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Abstract

Background: Bayesian statistical approaches are extensively used in new statistical methods but
have not been adopted at the same rate in clinical and translational (C&T) research. The goal of
this paper is to accelerate the transition of new methods into practice by improving the C&T
researcher’s ability to gain confidence in interpreting and implementing Bayesian analyses.
Methods:We developed a Bayesian data analysis plan and implemented that plan for a two-arm
clinical trial comparing the effectiveness of a new opioid in reducing time to discharge from the
post-operative anesthesia unit and nerve block usage in surgery. Through this application, we
offer a brief tutorial on Bayesian methods and exhibit how to apply four Bayesian statistical
packages from STATA, SAS, and RStan to conduct linear and logistic regression analyses in
clinical research. Results: The analysis results in our application were robust to statistical
package and consistent across a wide range of prior distributions. STATA was the most
approachable package for linear regression but was more limited in the models that could be
fitted and easily summarized. SAS and R offered more straightforward documentation and data
management for the posteriors. They also offered direct programming of the likelihood making
them more easily extendable to complex problems. Conclusion: Bayesian analysis is now
accessible to a broad range of data analysts and should be considered in more C&T research
analyses. This will allow C&T research teams the ability to adopt and interpret Bayesian
methodology in more complex problems where Bayesian approaches are often needed.

Introduction

Statistical principles are widely used in study design and analysis, serving as a critical ingredient
of the scientific method. Much of the statistical methodology used by clinical scientists, for
example, standard errors, confidence intervals, tests of significance, multiple comparisons, and
sample size estimation, has its roots in classical statistics [1]. However, in clinical and
translational (C&T) research, the desire to integrate massive volumes and varieties of data types
requires more complex statistical models. Estimation of these models is challenging and
sometimes impossible using classical statistical approaches [2]. Advances in computing now
allow development in a Bayesian framework, which offers a solution to estimation challenges.
There are also compelling reasons to adopt a Bayesian framework for straightforward analyses
(e.g., t-tests, standard linear/logistic regression). Reasons include an ability to integrate prior
assumptions and historical knowledge about the model parameters using priors, a natural
framework for incorporating measurement error (and misclassification) in covariates, and the
fact that interpretation of posterior probabilities and credible intervals, the Bayesian analogs to
p-values and confidence intervals, align with the definition many apply (incorrectly) to interpret
p-values and confidence intervals [3]. Advances in a Bayesian framework specific to C&T
research include adaptive designs [4–8], incorporating historical information [9], and more
stable estimation properties in complex modeling [10–12].

Despite an increase in Bayesian approaches in methods development, adoption into C&T
research has occurred more slowly. A Google Scholar search of publications in top statistics
journals (Biometrics, Journal of the American Statistical Association, Biometrics, and Journal of
the Royal Statistical Society: Series B) from 2010 to 2020 shows that the keyword Bayesian is
linked with 30% of published articles over the same time period compared to top clinical
journals (American Journal of Epidemiology, Journal of the AmericanMedical Association, and
New England Journal of Medicine) where the keyword Bayesian appears in 1.8% of the articles.
This is perhaps because (1) interpretation of Bayesian analysis is not traditionally a competency
of introductory statistics courses (a language gap) [13]; (2) Bayesian analyses involve the
specification of prior distributions for the unknown parameters, adding a subjective element to
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analysis; and (3) Bayesian analysis implementation is perceived as
more complex than classical approaches (a computation gap).

Progress to bridge the communication and training gaps has
occurred [14–18]. This paper’s goal is to accelerate the transition of
new methods into practice by improving the C&T researcher’s
understanding and confidence in Bayesian analyses implementa-
tion. Our examples focus on regression analysis reflecting standard
analyses (linear and logistic regression) used in C&T research.
With increased understanding of a common analysis, we hope the
conceptual learning is extendable to the more complex analyses in
a Bayesian framework that occur in C&T research. We conduct an
analysis using four commonly available statistical analysis pack-
ages/procedures using three software (R, SAS, STATA), which
have packages making Bayesian regression achievable for those
with some analytic expertise. In our example analyses, we
investigate the impact of the prior including some accidental
analytic mistakes commonly made but often not discussed in other
introductory papers on the Bayesian approach. We also offer
suggestions for evaluating whether a Bayesian regression analysis
has been implemented properly.

