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A collection of microswimmers immersed in an incompressible fluid is characterised by
strong interactions due to the long-range nature of the hydrodynamic fields generated by
individual organisms. As a result, suspensions of rear-actuated ‘pusher’ swimmers such
as bacteria exhibit a collective motion state often referred to as ‘bacterial turbulence’,
characterised by large-scale chaotic flows. The onset of collective motion in pusher
suspensions is classically understood within the framework of mean-field kinetic theories
for dipolar swimmers. In bulk two and three dimensions, the theory predicts that the
instability leading to bacterial turbulence is due to mutual swimmer reorientation and
sets in at the largest length scale available to the suspension. Here, we construct a
similar kinetic theory for the case of a dipolar microswimmer suspension restricted to
a two-dimensional plane embedded in a three-dimensional incompressible fluid. This
setting qualitatively mimics the effect of swimming close to a two-dimensional interface.
We show that the in-plane flow fields are effectively compressible in spite of the
incompressibility of the three-dimensional bulk fluid, and that microswimmers on average
act as sources (pushers) or sinks (pullers). We analyse the stability of the homogeneous
and isotropic state, and find two types of instability that are qualitatively different from
the bulk, three-dimensional case: first, we show that the analogue of the orientational
pusher instability leading to bacterial turbulence in bulk systems instead occurs at the
smallest length scale available to the system. Second, an instability associated with density
variations arises in puller suspensions as a generic consequence of the effective in-plane
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compressibility. Given these qualitative differences with respect to the standard bulk
setting, we conclude that confinement can have a crucial role in determining the collective
behaviour of microswimmer suspensions.

Key words: collective behaviour, micro-organism dynamics, Stokesian dynamics

1. Introduction

To move through viscous fluids, motile micro-organisms exert forces and torques on their
environment. Due to their small size, the resulting motion is dominated by the viscous
stresses in the fluid, and is well described by the Stokes equation (Lauga & Powers 2009).
The velocity fields created by micro-organisms in this regime can thus be described by a
combination of the singular solutions of the Stokes equation, which decay algebraically
in space (Spagnolie & Lauga 2012). The leading singularity for force- and torque-free
microswimmers suspended in an infinite viscous fluid is given by a force dipole, which
exhibits slow spatial decay, r−d+1, where r is the distance from the microorganism
and d is the dimensionality of space. Such velocity fields are long ranged, and even
rather dilute suspensions of microorganisms can therefore exhibit significant fluid motion.
Such ‘self-stirring’ in the absence of an external forcing is a strongly non-equilibrium
phenomenon characteristic of active matter (Marchetti et al. 2013) and results in a
unique set of transport and mechanical properties of microswimmer suspensions, such
as enhanced diffusivity of tracer particles (Wu & Libchaber 2000; Leptos et al. 2009;
Miño et al. 2013; Jepson et al. 2013) and significant changes of the apparent suspension
viscosity (Rafaï, Jibuti & Peyla 2010; López et al. 2015; Saintillan 2018; Martinez et al.
2020).

Depending on the symmetry of their hydrodynamic flow, microswimmers can be divided
into two distinct classes: (i) ‘pushers’, which accurately describes most swimming bacteria
such as E. coli (Drescher et al. 2011), and (ii) ‘pullers’, whose reversed hydrodynamic
flow field is typically exemplified by the alga C. reinhardtii (Guasto, Johnson & Gollub
2010). While these two flow fields lead to equivalent statistical properties for very dilute
microswimmer suspensions, where swimmers can be treated as effectively non-interacting,
they lead to strikingly different forms of swimmer–swimmer correlations beyond this
limit. Arguably, the most profound effect of such swimmer–swimmer correlations is the
transition to large-scale collective motion in elongated pusher-like microswimmers such
as bacteria, often referred to as bacterial turbulence (Wensink et al. 2012; Dunkel et al.
2013). The mechanism of the transition to bacterial turbulence is usually rationalised
based on mean-field kinetic theories that take into account the presence of long-range
hydrodynamic interactions between microswimmers (Saintillan & Shelley 2008a). For
three-dimensional (3-D) suspensions of pusher bacteria, these theories predict the onset of
large-scale flows above a well-defined critical microswimmer volume fraction, and identify
mutual particle reorientation due to hydrodynamic interactions as the main mechanism
behind the instability, while no such instability occurs in 3-D puller suspensions. Even far
below the onset of collective motion, the long-ranged hydrodynamic interactions result in
strong correlations between microswimmers, leading to an enhancement of the effective
tracer diffusivity in pusher suspensions compared with puller suspensions at the same
density (Stenhammar et al. 2017; Škultéty et al. 2020).

In practice, observations of 3-D bulk collective flows are complicated by the unavoidable
presence of boundaries in experimental set-ups used to study motile microorganisms.
Importantly, motile organisms accumulate in close vicinity to solid (Berke et al. 2008)
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and liquid (Vladescu et al. 2014) boundaries, significantly depleting the bulk in between.
Therefore, from an experimental perspective, it is much more convenient to study the
ensuing collective motion in a layer of microswimmers confined by either type of boundary
(Zhang et al. 2010; Chen et al. 2012; Sokolov & Aranson 2012; Gachelin et al. 2014).

The theoretical description of confined microswimmer suspensions is significantly
more involved than their bulk fluid counterparts discussed above, as it includes several
different effects of the confinement. Firstly, the spatial decay of Stokesian singularities is
modified by the presence of boundaries (Spagnolie & Lauga 2012), with the corresponding
far-field fluid velocity being dominated by flow singularities other than the force dipole
which is dominant in bulk fluids (Brotto et al. 2013; Mathijssen et al. 2016; Jeanneret,
Pushkin & Polin 2019). Secondly, the interactions between microswimmers and the
boundaries might depend on the precise shape of the microswimmers, their mechanism
of propulsion, surface charge and roughness, etc. The corresponding theory would need
to sufficiently resolve the near-field fluid velocity generated by the microswimmers and
include appropriate steric interactions (Pessot, Löwen & Menzel 2018; Zantop & Stark
2020) and the above-mentioned effects. Such a theory would be very challenging and
strongly dependent on the specific system under investigation.

