans are created with the metabotype
characteristics. Details of the algorithm were not disclosed
due to an intellectual property rights application. In a
10-week RCT, the platform was tested with 100 indivi-
duals and the primary outcome was the difference in the
change in fat mass between personalised and generic
groups. To implement the dietary plans, all participants
received two isoenergetic vegetarian meals daily and
were referred to an app with recipes for further meals.
Following the intervention, both personalised and generic
groups presented reductions in fat mass, body weight, dia-
stolic blood pressure, total cholesterol, oxidised LDL-C,
insulin, homoeostatic model assessment for insulin resist-
ance, leptin and creatinine. However, there were no differ-
ences between groups and no metabotype-specific effects
indicating that the metabotype-based diet personalisation
performed by the PREVENTOMICS platform did not
further improve body composition, weight homoeostasis
and cardiometabolic risk factors compared to a plant-
based and generally healthy diet.

Finally, the Prediabetes Lifestyle Intervention Study
(PLIS) investigated the impact of different intensities of
an LI (dietary and exercise advice) on metabotypes of
low risk and high risk for diabetes(55). The 12-month
RCT included 1105 individuals with prediabetes that
were classified into the metabotypes using cut-off values
of insulin secretion, insulin sensitivity and liver fat con-
tent. High-risk individuals were randomised to an inten-
sified or conventional LI and low-risk individuals were
randomised to a conventional LI or control. The conven-
tional LI consisted of eight coaching sessions with nutri-
tion and exercise advice and the intensified LI consisted
of double the amount. The primary outcome was the dif-
ference in postprandial glucose between intervention
groups within each metabotype. In the high-risk metabo-
type, the intensified LI resulted in larger reductions in
postprandial glucose, liver fat content, cardiometabolic
risk score and BMI and higher insulin sensitivity
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Table 2. Studies and protocols investigating the delivery of personalised/targeted nutrition and lifestyle interventions using metabotypes

Author Objective
Study design and

population Metabotyping
Study groups and intervention

delivery Primary outcome Main findings

O’Donovan et al.(50),
Brennan(52)

Examine the effectiveness
of a metabotype
framework in improving
dietary quality and
metabolic health
biomarkers

A 12-week, parallel,
single-blind, dietary
RCT was performed
with 107 healthy
adults, BMI ≥18⋅5
kg/m2, aged 18–65
years, in Ireland.

Fasting TAG, TC, HDL-C
and glucose are used in
a k-means clustering
model to classify
individuals into 1 of 3
metabotypes.
Metabotype 1 is
characterised by high
average TC,
metabotype 2 by
average concentrations
of markers in the
adequate ranges and
metabotype 3 by high
average TAG, TC and
glucose.

Individuals in PG received nutrition
advice derived from decision tree
algorithms containing
information on metabotypes
characteristics and individual
BMI, WC and BP. Individuals in
CG received population-level
nutrition. All individuals received
the nutrition advice through a
report sent by email that
contained examples of food and
guidance to improve dietary
quality.

Difference between
study groups in the
dietary quality
assessed by the
Alternate
Mediterranean Diet
Score

N/A

Gijbels et al.(53) Examine the effects of an
optimal v. suboptimal
macronutrient
intervention according to
tissue-specific IR
phenotype on glucose
metabolism and other
health outcomes

A 12-week, parallel,
double-blind,
dietary RCT was
performed with 240
overweight or obese
adults with either
MIR or LIR, aged
40–75 years, in the
Netherlands.

Hepatic IR and muscle
insulin sensitivity
indexes are estimated
using glucose and
insulin measurements
from an OGTT.
Individuals are classified
into MIR or LIR using
cut-offs for the
estimated indexes.

After being classified as MIR or
LIR, individuals were randomised
to a diet considered optimal or
suboptimal for their metabotype
(MIR-OP: high MUFA; MIR-SUB:
low fat, high protein and high
fibre; LIR-OP: low fat, high
protein and high fibre, LIR-SUB:
high MUFA). All individuals
received key products and a
dietary plan individualised for
their energy requirements,
dietary habits and preferences.

Difference between
study groups
(MIR-OP v.
MIR-SUB and
LIR-OP v.
LIR-SUB) in the
change of the
disposition index

N/A

Aldubayan et al.(54) Examine the efficacy of
the PREVENTOMICS
platform for producing
more favourable health
outcomes than generic
dietary advice in
individuals with
overweight or obesity
and high WC

A 10-week, parallel,
double-blind,
dietary RCT was
performed with 100
overweight or obese
adults, aged 21–65
years, in Denmark.

51 urine and blood
biomarkers and 35
SNPs are used in an
algorithm to score
individuals in 5
metabotypes: oxidative
stress; inflammation;
carbohydrate, lipid or
gut microbiota
metabolism. Individuals
are classified into the
cluster with the highest
score.