Methods

Components of a Bayesian Analysis

In contrast to the classical statistical approach (a.k.a., frequentist)
which conducts inferences using only the existing data, Bayesian
analysis combines information in the data, through the likelihood,
with prior information about the model parameters to obtain a
combined assessment of uncertainty of these unknown quantities
called the posterior (Table 1). Our examples are regression
examples, and the parameters are the regression coefficients and
the error variance for linear regression. Through an application of
the well-known Bayes theorem, these components are linked as
follows: P(parameters|data) ∝L (data|parameters) X P (parame-
ters). The likelihood, L (data|parameters), and prior distribution of
the parameters, P(parameters), are defined by the user. Computing
the posterior distribution of the parameters, P (parameters|data),
or distribution of the parameters given the data, is the analysis goal
and analogous to estimating the regression coefficients and
computing confidence intervals in frequentist analysis.

Likelihood: The likelihood is related to the model, or
distribution, of the data (i.e., outcome) in the study, which is the
case in both classical and Bayesian approaches. In linear regression,
the standard model of the data (or outcome) for participant i is
assumed to be a normal distribution with a mean equal to
β0þ β1X1iþ⋯þ βkXki, where the Xji’s are the variables of interest
measured on participant i, and a variance of σe

2. Given the
independence assumption, the model for all participants is
the product of these normal distributions. The likelihood function
is the same mathematical function except now the data are fixed at
the observed data and the function is studied as a function of the
parameters. Thus, the likelihood function characterizes how “likely”
the parameters are for a given set of data. In logistic regression, the
likelihood is based on a binomial distribution where a logit
transformation of the probability of success (p) is linked to variables

of interest as follows: log p
1�p

� �
¼ β0 þ β1X1i þ � � � þ βkXki. By

selecting a linear or logistic regression analysis, the likelihood is
typically specified by the package/procedure. The analyst selects the
variables of interest when specifying themodel in the statistical code.

Prior Distribution on Parameters: Prior distributions on
the parameters quantify a belief in the parameter values before
observing any study data, with the spread of the distribution
quantifying the strength of those beliefs. In linear and logistic
regression, the main parameters are the beta coefficients and
typical distributions for the prior are normal distributions.
Normal distributions are chosen for mathematical convenience
but also allow for a full range of the parameters (−∞,þ∞) to be
accommodated in the prior. In linear regression, there is a prior
distribution chosen for the inverse of the model error variance
(model precision), which is typically a gamma distribution to
take on only non-negative values. Other choices include
truncated normal, uniform, half T, or half Cauchy. There is
vast literature on defining prior distributions and eliciting prior
distributions that capture a scientist’s beliefs about parameter
values [19–21]. In practice, we recommend C&T teams discuss
different forms of prior knowledge, including a clinician’s
perspective from past research or clinical care and information
published from other studies. We also recommend analysis with
several different priors identified with this approach to formally
understand how conclusions may change based on a range of a
priori assumptions C&T researchers may have about param-
eters. In this work, we specifically investigate various types, or
“strengths,” of priors (Fig. 1). These ranged from vague with a
wide, flatter distribution to skeptically and optimistically
informative depending on the value of the mean in the priors
for the betas. Priors with means set equal to 0 with more prior
probability of no treatment difference (created by a smaller or
tighter variance) compared to a vague prior have been labeled
skeptical and quantify the strength of a clinician’s prior belief
that the treatment will not have an effect. Priors with means not
equal to 0 (negative or positive depend on clinical context) with
more prior probability of a treatment difference (again, created
with a smaller variance) compared to a vague prior have been
labeled optimistic toward associations and quantify the strength
of a clinician’s prior belief that the treatment will have an effect.
As discussed earlier, the value of the mean can be chosen based
on clinician input, historical data (e.g., previous trials), or
biological plausibility. The labeling of priors as vague, skeptical,
and optimistic depends directly on the scale of the outcome. For
example, in one problem a variance of 1000-units2 could be
quite large and vague while another outcome with large values
and highly variable measurements may need a much larger
variance to be vague.