An additional important physical effect inherent to confined systems, although rarely
discussed explicitly, is the effective compressibility of the in-plane flow fields generated
by a layer of microswimmers (Salbreux, Prost & Joanny 2009; Jülicher, Grill & Salbreux
2018; Maitra 2020; Huang et al. 2021; Maitra 2023). A similar effect was previously
discussed in the context of hydrodynamically interacting colloidal particles under partial
confinement (Bleibel et al. 2014; Bleibel, Domínguez & Oettel 2015, 2017). To illustrate
the point, we consider a force dipole oriented parallel to a solid wall at a distance h from
it. The fluid velocity component u‖ parallel to the wall can be deduced from the image
system developed by Blake (1971) for a point force next to a solid boundary with vanishing
boundary condition u‖(z = h) = 0, and is given by (Spagnolie & Lauga 2012)

u‖(x) = κ

8π

(
x

|x|3
[

3
(x · p)2

|x|2 − 1
]

+ x

R3

−3x(x · p)2 + 6h2 {x + 2p(x · p)}
R5 + 30h2(x · p)2x

R7

)
. (1.1)

Here, p and x are two-dimensional (2-D) vectors that lie in the plane parallel to the
wall and denote respectively the dipole orientation and the point where the velocity is
evaluated relative to the position of the swimmer. Furthermore, R =

√
|x|2 + 4h2, and κ

is the strength of the dipole. Next, we calculate the total flux of the fluid through a circle
of radius X centred on the microswimmer and parallel to the wall, as shown in figure 1,
yielding ∫

|x|=X
dx · u‖ = κ

8X

[
1 − X4 − 10X2h2 + 64h4(

X2 + 4h2
)7/2 X3

]
. (1.2)

Hence, the total flux through an arbitrary circle around a microswimmer is non-zero,
indicating that, if we only consider the velocity components parallel to the wall,
they represent an effectively compressible velocity field. Moreover, one can show that
the prefactor multiplying κ is strictly positive, and the sign of the flux is therefore
determined by the sign of the dipolar strength: pushers with κ > 0 on average correspond
to hydrodynamic sources in the plane parallel to the wall, while pullers with κ < 0
correspond to hydrodynamic sinks. Therefore, when averaged over all orientations, two
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Figure 1. Schematic picture of the flow around a single pusher microswimmer restricted to a 2-D plane
embedded in a 3-D fluid. Note that the net flow u‖ going through the dashed circle is non-zero; in the 2-D
plane, pushers therefore, on average, act as fluid sources, while pullers act as effective sinks.

pushers advect each other to maximise their mutual separation, while two pullers do
the opposite. This argument illustrates that hydrodynamic interactions between dipolar
microswimmers moving next to a boundary have a very different nature to their bulk
counterparts, which has previously been shown to promote dynamic self-assembly and
crystallisation in active-particle systems (Singh & Adhikari 2016; Thutupalli et al. 2018).
We stress that this effective interaction does not correspond to extra forces or torques on the
particles, which is a common assumption when describing ‘dry’ active particles moving
on a frictional substrate (ten Hagen et al. 2015), as the particles immersed in a fluid are
strictly force and torque free.

The aim of this work is to understand the effect of this in-plane compressibility on
collective motion in a minimal setting. We consider a layer of microswimmers restricted
to move in an infinitely thin, 2-D plane embedded in a 3-D bulk fluid in the absence of
any boundaries, corresponding to taking h → ∞ in the example above. We assume low
number density of microswimmers and approximate their velocity fields by those of 3-D
force dipoles. As can be seen from (1.2), even in this limit, the in-plane velocity field
generated by the microswimmer is still effectively compressible. Therefore, although this
specific set-up is difficult to realise experimentally, it allows us to single out the effect of
in-plane compressibility without needing to deal with other effects due to the confinement
discussed above.

Below, we demonstrate that a 2-D layer of microswimmers embedded in a 3-D fluid is
unstable for both pushers and pullers. We show that pusher suspensions are prone to an
orientational instability that sets in at the smallest length scale available to the system,
while puller suspensions exhibit an instability associated with density variations as a
generic consequence of the effective in-plane compressibility.

The paper is organised as follows: in § 2, we present a general kinetic theory describing a
dilute suspension of microswimmers interacting through long-range velocity fields. In § 3
we review its predictions for the widely studied case of microswimmers suspended in a 3-D
bulk fluid. In § 4 we report on linear stability of a 2-D layer of microswimmers embedded
in a 3-D fluid, which constitutes the main novel results of our work. We conclude by
summarising our main findings in § 5.

2. Mean-field kinetic theory for microswimmer suspensions

Mean-field kinetic theories of microswimmer suspensions have been extensively discussed
in the literature (Saintillan & Shelley 2008a,b; Subramanian & Koch 2009; Hohenegger
& Shelley 2010; Koch & Subramanian 2011; Saintillan & Shelley 2013; Krishnamurthy &
Subramanian 2015), and here we give only a brief summary of their general set-up.
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A suspension of N microswimmers moving autonomously through a viscous fluid
is described by the one-particle distribution function Ψ (x, p, t), which defines the
instantaneous probability of finding a particle at a spatial position x with an orientation
given by the unit vector p. The distribution function is normalised such that∫

dx dp Ψ (x, p, t) = 1. (2.1)

Its time evolution is assumed to be governed by the Smoluchowski equation

∂tΨ + ∇α{ẋαΨ } + ∂α{ṗαΨ } = −λΨ + λ
∫

dp
Ωd

Ψ, (2.2)

where Greek superscripts denote Cartesian components of vectors, ∇α = ∂/∂xα , ∂α =
(δαβ − pαpβ)∂/∂pβ , and δαβ denotes the Kronecker delta; Ωd is the surface area of a
d-sphere of unit radius, where d is the dimensionality of space, and λ is the tumbling
frequency, as further described below. The deterministic part of the single-swimmer
dynamics is described by the following microscopic equations of motion:

ẋα = vspα + Uα(x), (2.3)

ṗα = (δαβ − pαpβ)(Wβγ (x) + BEβγ (x))pγ , (2.4)

where dots denote time derivatives. According to (2.3), each particle changes its spatial
position due to its own swimming with a constant speed vs in the direction of its
orientation p and due to advection by the fluid flow with velocity U at its position x,
created by all other microswimmers. Microswimmer orientations change according to
Jeffery’s equation, (2.4), which describes particle rotation by the gradients of the fluid
velocity at its position (Kim & Karrila 2005). Here, Wαβ(x) = 1

2(∇βUα(x) − ∇αUβ(x)),

and Eαβ(x) = 1
2 (∇βUα(x) + ∇αUβ(x)) are the vorticity and the rate-of-strain tensors.

The Bretherton parameter B encodes the shape of the particle (Kim & Karrila 2005),
with B = 1 and B = 0 respectively corresponding to needle-like and spherical particles.
Finally, each microswimmer randomly selects a new orientation (tumbles) with rate λ. This
discrete stochastic process cannot be incorporated in the time evolution (2.3) and (2.4) in
a straightforward manner, but is readily described within the kinetic theory (Subramanian
& Koch 2009; Koch & Subramanian 2011), as given on the right-hand side of (2.2).

The final ingredient of the theory is provided by the relationship between the local
velocity field and the one-particle distribution function, given by

Uα(x, t) = N
∫

dx′ dp′ uα(x − x′, p′)Ψ (x′, p′, t). (2.5)

Here, u(x − x′, p′) is the microscopic velocity field created at x by a microswimmer
located at x′ with the orientation p′. In the following, we approximate u by the dipolar
field generated by two equal and opposite point forces applied to the fluid infinitesimally
close to each other (Lauga & Powers 2009). While this is a good approximation for dilute
suspensions of microswimmers in 3-D bulk systems (Lauga & Powers 2009; Spagnolie
& Lauga 2012; Škultéty et al. 2020), its validity in the context of the present study is
discussed in § 5.