Individuals in PG (n 49) followed a
diet with characteristics of their
clusters determined by the
PREVENTOMICS platform.
Individuals in CG (n 51) received
population-level nutrition. To
implement the advice, all
individuals received two
isoenergetic meals daily and
were referred to an app with
recipes for further meals.
Electronic pushes based on the
participant’s behaviour were sent
to the PG and pushes based on
generic dietary advice were sent
to the CG.

Differences
between study
groups in the
change of FM
determined by DXA

In both study groups,
FM, BW, diastolic BP,
TC, oxLDL, insulin,
HOMA-IR, leptin and
creatinine were
significantly reduced,
without differences
between groups. There
were no
cluster-specific
differences between
the study groups.
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Table 2. (Cont.)

Author Objective Study design and
population

Metabotyping Study groups and intervention
delivery

Primary outcome Main findings

Fritsche et al.(55) Examine if individuals with
prediabetes with LR
benefit from conventional
LI and individuals with
HR benefit from
intensified LI

A 12-month, parallel,
double-blind,
dietary RCT was
performed with
1105 individuals
with prediabetes,
BMI <45 kg/m2,
aged 18–75 years,
in Germany.

Individuals with elevated
insulin secretion
(assessed by
disposition index or ISI)
and elevated liver fat
content, assessed by
cut-off values, are
classified as HR using.
Individuals below the
cut-offs are classified as
LR.

After being classified as HR or LR,
HR individuals were randomised
to an intensified (HR-INT, n 430)
or conventional (HR-CONV, n
430) LI and LR individuals were
randomised to a conventional
(LR-CONV, n 122) or no LI
(LR-CG, n 123). Individuals in
HR-INT, HR-CONV and
LR-CONV were advised to
achieve 5% BW reduction if BMI
>25 kg/m2 through fat intake <30
% TE, SFA <10% TE and fibre
intake >15 g/4184 kJ TE. The
intensified group attended 16 LI
sessions and was advised to
perform 6 h of exercise weekly.
Conventional groups attended 8
LI sessions and were advised to
perform 3 h of exercise weekly.
LR-CG received one 30-min
consultation with a dietitian at
baseline.

Difference between
study groups
(HR-INT v.
HR-CONV and
LR-CONV v.
LR-CG) in 2hPPG

All groups reduced
2hPPG. Compared to
HR-CONV, HR-INT had
a significantly lower
2hPPG, liver fat content
and Framingham Risk
Score following the
intervention and a
higher probability to
normalise glucose
tolerance in a 3-year
follow-up. LR-CONV
had significantly lower
BMI and fasting
glucose than LR-CG.

RCT, randomised controlled trial; TC, total cholesterol; HDL-C, HDL cholesterol; PG, personalised group; WC, waist circumference; BP, blood pressure; CG, control group; N/A, not available; SNPs,
single-nucleotide polymorphisms; FM, fat mass; DXA, dual-energy X-ray absorptiometry; BW, body weight; OxLDL, oxidised LDL; HOMA-IR, homoeostatic model assessment of insulin resistance; IR, insulin
resistance; MIR, muscle insulin resistance; LIR, liver insulin resistance; IR, OGTT, oral glucose tolerance test; OP, optimal; SUB, suboptimal; LR, low risk; LI, lifestyle intervention; HR, high risk; ISI, insulin
sensitivity index; INT, intensified; CONV, conventional; TE, total energy; 2hPPG, 2 h postprandial glucose.
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compared to the conventional LI. In the low-risk meta-
botype, there was no difference between groups in post-
prandial glucose, but a lower BMI and fasting glucose
in the conventional LI compared to the control group.
This study demonstrates different responses of predia-
betes risk-based metabotypes to LI and suggests that tar-
geted lifestyle approaches may be beneficial for the
prevention of diabetes.

In conclusion, recent years have seen a heightened
interest in the use of metabotyping to tailor nutrition
advice but evidence of the effectiveness of such an
approach to improving health outcomes is still insuffi-
cient. Building this evidence base will be important
prior to the application of metabotyping into clinical
practice.

Conclusions

Metabotyping can classify individuals into subgroups
with meaningful metabolic profiles. Recent applications
in nutrition, which are corroborated by other fields,
show clearly that in longitudinal studies such metabo-
types have different health outcomes. The challenge
now is to harness this information to tailor preventative
nutrition advice to the metabolic phenotype. However,
there is a paucity of follow-up intervention studies with
this focus. Such interventions are paramount to further
development and acceptance of the approach.
Furthermore, work is needed to distil the panels of mar-
kers used into routinely measured markers that will facili-
tate the potential uptake and keep costs affordable.
Ensuring that the frameworks developed are low cost
with scientific evidence supporting their use will be key
to implementation. Engagement with healthcare profes-
sionals will be essential to facilitating further use and
development of the metabotype concept for the delivery
of tailored nutrition advice.

While the application of metabotypes to tailor nutri-
tion advice is very promising, the evidence in terms of
RCTs is lacking and needs to be urgently addressed.
Carefully designed intervention studies are needed to
demonstrate efficacy in terms of improving health
outcomes.
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