Posterior distribution: The posterior distribution is the
distribution of the parameters conditioned on the data and
expresses the uncertainty in the parameters after observing the
data. As noted earlier, the posterior is proportional to
the likelihood times the prior emphasizing that, on a log scale,
the information about the parameters in the posterior is
essentially the sum of information in the prior and the data. It is
common to summarize the posterior by its mean, median, or
mode and credible intervals. For example, a 95% equal-tailed
probability or credible interval is computed by finding the 2.5th

and 97.5th percentiles of the posterior distribution. This interval
is interpreted as the 95% posterior probability that the
parameter is between the bounds given the observed data. We
note that this interpretation is commonly misapplied to the
classical confidence interval (i.e., if we repeated sampling
infinitely, the resulting 95% confidence intervals would contain
the true population value 95% of the time; therefore, the correct
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interpretation is we are 95% confident that the bounds contain
the parameter value) [22–25]. Another commonly used credible
interval is the highest posterior density (HPD) interval, which is
the interval with the smallest interval width among all credible
intervals. Using the posterior distribution, one can also compute
posterior probabilities of ranges of parameter values aligning
with clinically meaningful differences between the treatment
arms. An example might be the posterior probability that the
treatment has a higher (or lower) mean compared to the
control group.

Computing the Posterior

In Bayesian regression analysis, the posterior is rarely a known
distribution. Instead, Markov Chain Monte Carlo (MCMC)
algorithms are used to simulate samples from the posterior.
MCMC is a set of algorithms for sampling from a distribution even
when the actual distribution cannot be mathematically derived
[26–28]. Gibbs sampling and Metropolis-Hastings (M-H) are two
common algorithms among many other approaches [29–31].
Detailed descriptions are available elsewhere [28]. The beauty of

Table 1. Glossary of terms

Acceptance rate The fraction of proposed samples from the sampler that is accepted

Autocorrelation The sequential samples from the Markov chain are highly correlated with each other; this means the Markov chain is
likely slowly traversing the sampling space because model parameters are highly correlated with one another

Autocorrelation plot A plot showing pairwise correlation between MCMC iterations (y-axis) for different lags between iterations (x-axis); can
be an indicator of poor sampling efficiency

Bayes theorem A formal statistical method that includes conditional probabilities to quantify uncertainty of parameters of interest

Burn-in A defined number of initial MCMC iterations discarded before creating diagnostic plots and summaries of the posterior
distributions in order to minimize the effect on posterior inference

Chain A series of random values from the range of the parameter’s distribution drawn by the MCMC sampler; in MCMC, it is
common to call the simulation, or the sampling, a “chain” as shorthand because it is theoretically from a Markov
chain

Convergence The Markov Chain has reached the stationary (i.e., target) distribution

Credible interval (CrI) The interval estimates for the parameter of interest with measurable probability (e.g., Equal-tailed or highest posterior
density (HPD)); because Bayesian estimates are random, the credible interval can be interpreted as a probability
range

Density plot A histogram plot of the parameter’s posterior distribution

Error variance Variance of the normally distributed error term in a linear regression model (also called residual error, residual
variance)

Frequentist Classical approach to statistical inference where the unknown parameters are held fixed

Informative prior A prior distribution that may impact the posterior distribution relative to the likelihood; a prior that is not easily
dominated by the likelihood function, e.g., Optimistic or skeptical priors determined by a subject-matter expert or
previous literature

Likelihood A statistical model that describes the distribution of the observed data and then used to update beliefs about the
parameters when combined with the prior distributions

Markov Chain Monte Carlo
(MCMC) algorithm

A set of algorithms for simulating, or randomly sampling, from a distribution even when the actual distribution cannot
be mathematically derived

Mixing (in relation to MCMC), describes the series, or chain, of random moves to explore the parameter’s range of values and
relates to convergence of the MCMC

Non-informative prior See vague prior

Posterior distribution The distribution of the parameters conditioned on the trial data (i.e., observed data) and expresses the uncertainty in
the parameters after observing the data; the updated beliefs about the parameters after the prior and the likelihood
are combined using Bayes’ Theorem

Prior distribution The current beliefs of a parameter summarized as the probability distribution

“Pseudo” vague prior A prior that was initially thought to be non-informative but subsequently determined to substantially impact the
posterior distribution, therefore, not truly vague

Sampler (or sampling algorithm) An algorithm or sampling method employed to obtain random samples from the target distribution; see Markov Chain
Monte Carlo (MCMC) algorithm

Starting value The initial value for the MCMC sampler for beginning the series of sampling draws; the value can be a mean and a
variance

Trace plot A plot which has the value of the parameter on the y-axis at each MCMC iteration (x-axis); an ideal plot will show
convergence where the parameter is oscillating around the mode of the distribution

Vague prior A prior distribution that will have minimal impact on the posterior distribution relative to the likelihood function, e.g.,
a flat distribution relative to the likelihood

Wandering See mixing
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software development in the past decade is that, in SAS, R, or
STATA, the user only needs to specify the variables in the
regression model, similar to classical analysis, and distribution of
the priors. The programs assemble the math for the MCMC
algorithms behind the scenes for the user making Bayesian
implementation highly feasible for most analysts. Code for each
package and software are publicly available at https://github.com/
nichole-carlson/BayesianClinicalResearch.