2.1. Linear stability of the homogeneous and isotropic state
The Smoluchowski equation (2.2) and the normalisation condition (2.1) admit as a solution
the homogeneous and isotropic state ΨHI = 1/(ΩdVd), where Vd is the d-dimensional
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volume of the suspension. The existence of this solution relies on the condition∫
dx′ dp′ uα(x − x′, p′) = 0, (2.6)

which is true in all cases considered in this work. Notice that, while integrals over x′ and
p′ vanish independently in 2-D and 3-D bulk suspensions, only the positional integral
vanishes for microswimmers restricted to a 2-D plane in a 3-D fluid.

Stability of the homogeneous and isotropic state is determined by time evolution of
small perturbations around ΨHI . Techniques to study such problems are well established
and have been extensively applied to linear stability analysis of the homogeneous and
isotropic state for dilute 3-D suspensions of microswimmers (Saintillan & Shelley
2008a,b; Subramanian & Koch 2009; Hohenegger & Shelley 2010). Here, we use a
somewhat different methodology (Stenhammar et al. 2017; Martinez et al. 2020), which is
better adapted for our purpose.

First, we introduce a perturbation δΨ (x, p, t) of the one-particle distribution function
around the homogeneous and isotropic state, i.e.

Ψ (x, p, t) = 1
ΩdVd

+ δΨ (x, p, t), (2.7)

where we assume that δΨ (x, p, t) is small and that its integral over x and p vanishes. In
what follows, we employ the d-dimensional Fourier transform defined through

f̂ (k) =
∫

dx f (x)e−ik · x, f (x) = 1
(2π)d

∫
dk f̂ (k)eik · x, (2.8a,b)

where f is an arbitrary function of x, and f̂ denotes its Fourier space representation. The
linearised Smoluchowski (2.2) in Fourier space reads

[
∂t + λ+ ivsp · k

]
δΨ̂ = λ

Ωd
δρ̂ + n

Ωd

[
dBpαpβ − (1 + B)δαβ

]
ikαδÛβ, (2.9)

where n = N/Vd is the number density of particles, and we have defined the perturbations
of the microswimmer density and fluid velocity as

δρ̂(k, t) =
∫

dp δΨ̂ (k, p, t), (2.10)

δÛα(k, t) =
∫

dp ûα(k, p)δΨ̂ (k, p, t). (2.11)

We proceed by assuming an exponential solution to (2.9) of the following form

δΨ̂ (k, p, t) = δΨ̂ (k, p)eχ t, (2.12)

where the sign of the real part of the temporal eigenvalue χ determines the stability of
the system against infinitesimal perturbations: for Re[χ ] < 0 the system is linearly stable,
while for Re[χ ] > 0 the system is linearly unstable. It should be noted that a more general
approach to the temporal linear stability analysis is to treat the problem as an initial value
one and obtain the solution via the Laplace transformation, as was done in Stenhammar
et al. (2017) and Škultéty et al. (2020). Working with the ansatz (2.12) is mathematically
simpler but may not necessarily produce a dispersion law for all parameter values, as we
discuss further below.
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Inserting (2.12) into (2.9), we derive the following closed set of equations for the density
and velocity perturbations:

δρ̂ = inδÛα

∫
dp
Ωd

Bdpαp · k − (1 + B)kα

L(χ, p · k)
+ δρ̂

∫
dp
Ωd

λ

L(χ, p · k)
, (2.13)

δÛα = inδÛβ

∫
dp
Ωd

ûα(k, p)[Bdpβp · k − (1 + B)kβ ]
L(χ, p · k)

+ δρ̂

∫
dp
Ωd

λûα(k, p)

L(χ, p · k)
, (2.14)

where L(χ, p · k) = χ + λ+ ivsp · k. The solution to this eigenvalue problem depends
on the precise form of the microscopic velocity field û(k, p), which, in turn, depends
on the dimensionality of space and the dimensionality of the vectors p and k. In the
following, we begin by revisiting the known results on linear stability of bulk 3-D
suspensions (Saintillan & Shelley 2008a,b) before turning our attention to a 2-D layer
of microswimmers embedded in a 3-D fluid.

3. Microswimmers in an unbounded bulk suspension

In this section, we consider the case of microswimmers that move freely in a 3-D space
filled with an incompressible fluid. The dipolar velocity field for d = 3 is given by (Lauga
& Powers 2009)

uα
3d(x, p) = κ

8π

xα

|x|3
[

3
(x · p)2

|x|2 − 1
]

, (3.1)

and, as shown in Appendix A, its Fourier transform is

ûα
3d(k, p) = −iκ

k · p
k2 Pαβpβ. (3.2)

Here, κ is the dipolar strength and Pαβ = δαβ − kαkβ/k2 is the transverse projection
operator that ensures that (3.2) satisfies the incompressibility condition kα ûα

3d = 0. Setting
d = 3 in (2.13)–(2.14), using the fact that δÛα = PαβδÛβ and assuming that χ does not
depend on the orientation p (see further discussion below), we obtain the following set of
equations: (Martinez et al. 2020)

δρ̂ = λ

vsk
arctan(b)δρ̂, (3.3)

δÛα = Bnκ

vsk
b(3 + 2b2) − 3(b2 + 1) arctan(b)

2b4 δÛα, (3.4)

where we have introduced the dimensionless parameter

b = vsk
χ + λ . (3.5)

We note that (3.3) and (3.4) are decoupled, and can be studied independently. The former
equation involves only δρ̂, and we thus refer to it as the density eigenvalue problem.
The latter equation is known to lead to a long-wavelength instability associated with
orientational degrees of freedom only (Saintillan & Shelley 2008a,b; Subramanian & Koch
2009; Hohenegger & Shelley 2010; Stenhammar et al. 2017), and we thus refer to it as
the orientational eigenvalue problem. We will now study these two problems separately,
while the analogous calculation for the case of an infinite 2-D suspension is carried out in
Appendix B with qualitatively identical conclusions.

980 A28-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.985


V. Škultéty, D. Bárdfalvy, J. Stenhammar, C. Nardini and A. Morozov

1.00
(a) (b)

0.75

2

1

–1

–2

00.50

R
e[

F(
γ
)]

Im
[F
(γ
)]

0.25

1 2
γ

γ ∗

0 1 2
γ

0

Figure 2. The real (a) and imaginary (b) parts of the function F(γ ) from (3.7).

3.1. Bulk orientational instability
Equation (3.4) yields the following eigenvalue problem:

γ = 5
2

b(3 + 2b2) − 3(b2 + 1) arctan(b)

b4 , γ ≡ 5vsk
Bnκ

. (3.6)

We now solve (3.5) for χ and use the definition of γ from (3.6), to arrive at

χ = −λ+ 1
5

F(γ )Bκn, F(γ ) = γ

b(γ )
. (3.7)

Equation (3.6) can be inverted numerically to obtain b(γ ) or, equivalently, F(γ ), while
an analytical approximation to F(γ ) was developed in Škultéty et al. (2020) and Martinez
et al. (2020). In figure 2 we plot the results of our numerical evaluation of F(γ ), showing
that (i) the real part of F is positive and decreases monotonically with increasing γ , and
(ii) no solution is found for γ > γ ∗, a fact that is discussed further below. Together with
(3.7), this implies that puller suspensions (κ < 0) are always stable while the instability
of pusher suspensions (κ > 0) sets in at the largest possible length scale, corresponding
to γ → 0 and F(γ ) → 1. It follows from (3.7), and from imposing χ > 0, that pusher
suspensions are unstable for densities larger than

nc = 5λ
Bκ

. (3.8)

This latter result is exact, and can be alternatively derived directly from (3.4) by setting
k → 0.

The origin of this instability is the mutual reorientation of microswimmers (Saintillan &
Shelley 2008a,b; Subramanian & Koch 2009; Hohenegger & Shelley 2010; Stenhammar
et al. 2017). It is thus unsurprising to observe that no instability is present for spherical
particles (B = 0). Furthermore, the instability condition (3.8) does not involve the
swimming speed vs, implying that the orientational instability persists even for shakers
– microswimmers that do not self-propel, yet are capable of generating dipolar fields
(Stenhammar et al. 2017).

We finally comment on the fact that no solution for F(γ ) is found for γ > γ ∗ ≈ 2.8.
This means that a solution to the linearised kinetic equation (2.9) obeying the ansatz (2.12)
ceases to exist for γ > γ ∗. The reason for this is that, in the process of deriving (3.3)–(3.4),
we have assumed that χ is independent of the swimmer orientation p. Hohenegger &
Shelley (2010) performed a detailed analysis of the eigenvalue problem in this parameter
range avoiding such an assumption, and concluded that the system is linearly stable for
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Hydrodynamic instabilities in a sheet of microswimmers

γ > γ ∗. The most unstable eigenvalue is thus given by (3.7), leading to the instability
threshold (3.8). The same conclusion is reached by solving (2.9) using Laplace transform
techniques, as was done in Stenhammar et al. (2017) and Škultéty et al. (2020).

3.2. Density fluctuations in bulk suspensions
Both puller and pusher suspensions are stable against density fluctuations. For
wavenumbers k ≤ πλ/(2vs) this can be readily shown from (3.3), yielding

χ = −λ+ vsk
tan(vsk/λ)

. (3.9)

from which we conclude that χ < 0. The corresponding eigenstates represent spatial
modulation of the microswimmer density, while their orientations remain isotropically
distributed regardless of their spatial positions. Similar to the orientational instability, (3.3)
does not allow one to determine stability of the suspension when k > πλ/(2vs), since, in
this regime, (3.3) has no solution. As discussed in § 3.1, this is a limitation of the ansatz
(2.12). In Appendix C.1, we analyse this problem in some detail by solving (2.9) using
Laplace transform techniques and show that the system is indeed stable with respect to
infinitesimal density perturbations for all k.

4. Microswimmers restricted to a 2-D plane

We now turn our attention to the main problem of this study – the case of a 2-D
layer of microswimmers embedded in a 3-D bulk fluid. As discussed in § 1, this spatial
arrangement of microswimmers leads to the in-plane fluid velocity field being effectively
compressible, with pushers acting on average as sources, while pullers act as sinks. Here,
we study the consequences of this effective compressibility on the onset and type of
collective motion expected in this arrangement of microswimmers.

The Fourier representation of the in-plane velocity field created by a microswimmer is
given by (see Appendix A for details)

uα
plane(k,p) = − iκ

2
k · p
k

[
Pαβ + 1

2
Qαβ

]
pβ, (4.1)

where κ is the dipolar strength which has the same dimensions as in the bulk 3-D case, and
k = (kx, ky), p = (px, py) are respectively the in-plane wave and orientation vectors. In
writing (4.1), we explicitly separated the term proportional to the longitudinal projection
operator Qαβ = kαkβ/k2 to stress the compressible nature of uplane. We now define the
transverse (incompressible) and longitudinal (compressible) velocity perturbations by

δÛα
⊥ = PαβδÛβ, δÛα

‖ = QαβδÛβ, (4.2a,b)

where δÛα = δÛα
⊥ + δÛα

‖ . Substituting (4.1) for uplane into (2.13)–(2.14) results in the
following compact set of equations determining linear stability of the system:⎛

⎝M11 − 1 0 0
0 M22 − 1 ikαM23
0 ikαM32 M33 − 1

⎞
⎠ ·
⎛
⎝δÛα

⊥
δÛα

‖
δρ̂

⎞
⎠ = 0, (4.3)
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where

M11 = κn
vs

B
(

b2 − 2
√

b2 + 1 + 2
)

2b3 , M22 = κn
vs

Bb2 + (b2 + 2B)
(

1 − √
b2 + 1

)
4b3

√
b2 + 1

,

M23 = κλ

vsk2
1
4b

(
1√

b2 + 1
− 1

)
, M32 = n

vsk

2B
(√

b2 + 1 − 1
)

− b2(B + 1)

b
√

b2 + 1
,

M33 = λ

kvs

b√
1 + b2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
and

b = vsk

χ + λ . (4.5)

As is apparent from (4.3), δÛα
⊥ is decoupled from δÛα

‖ and δρ̂. This allows us to analyse
the two subsets of equations independently; as we show below, they correspond to different
types of instabilities.

4.1. Orientational instability
We start by considering the transverse mode δUα

⊥, which amounts to solving M11 = 1.
This yields

b2 − 2
√

b2 + 1 + 2
b3 = 2vs

Bκn
. (4.6)

Assuming that b /= 0, (4.6) can be transformed into a polynomial equation that can be
solved analytically. Inserting the obtained roots into (4.6), we found that only two solutions
to (4.6) exist, and only within the region 2

√
2vs ≤ Bκn. In analogy with (3.6) for the bulk

suspension, the eigenvalue χ within this parameter range is found to have the following
form:

χ = −λ+ G
(

2vs

Bκn

)
Bκnk

2
, (4.7)

where

G(x) = 6x2

⎛
⎝4 −

(
1 ± i

√
3
)

H(x)
−
(

1 ∓ i
√

3
)

H(x)

⎞
⎠

−1

, (4.8)

H(x) =
[
54x2 − 1 + 6

√
3x
√

27x2 − 1
]1/3

. (4.9)

Similar to the bulk suspension, in the region 2
√

2vs > Bκn, where the solution to (4.6)
does not exist, stability analysis requires the use of an alternative approach. This is
discussed in Appendix C.2, where we show that the system remains stable in this parameter
range.