The output of MCMC algorithms is a rectangular dataset where
columns are a sample from the posterior distribution of a model
parameter and each row is a single iteration from the algorithm. The
set of samples is often called “chains” reflecting that the samples are
derived from a Markov chain, the mathematical system behind
MCMC. By design, chain iterations are serially correlated (called
autocorrelation). Assessing the autocorrelation strength is useful for
investigating algorithm performance including likely convergence to
the posterior and full posterior exploration. In practice, some run the
MCMC algorithm 2–3 times, each a unique chain of sampling with
different random starting values to further assess convergence.
However, once adequate algorithm performance is determined, a
single longer chain is used for final posterior estimation [32].

To investigate these concepts, there are several graphical
diagnostics to be assessed for each column. The most common
diagnostic plots are trace, autocorrelation, and density plots (Fig. 2). A
trace plot has parameter values on the y-axis for each iteration
(x-axis). The autocorrelation plot is the pairwise correlation (y-axis)
between parameter values for different lags between iterations
(x-axis).Whenmultiple chains are run, we first assess whether, after a
suitable number of iterations, the trace plots start to overlap. Lack of
overlap raises the possibility that convergence has not been achieved

in the number of iterations selected. Assuming the trace plots
eventually converge, further graphical assessment (and posterior
summary measures) should not be visually influenced by a particular
starting value. Thus, a portion of the initial algorithm iterations (called
burn-in) is removed. The burn-in is often ~ 10% of the iterations with
no firm recommendation. The trace plot looks like random noise
when convergence is likely (Fig. 2, top-left panel) versus having strong
patterns or long stretches of wandering (Fig. 2, top-right panel). The
autocorrelation plot exhibits a steep decline as the lags increase (Fig. 2,
bottom-left, both panels). Strong patterns in the trace plots and long
lags with a high correlation indicate poor mixing and a lower
possibility of convergence or limited exploration of the posterior. The
results may not be valid. Density (or histogram) plots of the
parameters should have a smooth shape with a single mode (Fig. 2,
bottom-right, both panels). In typical regression analyses, other
bimodal or unusual patterns may also indicate lack of convergence.
There are other diagnostics, e.g., the Gelman-Rubin statistic, for
assessing convergence [33,34]. For simplicity, we focused on visual
diagnostics.

After verifying the simulation has likely converged to the
posterior distribution, the posteriors are summarized using the
mean and measures of variability described by credible intervals
and/or posterior standard errors and standard deviations.

Application of Bayesian Analysis to a Clinical Trial

Here we draft a formal methods section for our illustrative
application as an example for the reader to follow when writing
their own sections in clinical journals. Key components to consider
are in Table 2. Our anesthesiologist clinical research collaborators

Figure 1. Panel A). The four priors on the treatment effect in the linear regression. The black solid line is the vague prior and shows an even weight for the largest range of the
values. The gray dashed line is the “pseudo” vague prior, which has more weight around zero over a fairly large range of treatment effect values (but does not cover the range of
values consistent with distribution of the outcome and thus, informative for the intercept). The red medium dashed line is the skeptical prior with much more weight centered
around small treatment effects and the blue dotted line is the optimistic prior with nearly all its weight on treatment effects less than zero. Panels B and C). The linear regression
coefficient values of the treatment group of the prior (green solid line), likelihood (solid blue), and posterior (orange dashed). Panel B plots values from the vague prior scenario
showing that this prior specification does not pull the coefficient from the likelihood, as the two density curves are nearly identical. Panel C plots the informative prior scenario
showing that an informative prior can influence the posterior from the likelihood, and the posterior is a combination of the prior and likelihood curves.
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were interested in evaluating how sublingual sufentanil, a novel
opioid medication for moderate to severe pain, performed relative
to the existing standard of care therapy of intravenous (IV)
fentanyl. The study details are published elsewhere [35]. In brief, 75
patients were randomized to two study arms, and 66 were included
in the per-protocol illustrative analysis. The exposure of interest
was drug treatment with either sublingual sufentanil or IV fentanyl
(the referent group). The primary continuous outcome was time to
readiness for discharge after arrival in post-anesthesia care unit
(PACU; in total minutes), and the primary dichotomous outcome
was if a preoperative nerve block was administered (yes or no;
probability of yes was modeled). All modeling was performed in
parallel with R v4.2.1 (Vienna, Austria), SAS version 9.4 (Cary, NC,
USA), and STATA version 17.0 (College Station, TX, USA).