The function G has the same qualitative features as the function F in the case of bulk
suspensions (compare figures 2 and 5 (see Appendix B)): its real part is positive and its
largest branch is a monotonically decreasing function of its argument. Because (4.7) is
an increasing function of k, the orientational instability in a 2-D layer of microswimmers
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Hydrodynamic instabilities in a sheet of microswimmers

embedded in a 3-D fluid sets in at the largest possible value of k, in contrast with bulk
pusher suspensions. In the absence of any physical restrictions on the maximum value
taken by k, this instability occurs for

n > nc = 2
√

2
vs

Bκ
. (4.10)

Just as in bulk systems, the fact that nc diverges for spherical particles (B = 0) shows that
this is an instability driven by particle reorientations due to hydrodynamic interactions.
However, unlike the 3-D bulk case (3.8), nc is now a function of the swimming speed
vs rather than of the tumbling rate λ, meaning that increasing the swimming speed
will stabilise a sheet of pushers, which become unstable for any density in the shaker
limit vs → 0. While the stabilising role of swimming in the stability and pre-transitional
correlations of finite microswimmer systems has previously been discussed for 3-D bulk
suspensions (Saintillan & Shelley 2013; Liu, Zhang & Cheng 2019; Škultéty et al. 2020;
Martinez et al. 2020; Albritton & Ohm 2023), its effect on the stability of a sheet of
pusher microswimmers, (4.10), is significantly stronger. Finally, the independence of nc of
the tumbling rate implies that even a suspension of straight swimmers has a non-vanishing
critical density, in contrast to the case encountered in 3-D bulk suspensions.

The above reasoning for deriving the orientational instability assumes that the most
unstable wave vector is kc → ∞; this is clearly unphysical since it corresponds to
microscopic length scales. In practice, the instability instead sets in at some finite length
scale lc, corresponding to a finite value of kc. As observed previously for 3-D bulk
suspensions (Saintillan & Shelley 2008a; Subramanian & Koch 2009), one possible source
of regularisation is provided by the spatial diffusivity of microswimmers. Repeating the
above analysis in the presence of Brownian diffusion yields an additional term, −Dk2, on
the right-hand side of (4.7), where D is the diffusion constant. Minimising the real part
of the eigenvalue with respect to k leads to the length scale lc ∼ √

D/λ being selected
at the instability. Using the approximate values D ∼ 0.2 − 0.4 μm2 s−1 (Jepson et al.
2013) and λ ∼ 1 s−1, this length scale becomes comparable to the microswimmer size,
lc ∼ 1 μm, which is an unphysically small length scale for the instability to occur. It is
therefore unlikely that spatial diffusivity is the relevant mechanism of the length scale
selection in (4.7).

The second relevant microscopic length scale in the problem is the (density-dependent)
average distance between microswimmers, below which the system can no longer be
viewed as a continuum. Thus, we assume that the length scale selected at the instability is
now lc ∼ 2/

√
πnc, leading to a maximum wave vector

kc = 2π

lc
=
√

π3nc. (4.11)

The calculation of the corresponding instability threshold is outlined in Appendix D,
leading to the following approximate expression for nc:

nc ≈ 4
π

(
λ

Bκ

)2/3

+ 2
√

2
vs

Bκ
. (4.12)

We observe that the critical density (4.12) differs from its kc → ∞ counterpart (4.10)
by the presence of the first term, which dominates at low swimming speeds. Using the
experimental values vs ≈ 15 μm s−1, κ ≈ 800 μm3 s−1 measured in Drescher et al.
(2011), together with B ≈ 1 and λ ≈ 1 s−1, (4.12) and (4.11) give the critical length
scale lc ∼ 4 μm, which is larger than, although comparable to, the value resulting from
translational diffusion.
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4.2. Density instability

The second subset of (4.4) couples δÛα
‖ and δρ̂ and thus governs the appearance of density

modulations within the microswimmer layer. After some algebra, this set of equations can
be re-expressed as

Φk̃
[
B
(

b2 + 2 − 2
√

b2 + 1
)

y − b2
(√

b2 + 1 − 1
)

( y + 1)
]

4b4( y + 1)
[√

b2 + 1( y + 1) − 1
] = 1, (4.13)

where we have introduced the following dimensionless quantities:

b = k̃

y + 1
, y = χ

λ
, Φ = κ

vs
n, k̃ = vs

λ
k. (4.14a–d)

A full analytical solution of (4.13) cannot be found, but can be achieved perturbatively for
small k̃, yielding

y = −1
8
Φk̃ −

(
1
2

+ BΦ2

128

)
k̃2 + O(k̃3). (4.15)

From this expression, we conclude that (i) pusher suspensions (Φ > 0) are stable against
density modulations at large spatial scales since y < 0 for small k̃, and (ii) puller
suspensions (Φ < 0) are linearly unstable at any density. Note that this instability is
independent of B, and hence occurs even for spherical particles. Even though the puller
density instability occurs at vanishingly small densities in an infinite system, for a finite
system with linear size H one can show that puller suspensions are unstable against
large-scale perturbations only above a critical density nc given by

nc = −8π

H
v2

s

λκ
. (4.16)

This result is obtained by assuming that the eigenvalue y is real for small k̃, setting y = 0
in (4.13), and assuming that the critical wave vector kc is set by the system dimensions,
i.e. kc = 2π/H.

We now proceed by solving (4.13) numerically, which we have done for several values
of B and Φ, as shown in figure 3. This analysis indeed confirms both the existence of
a finite-wavelength instability in puller suspensions at large spatial scales (small k), and
that a sheet of pushers is always stable against density perturbations. However, it also
shows that, when Φ is sufficiently negative, Re[y] increases in an unbounded fashion at
large k for pullers. Thus, a second density instability, now at small spatial scales, emerges
in puller suspensions for sufficiently large densities. To analyse this effect further, we
numerically calculate the largest eigenvalue from (4.13). The resulting phase diagram is
shown in figure 4, which displays the critical scale kc as a function of the dimensionless
system size Hλ/vs and the reduced particle density Φ. Our findings confirm that the
density instability in the confined suspension sets in either at the smallest or the largest
available spatial scale, depending on the system parameters as encoded in Φ and B. In
drawing the phase diagram we have, in analogy to § 4.1, chosen a cutoff at small scales
corresponding to the interparticle separation (i.e. k =

√
π3n ). In the dimensionless units

used here, the maximal wavenumber available is set by k̃ =
√

π3Φ
√

v3
s /λ2κ , where the

factor
√

v3
s /λ2κ ∼ O(1) for free-swimming E. coli bacteria (Drescher et al. 2011).
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Figure 3. The real (a) and imaginary (b) parts of the eigenvalue y = χ/λ corresponding to density
perturbations, obtained by numerically solving (4.13). All plots correspond to needle-like particles (B = 1),
but are qualitatively similar for all values of B. For pushers (Φ > 0), the real part of the eigenvalue is strictly
negative. For pullers (Φ < 0), the real part of the eigenvalue becomes positive at small wave vectors. At larger
densities, the global maximum of Re[y] moves from small k̃ to k̃ → ∞. No solution exists in the region
Re[y] < −1, whose stability is instead addressed in Appendix C.1.
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Figure 4. Density instability in a 2-D puller suspension embedded in a 3-D fluid. The phase diagrams show
regions of the two types of density instability obtained by numerical solution of (4.13). At high Φ (grey
regions), the instability sets in at the smallest physically relevant spatial scale, which we assume to be the
particle–particle separation, i.e. k̃ =

√
π3Φ

√
v3

s /λ2κ , and set
√

v3
s /λ2κ = 1. At moderate and low Φ (red heat

map), the instability sets in at larger spatial scales set by the maximum of the arc-like part of the dispersion law;
see figure 3. If the system size H is too small, the latter maximum in the dispersion law cannot be accessed,
and the instability instead sets in at the scale of the system dimensions. (a) B = 1, (b) B = 0.

These results show that, while the density instability is present also for spherical
particles, the particle shape strongly affects the emergence of small- and large-scale
instabilities in that the small-scale instability dominates over a wider range of Φ

values compared with the elongated (B = 1) particle case. Understanding the physical
manifestations of these two instabilities requires detailed investigations using explicit
numerical simulations and is left for future work.
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5. Conclusion

In this work, we have analysed the linear stability of the homogeneous and isotropic
distribution of microswimmers restricted to a 2-D plane embedded in a 3-D bulk viscous
fluid. Our method, based on mean-field kinetic theory, is somewhat different from
that used in the previous analysis of bulk suspensions (Saintillan & Shelley 2008a,b;
Subramanian & Koch 2009; Hohenegger & Shelley 2010) and allows us to easily identify
the origin of the instability as either an orientational mode, stemming from the mutual
reorientation of microswimmers, or a density mode, stemming from local accumulation of
microswimmers.

The instabilities we found for a sheet of microswimmers are qualitatively different
from their bulk counterpart. In such infinite 2-D or 3-D systems, linear stability analysis
shows the presence of an orientational instability for pushers above the onset density
given respectively by (B5) (2-D) and (3.8) (3-D). This instability sets in at the largest
scale available in the system, typically the dimension of the experimental set-up or of
the simulation box. Furthermore, due to the incompressible nature of the embedding
fluid, dilute 2-D and 3-D bulk suspensions of microswimmers are always stable towards
fluctuations in the microswimmer density.

In contrast, we showed that a 2-D layer of microswimmers embedded in a 3-D fluid
is unstable for both pushers and pullers. For the former swimmer class, an orientational
instability similar to the pusher instability in a bulk fluid occurs for large enough densities.
However, in contrast to the bulk case, the orientational instability in the 2-D layer
sets in at the smallest spatial scale, which we interpret as the one below which our
continuum description is not valid anymore, i.e. the average particle–particle separation.
For parameter values roughly corresponding to E. coli bacteria, this leads to the instability
setting in at a length scale of ∼ 5 μm, comparable to the bacterial dimensions.

On the other hand, a layer of puller microswimmers is susceptible to a density instability
characterised by spatial aggregation of microswimmers independent of their orientations.
This instability is caused by the mutual advection of the microswimmers and is the direct
consequence of the sink-like nature of their in-plane velocity fields, as discussed in § 1.
In the thermodynamic limit, the puller suspension is unstable at any density, while a
non-zero critical density emerges for finite system sizes, as shown in (4.16). The scale
at which this puller instability sets in depends on the microswimmer density: at small
and moderate densities, the instability occurs at long length scales, while at high enough
densities it is replaced by a small-scale instability. While the cross-over between these two
regimes depends on the particle shape through B, both instabilities are generically present
regardless of particle shape. Whether this implies that the system reaches different steady
states at long times is still an open question that we leave for future work. We also note
that the density instability presented here is qualitatively similar to the instability reported
by Baskaran & Marchetti (2009), as both are caused by the fluid’s compressibility; in the
case of Baskaran & Marchetti (2009), however, the compressibility arises as a result of an
erroneous coarse-graining procedure, as discussed by Aranson (2022).

We would like to stress once more that the instability scenarios discussed here are
not the consequence of the spatial dimensionality, as 2-D and 3-D bulk suspensions
exhibit qualitatively a very similar behaviour. Instead, the qualitative differences to the
corresponding bulk suspensions come from the fact that the in-plane fluid in which the
microswimmers move is effectively compressible, an effect which is generically present in
the case of motion restricted to a subset of the embedding space, including microswimmer
layers in the vicinity of solid and liquid boundaries. Importantly, this effect is likely to
be one of the main driving forces behind the boundary-induced clustering and phase
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separation observed in self-propelled suspension droplets (Thutupalli et al. 2018) and
squirmer suspensions (Singh & Adhikari 2016). These authors highlight the importance
of the presence of a boundary in inducing effective in-plane attractions among puller
swimmers after accumulating at the surface or interface, although they rationalise their
findings in terms of attractive hydrodynamic forces without explicitly mentioning the
effective compressibility mechanism present in this geometry. Thus, even though our
chosen geometry of a 2-D plane in an infinite 3-D fluid seems artificial, we argue that
the generic mechanism demonstrated here is in fact an important driving force behind
accumulation in active-particle suspensions near interfaces.

Furthermore, the phenomenon of effective in-plane compressibility is not limited to
dipolar flow fields. As demonstrated by Spagnolie & Lauga (2012), all flow singularities
relevant to self-propulsion of microorganisms can be obtained by repeatedly applying
the (p · ∇) operator to the stokeslet and the point source singularity. Therefore, these
singularities will have alternating parities with respect to the angle defined by x · p. In
the context of the calculation presented in § 1, this leads to a layer of force dipoles,
force octupoles and so on having effectively compressible in-plane velocity fields,
while the remaining flow singularities remain incompressible even when restricted to a
lower-dimensional subset of the embedding space. The same reasoning holds for the source
singularities, where sources, source quadrupoles and so on exhibit effectively compressible
in-plane velocity fields. Our findings are therefore likely to be of more general importance
for hydrodynamic interactions and collective motion of realistic microorganisms near
boundaries.