Analysis of Time to Readiness for Discharge

Linear regression was used to model the association between
treatment and discharge with and without adjustment for
covariates. In the unadjusted models, the intercept represented
the mean time to readiness for discharge in the IV fentanyl
treatment group and the treatment coefficient represented the
differences in themean time to readiness for discharge from PACU
between the sufentanil and IV fentanyl treatment groups. The

adjusted models included centered procedure length (minutes)
and sex (dichotomous).

The primary prior chosen for our analysis was a vague
N(mean = 0, variance = 10,000) prior giving almost equal a priori
weight to a large range of plausible values (Table 3; Fig. 1 panel A).
In this prior distribution, there was an 80% a priori probability that
the treatment difference was between −128 and 128 minutes (the
values used to compute this range are the 10th and 90th percentiles
of the prior distribution) and 50% of the a priori treatment effect
values were less than 0. This same prior was also chosen for the
regression coefficients on procedure length and sex in the adjusted
model. The vague priors were considered conservative and similar
to traditional analytic approaches.

We also considered informative optimistic and skeptical priors
(Table 3; Fig. 1 panel A) reflecting two common prior beliefs held
by the clinical investigators. The optimistic prior was a N
(−30, 100) reflecting a greater a priori belief in a clinically
meaningful treatment difference. In this setting, the treatment
difference (−30 minutes) and variance were selected based on the
assumptions of the a priori power calculation, which relied upon
historical data and clinician input. The optimistic prior had an 80%
a priori probability of a treatment difference between −42.8 and
−17.2 minutes with 99.8% of the a priori treatment differences less
than 0. The skeptical prior was a N (0, 100) reflecting a greater a

Figure 2. Diagnostic plots for various scenarios. The left panel indicates convergence is likely and the right where convergence is less likely and the MCMC algorithm is modified.
The top figure in each panel is a trace plot. The bottom-left figure is an autocorrelation plot, and the bottom-right figure is a posterior density plot. These were generated by SAS
PROC MCMC. Similar graphics are available for the other software.

Table 2. Statistical components to include in a Bayesian data analysis plan

a. The outcome, primary variable of interest, and covariates with labels as to their function as adjustment for confounding, precision variables, mediators,
etc.

b. The regression modeling framework being used (linear regression, logistic regression, or other).

c. Prior distribution with parameters; a description of non-informative to informative and a justification for the selection when appropriate; multiple priors
should be investigated over a range of assumptions regarding a priori beliefs about the values of the parameters.

d. Package and software version with specifics about the MCMC algorithm used.

e. Chain/iteration length and number and burn-in.

f. Parameter initialization values.

g. Assessment of convergence.

h. A description of how posteriors will be summarized.
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priori belief in no treatment effect with the variation about zero
chosen from the a priori power calculation. The skeptical prior had
an 80% a priori probability of a treatment difference between−12.8
and 12.8 minutes. In both scenarios, vague priors of N (0, 10000)
were chosen for the regression coefficients on the covariates and
intercept in the adjusted model.

We also considered a N (0, 1000) prior for all the parameters in
the regression model (not just the treatment coefficient), represent-
ing the same numerical values but specified on different units. We
classified this as a “pseudo” vague prior in that it was intended to be
vague for all parameters, but further investigation showed it was
informative for the intercept term. We selected this prior because it
is a common choice among early adopters of Bayesian analyses,
often thought to be a vague prior without careful consideration of
the units of the outcome. Upon visual inspection of the range of
parameter values allowed for the intercept compared to the
distribution of the outcome, this prior was not vague and quite
informative. This represents a case scenario that does not perform as
intended with unintended high bias in the treatment coefficient and
an example of what can go wrong in naive implementations.

For all scenarios, the model error variance had an inverse-
gamma (IG) prior with a shape= 0.01 and a scale = 0.01, which are
common choices for a vague prior.