One of the remaining open questions pertains to the stability of a sheet of
microswimmers with respect to out-of-plane perturbations. At first glance, a sheet of
pushers generates on average a fluid flow towards the sheet along the third direction and
one thus expects out-of-plane perturbations to be suppressed by such a flow. By the same
argument, the opposite is expected for pullers. Some support for this hypothesis can be
drawn from Ishikawa & Pedley (2008), who simulated a collection of spherical squirmers
confined to a single layer, as in our set-up. They observed no instability for pushers,
while pullers exhibited formation of dense clusters visually consistent with our density
instability. Interestingly, when bottom-heavy puller squirmers were allowed to move out of
the original monolayer, the authors observed the formation of a dynamical steady state in a
form of a microswimmer band, suggesting that pullers are indeed unstable with respect to
out-of-plane perturbations. In contrast, the continuum simulations by Nejad & Yeomans
(2022) showed coexisting regions of in-plane and out-of-plane director orientations in
extensile active nematics, while no such instability was present in the corresponding
contractile systems. This complex picture clearly has to be understood via a combination
of linear stability analysis and fully nonlinear simulations, a question that we leave open
to future studies. We stress, however, that we view the set-up considered in this work as a
way to isolate the effect of in-plane compressibility on collective motion of experimental
realisations of microswimmers accumulated close to a physical boundary. In such systems,
there are always additional effects ensuring microswimmers’ presence at the boundary,
e.g. gravity or surface tension, and the question of stability with respect to out-of-plane
perturbations should be addressed in that context.

We conclude by observing that, while the linear stability analysis presented here
identifies the origin, the onset conditions and the associated scales of the instabilities,
their nonlinear evolution and ensuing non-equilibrium steady states must be assessed in
numerical simulations of particle-based models (Bárdfalvy et al. 2019, 2020) or mean-field
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moment equations (Saintillan & Shelley 2013). We aim to further explore this and similar
questions in future studies.
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Appendix A. Dipolar fluid velocity

The far-field fluid velocity u generated by a swimming microorganism at low Reynolds
number is described by the hydrodynamic force dipole (Lauga & Powers 2009; Spagnolie
& Lauga 2012). The latter satisfies Stokes’ equation driven by two point-like forces ±f p
acting on the fluid at the positions ±1

2 lp

μ∇2uα(x) − ∇αP(x) + fpα[δ(x − 1
2 lp) − δ(x + 1

2 lp)] = 0, (A1)

∇αuα(x) = 0. (A2)

Here, μ is the viscosity of the fluid, P is the pressure and δ(x) denotes the Dirac delta
function. The solution to this system is readily found by performing the d-dimensional
Fourier transform, (2.8a,b), which gives

−μk2ûα − ikαP̂ + fpα
[
exp(−(1/2)ilk · p) − exp((1/2)ilk · p)

] = 0, (A3)

kα ûα = 0. (A4)

The point-dipole approximation, relevant at large scales where kl � 1, is obtained to linear
order in the dipolar length l, yielding

ûα(k, p) = −iκ
k · p
k2 Pαβpβ. (A5)

Here, Pαβ = δαβ − kαkβ/k2 is the transverse projection operator, k = |k|, and κ = fl/μ is
the dipolar strength.

The derivation presented above is independent of the spatial dimensionality d and
the Fourier transform of the dipolar field (A5) has the same form for bulk systems of
all dimensions. Its real-space representation, however, strongly depends on d. In three
dimensions, the inverse Fourier transform (2.8a,b) yields

uα
3d(r, p) = κ

8π

rα

|r|3
[

3
(r · p)2

|r|2 − 1
]

, r = x − x0, (A6)

where we have introduced an arbitrary position x0 of the force dipole. In two dimensions,
the real-space representation is

uα
2d(r, p) = κ

4π

rα

|r|2
[

2
(r · p)2

|r|2 − 1
]

, r = x − x0, (A7)

where we notice that the dipolar strength κ = fl/μ has different physical dimensions in
2-D and 3-D bulk systems.
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Hydrodynamic instabilities in a sheet of microswimmers

The velocity field of a hydrodynamic dipole restricted to a 2-D plane embedded in
an infinite 3-D fluid can be obtained from (A6). We select z = 0 to be the plane of the
microswimmers, and recall the definitions of 2-D vectors x = (x, y), and p = ( px, py),
from the main text. Performing the corresponding 2-D Fourier transform of (A6) with
respect to x, leads to

ûα
plane(k,p) = − iκ

2
k · p
k

[
Pαβ + 1

2
Qαβ

]
pβ, (A8)

where k = (kx, ky) is the wave vector associated with x, and we have introduced the
longitudinal projection operator Qαβ = kαkβ/k2.

Appendix B. Linear stability analysis of 2-D bulk suspensions

Here, we repeat the calculation presented in § 3 for the case of microswimmers suspended
in 2-D bulk fluid. We set d = 2 in (2.13)–(2.14), and employ (A5), since the form of the
dipolar Fourier transform is the same in all dimensions, as noted in Appendix A. We obtain
the following eigenvalue problems:

δρ̂ = λ

vsk
b√

1 + b2
δρ̂, (B1)

δÛα = Bnκ

vsk
b2 − 2

√
1 + b2 + 2
b3 δÛα, (B2)

which, similarly to the 3-D case, are decoupled. The orientational eigenvalue problem can
be rewritten as

γ2d ≡ vsk
Bnκ

= b2 − 2
√

1 + b2 + 2
b3 , (B3)

where, as before, b = vsk/(χ + λ). In contrast to (3.6), the solution to (B3) can be found
analytically, yielding

χ = −λ+ G(γ2d)Bκn, (B4)

where G(γ2d) is given in (4.8). The plot of G is shown in figure 5, and it has the same
qualitative features as F(γ ) shown in figure 2. As in the 3-D case, the orientational
instability only exists for pushers, κ > 0, and sets in at the largest possible scale, k → 0.
The corresponding instability condition is given by

n > nc = 4λ
Bκ

, (B5)

where the number density n and the dipolar strength κ have different dimensions than
their 3-D counterparts. The solution (B4) ceases to exist for γ2d > 1/

√
2, where one

can instead prove stability using an analysis completely analogous to the 3-D case (see
Appendix C.1). The analysis of density fluctuations is significantly simpler and the
corresponding eigenvalue is readily obtained from (B1)

χ = −λ±
√
λ2 − k2v2

s . (B6)

Clearly, χ is negative for all k, and thus the suspension is always stable with respect to
small fluctuations in microswimmer density.
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Figure 5. The real (a) and imaginary (b) parts of the function G(γ ) from (4.8).