PROCMCMC and PROCGENMODwith a BAYES statement
were used to sample the posterior in SAS. We employed the
default MCMC algorithms within each software, including
N-Metropolis (SAS, PROC MCMC), Gibbs for linear regression
(SAS, GENMODþ BAYES), random walk Metropolis-Hastings
(STATA), and No-U-Turn sampling (RStan, BRMS package).

To improve comparability across results, parameters were
initialized with regression coefficients set to “0” and the model
error variance set to “1.” In practice, software default settings for
initialization values are sufficient. RStan and STATA ran two
MCMC chains, while SAS used a single chain. Each chain was run
for 10,000 iterations including 1000 iterations discarded as burn-in
and all values were stored. Software default settings were used for
the target acceptance rate in Metropolis-Hastings algorithms.
Convergence was assessed visually using trace, autocorrelation,
and histogram plots of the posterior distributions for each
parameter. Results were summarized using posterior means and
95% HPD credible intervals (CrI). We also computed the posterior
probability of a positive treatment difference represented by a
reduction in the mean time to readiness for discharge from PACU
(i.e., treatment difference < 0).

We repeated linear modeling in a classical framework in each
software. Results were presented as estimates and 95% confidence
intervals.

Analysis of Administration of Preoperative Nerve Block

Logistic regression was used to model the association between
treatment and the odds of administering preoperative nerve block.
Unadjusted and adjusted models were specified.

As above, we considered several priors on the treatment
effect. The primary prior was a vague N (0, 10) with 80% prior
probability of an odds ratio (OR) between 0.02 and 60. Our
optimistic prior was a N (−0.5, 2) with an 80% prior probability
of an OR between 0.1 and 3.7 and a 64% prior probability of an
OR less than 1. Our skeptical prior was a N (0, 2) with an 80%
prior probability of an OR between 0.2 and 6.0 and a 49% prior
probability of an OR less than 1. We used vague N (0, 10) for the
covariate regression coefficients in the adjusted models. The
“pseudo” vague prior was a N (0, 1) for the treatment and
covariate regression coefficients. The MCMC algorithms were
as above except for SAS GENMODþ BAYES which used a
Gamerman algorithm. The posteriors were summarized using
means and 95% HPD credible intervals and exponentiated to
ORs for a standard clinical interpretation. The posterior
probability of a reduced odds of nerve block usage (i.e., OR
< 1) was also computed. Analyses were repeated in the classical
framework in each software. Results were presented as OR with
95% CIs.

Results

Primary Analysis Using a Vague Prior, SAS PROC MCMC

Here we provide a summary of the results written suitably for a
clinical publication to provide an examples of writing Bayesian
results. We hope the reader finds reassurance that much of the text
is like that of a classical approach.

Supplemental Table S1 shows the demographics of the study
population by treatment group. Representative diagnostic plots
can be found in supplementary material (Figures S1–S12). No
convergence issues were observed. Those in the sublingual
sufentanil group had on average a 3.8 minute longer time to
readiness for discharge compared to the fentanyl group (results
presented from SAS PROC MCMC: 95% HPD CrI: −11.1, 18.2).
The 95% HDP CrI is interpreted as the difference between the two

Table 3. Specified priors

Vague Skeptical Optimistic “Pseudo” Vague

Linear regression

Intercept N (0, 10,000) N (0, 10,000) N (0, 10,000) N (0, 1000)

Drug group N (0, 10,000) N (0, 100) N (−30, 100) N (0, 1000)

Covariates N (0, 10,000) N (0, 10,000) N (0, 10,000) N (0, 1000)

Sigma[2] IG (0.01, 0.01) IG (0.01, 0.01) IG (0.01, 0.01) IG (0.01, 0.01)

Logistic regression

Intercept N (0, 10) N (0, 10) N (0, 10) N (0, 1)

Drug group N (0, 10) N (0, 2) N (−0.5, 2) N (0, 1)

Covariates N (0, 10) N (0, 10) N (0, 10) N (0, 1)

IG= inverse gamma (shape, scale); N= normal (mean, variance).
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treatment groups having a 95% chance of falling between a
decrease of 11.1 minutes and an increase of 18.2 minutes. The
posterior probability of a decrease in time to readiness for
discharge was 29.7% indicating there is not a high posterior
probability that the new drug reduces the outcome. Results were
consistent after adjustment (Posterior Mean= 6.7 min; 95% HDP
CrI: −8.0, 22.7; posterior probability = 22.3%).

In addition, sublingual sufentanil reduced the odds of
preoperative nerve block by 39% on average (Posterior Mean OR:
0.61, 95% HPD CrI: 0.08, 1.32). The posterior probability that
sublingual sufentanil reduced the odds of preoperative nerve block
was 87.5%, a high posterior probability that the new drug reduces the
odds of the outcome. The results were only slightly attenuated after
adjustment (Posterior Mean OR: 0.74; 95% HPD CrI: 0.09, 1.75;
posterior probability= 77.9%).

Comparison of Results Between Software Programs

Fig. 3 presents the posterior means and 95% HPD CrIs for the
linear and logistic regression analyses for the treatment variable
from the unadjusted and adjusted analyses with each software
package for vague prior and the classical analysis. Reassuringly, the
findings were similar regardless of software. This pattern is
consistent for the other priors and the adjusted analyses (see
supplemental materials) except for the “pseudo” vague prior where
RStan was less influenced by the prior on the intercept compared to
the other algorithms.

Comparison of Results Across Different Priors

Fig. 4 presents the posterior means and 95% HDP CrIs for the
simple linear and logistic regression analyses for the intercept and
treatment variable from the unadjusted analyses. The posterior
means for the intercept and treatment effect were very similar for
the vague and skeptical priors. We note that the posterior means
for the intercept and treatment effect were nearly identical for the
vague priors and the MLE. This highlights how, with a suitably
vague prior, the data (through the likelihood) are allowed to

dominate the estimation (Fig. 1, panel B). For the unadjusted linear
regression with the “pseudo” vague prior, the intercept mean was
pulled toward the prior mean [Posterior Mean= 92.0; 95% HPD
CrI: 82.6, 102.7] and the treatment effect biased higher compared
to the truly non-informative priors [Posterior Mean= 5.9; 95%
HPDCrI:−8.6, 20.1]. Even though a variance of 1000 seemed large
and covered a wide range of parameter values, it was informative
for the intercept, which was far from 0 and not given an equal
weight as smaller values in the prior (i.e., an accidentally non-
sensical prior for an intercept). Given the sample size of the trial
was modest, the informative optimistic prior estimated a treatment
effect that was larger than the non-informative priors but smaller
than the mean of the prior (Fig. 1, panel C). This reflects how the
data reweight information in the prior to arrive at posterior
estimates. It also indicates that this trial was inconsistent with the a
priori assumption about the treatment effect.

Discussion

The ability of C&T researchers to understand statistical concepts to
advance medical discovery and to use data driven-decisions in
practice is well recognized, as evidenced by statistical curricula in
medical school and continuing education programs. However,
innovation occurs at a far faster pace than adoption into practice.
The advancement of new approaches for analyzing data also
develops at a faster pace than graduate curriculum or practice
allows. Publications targeted to subject areas of research are
another venue to increase the adoption of innovation into practice.
Our goal was to help C&T researchers adopt newer statistical
methods in practice, especially those developed using a Bayesian
framework.

We focused on introducing C&T researchers to the key elements
of Bayesian linear and logistic regression analyses including
specifying the model and the prior distributions of the parameters
and computing the posterior distribution of the parameters.We also
provided a high-level overview of the computational engine behind
Bayesian analysis and MCMC algorithms. We offered guidelines on

Figure 3. A comparison of crude (panel A) and adjusted (panel B) treatment effects across different software programs. Circle is the MLE and 95% confidence interval. Triangle is
the posterior mean and 95% HDP CrI. Logistic regression results are odds ratios. Linear regression vague prior ~N (0, 10,000); logistic regression vague prior ~N (0, 10);
MLE = maximum likelihood estimate.
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analysis plan components and provided a straightforward example
of a clinical trial’s results section, which has not been highlighted as
much in other papers. We hope this practical guide gives C&T
researchers an ability to evaluate the Bayesian statistical analysis
plans developed by their biostatisticians or other data analysis-
focused team members. We hope it also allows C&T researchers to
confidently and critically evaluate Bayesian analyses in the literature
and encourage others to include all the details necessary to evaluate,
reproduce, and interpret Bayesian analyses.

We chose to focus the application on a traditional two-arm
clinical trial with both continuous and binary outcomes even though
results with vague priors do not differ from classical approaches.
This was done to develop an understanding of Bayesian approaches
in common settings, which we hope will translate to confidence in
adopting Bayesian approaches in complex settings where tradi-
tional/classical estimation approaches may have significant limi-
tations or be impossible. Examples include high dimensional
problems [36], variable selection [37,38], clustering [39], and
incorporating historical data in clinical trials [40].