Appendix C. Linear stability analysis using Laplace transforms

C.1. Density fluctuations in bulk suspensions
As mentioned in § 4.1, the linear stability analysis based on the ansatz (2.12) leads to
a missing solution of the eigenvalue problem at small spatial scales. This issue can be
tackled by exactly solving the linear dynamics (2.9) via Laplace transforms. We introduce
the following notation for the forward Laplace transform:

f (s) =
∫ ∞

0
dtf (t)e−st, (C1)

where s has a positive real part. For the inverse Laplace transformation, we use the
definition

f (t) = 1
2πi

lim
T→∞

∫ γ+iT

γ−iT
ds f (s)est, (C2)

where γ must be chosen such that the real part of every pole in f (s) is smaller than γ .
We now consider the case of a 3-D bulk suspension, for which the Laplace transform of

(2.9) gives

(s + λ+ ivsp · k)δΨ̂ − δΨ̂0 = λ

4π
δρ̂ + 3Bn

4π
ikαpαpβδÛβ, (C3)

where δΨ̂0 = δΨ̂ (k, p, t = 0) represents the initial condition. Dividing the last equation
with the linear operator on the left-hand side and integrating over the orientation p leads
to

δρ̂(s) = 1

1 − λ

vsk
arctan

(
vsk

s + λ
) ∫ dp

δΨ̂0

s + λ+ ivsp · k
. (C4)

The expression (C4) contains two separate poles

s1 = −λ− ivsp · k, s2 = −λ+ vsk

tan
(

vsk
λ

) , (C5a,b)

where the second pole appears only in the limited region of parameter space vsk/λ < π/2.
The result of the inverse Laplace transformation (C2) of (C4) consists of two terms, one
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corresponding to each pole

δρ̂(t) = δρ̂1(t) + δρ̂2(t), (C6)

which we now analyse separately. The first term in (C6) exists for any vsk/λ and reads

δρ̂1(t) =
∫

dp

⎡
⎢⎢⎣ 1

1 − λ

vsk
arctan

(
ik

p · k

) exp(− (λ+ ivsp · k) t)

⎤
⎥⎥⎦ δΨ̂0(k, p). (C7)

The integral over p is conveniently expressed in spherical coordinates with its polar axis
being along k, and reads

δρ̂1(t) = e−λt
∫ 1

−1
dx F(x)exp(−ivsktx), F(x) =

∫ 2π

0 dφ δΨ̂0(k, φ, arccos(x))

1 − λ

vsk
arctan

(
i
x

) .

(C8a,b)

We observe that
∫ 1
−1 dx|F(x)| < ∞, provided maxx | ∫ 2π

0 dφ δΨ̂0(k, φ, arccos(x))| < ∞,
as expected from a physical initial condition δΨ̂ (k, p). Applying the Riemann–Lebesgue
lemma (Bender & Orszag 1999), we conclude that δρ̂1(t) → 0, as t → ∞ for vsk > 0.

The second term in (C6) exists only for vsk/λ < π/2 and has the form

δρ̂2(t) = exp
[
−
(
λ− vsk

tan(vsk/λ)

)
t
]

∫
dp

⎡
⎢⎢⎣

(
vsk
λ

)

tan
(

vsk
λ

) 1 + tan2
(

vsk
λ

)

1 + i tan
(

vsk
λ

)
p · k

⎤
⎥⎥⎦ δΨ̂0(k, p). (C9)

The temporal evolution of (C9) follows an exponential decay provided that

λ− vsk
tan(vsk/λ)

> 0, (C10)

which always holds for vsk/λ < π/2. δρ̂2 thus corresponds to the solution obtained when
using the exponential ansatz δρ̂(t) ∼ exp{st}, as was analysed in § 3.2.

We conclude that, although the use of the exponential ansatz in (2.12) does not allow for
retrieving the sub-exponential contributions to the linear dynamics, the missing part does
not carry any new information relevant for the linear stability analysis.

C.2. Orientational instability in a sheet of microswimmers
We now repeat the calculation for the case of transverse velocity fluctuations in a 2-D
suspension restricted to a plane in a 3-D fluid. The starting point is the Smoluchowski
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equation (2.9) in two dimensions

[
∂t + λ+ ivsp · k] δΨ̂ = λ

2π
δρ̂ + n

2π

[
2Bpαpβ − (1 + B)δαβ

]
ikαδÛβ. (C11)

Equation (C11) is now transformed using (C1), and after multiplying with Pαβ ûβ
plane and

integrating over the orientation p, we arrive at

δÛα
⊥(s) = 1

1 − M11

∫ 2π

0

dθ

2π

Pαβ ûβ
planeδΨ̂0(k, θ)

s + λ+ ivsk cos θ
, (C12)

where M11 is defined in (4.4). Similarly to before, the inverse Laplace transform consists
of two parts, each corresponding to one of the poles in (C12). The first one is the pole
corresponding to M11 = 1, which leads to the dispersion law in (4.7). As discussed in the
main text, the latter solution ceases to exist for 2

√
2vs > Bκn. In this region, the stability is

instead determined by the second pole s = −λ− ivsk cos θ , where the time representation
of the corresponding solution is given by

δÛα
⊥(t) = e−λt

∫ 2π

0
dθ F(θ)exp(−ivskt cos θ), F(θ) =

Pαβ ûβ
planeδΨ̂0(k, θ)

1 − M11|b→i/cos θ

.

(C13a,b)
Again, it is possible to show that

∫ 2π

0 dθ |F(θ)| is bounded provided 2
√

2vs > Bκn and
δΨ̂0(k, θ) satisfies the same physical requirements as in Appendix C.1. Applying the
Riemann–Lebesgue lemma, we conclude that δÛα

⊥(t) vanishes as t → ∞, and the system
is stable for 2

√
2vs > Bκn.

Appendix D. Approximation of nc for a sheet of pushers

In this appendix, we will derive the approximate expression (4.12) for the critical density
nc corresponding to the orientational instability setting in at the scale of particle–particle
separation in a 2-D layer of pusher microswimmers. We set kc =

√
π3nc and n = nc in

(4.7), giving

χ = −λ+ G
(

2vs

Bκnc

)
Bκ(πnc)

3/2

2
. (D1)

We now separate the expression into two approximations valid asymptotically for small
and large values of vs. We first set vs → 0 in (D1), yielding

χ(vs → 0) = −λ+ 1
8 Bκ(πnc)

3/2, (D2)

where Re[χ ] = 0 now gives the ‘shaker’ approximation

nc(vs → 0) = 4
π

(
λ

Bκ

)2/3

. (D3)

For the fast-swimming limit, we use the result (4.10), i.e. we assume that the critical density
is linearly proportional to the swimming speed

nc(vs → ∞) = 2
√

2
vs

Bκ
+ O(1). (D4)

Combining (D3) and (D4) gives the result (4.12). The latter shows a good quantitative
agreement with the numerical solution of Re[χ ] = 0, as shown in figure 6.
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(λ2Bκ)1/3/(πvs)

102

101

10–2 10–1 100 101 102

Numerics

Approximation

Bκ
n c
/v

s

Figure 6. Comparison of the approximation (4.12) with the exact values obtained by numerical solution of
Re[χ] = 0, where χ is given by (D1). Our approximation shows good quantitative agreement with the exact
numerical values. The kink in the numerical data is not an artefact and corresponds to a switch between two
eigenvalue branches.
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