We found STATA the most approachable for those without
programing experience owing to its user-friendly point-and-click
interface and accessible documentation for common Bayesian
analysis needs. However, determining how to reproducibly
generate posterior summaries and manipulate the posterior
means, such as variable transformation, was not straightforward.
Additionally, calculating the posterior probabilities on the non-
transformed [log(Odds)] versus transformed (OR) scale generated
different results which is not intuitive. SAS was straightforward
with the best documentation for simple and complex applications
of Bayesian commands and has flexibility between two different
PROCs; although it requires programing knowledge. PROC
MCMC was preferred due to explicit options for setting chain
initial values and prior specifications compared to PROC
GENMODþ BAYES. However, SAS does not offer an easy
approach (i.e., a single argument) for running multiple chains,
unlike R and STATA, so the analyst must create a macro program

to execute and combine multiple chains to conduct analysis and
diagnostics. RStan was also simple but required programing
knowledge, and its documentation seemed less complete or
challenging to interpret in some instances. Further, compared to
STATA and SAS (and without optimization), compiling, and
summarizing the posterior took longer which should be considered
if working with “big data.”

Implementing the Bayesian approach has challenges. It was
difficult identifying the MCMC algorithm details and under-
standing how the parameters were initialized and the default
parameters in priors. This could lead to a perception that these
details are not important in practice. A specific example was the
parameters in the prior for themodel error between PROCMCMC
and PROC GENMOD. Both have optional statements to set these
values and can fit models without explicit specification of this
parameter. However, there is a default model error parameter in
PROC GENMOD, while PROC MCMC can run without
specification and the parameter is not displayed in the output
when excluded from the code’s parameter list. This makes it easy to
misspecify or accidentally exclude its prior specification. These
differences in prior specification resulted in a range of MCMC
performance and slight differences in posterior estimates. We
strongly encourage C&T researchers to set the parameter values in
all priors.

We also were reminded how in regression analyses it is easy to
be informative for the intercept if one is not careful about
investigating the scale of the outcome and range of the prior. If the
user a priori wants to have non-informative priors, which would be
common for the intercept, we recommend that the analyst
compute the mean of the outcome for continuous measures and
plot the prior distribution for the intercept to confirm that it is
non-informative over the appropriate range.

Simulation-based approaches start with a random seed for
simulating from the distributions. Approaches for setting seeds
vary and even in cases where the same seed is set, different random
generators are used across software to simulate the same

Figure 4. A comparison of posterior mean and 95% credible intervals (CrI) for the three software programs (R, SAS PROCMCMC, and STATA) for the crude linear regression (panel
A) and crude logistic regression (panel B). Dashed reference lines reflect the parameter estimates generated from MLE frequentist models. The intercept parameter was specified
with priors of ~N (0, 10,000) [linear regression] and ~N (0, 10) [logistic regression] within both skeptical and informative scenarios; otherwise, the intercept prior was specified the
same as the main effect.
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distributions. Thus, reproducibility between software is often not
possible. To achieve reproducibility within a package, we
recommend setting the seed to create a known and fixed number.
Each software had an optional explicit argument to set a seed value
within the main syntax for a Bayesian framework.

One major concern with Bayesian analysis is sensitivity to the
priors. We believe this is a benefit because the prior allows us to
transparently specify our prior beliefs about the parameters. The
approach used in this analysis was based on clinical knowledge
obtained from the clinical investigators’ power calculations. There
are other approaches to specifying informative priors including
clinical practice guidelines, clinician expertise [20], a sensitivity
analysis including both skeptical and conservative priors [41,42],
and theory based on how much the prior and data are balanced in
the posterior estimate [19,43]. We strongly encourage C&T
researchers to use their domain knowledge to construct a range of
priors incorporating multiple values representing skeptical to
optimistic opinions and include all results in the write-up. We also
note the trial investigated in this paper was a modest-sized trial
allowing us to highlight the effect priors can have on the posterior.
As sample size increases, we expect differences in the posterior
across priors to become less pronounced. This reflects increased
weighting of the likelihood versus the prior in the mathematics
computing the posterior.

There are many Bayesian concepts not covered includingmodel
selection using the deviance information criterion (i.e., DIC, the
Bayesian analog to AIC in classical methodology), Bayes factors,
adaptive MCMC, and model diagnostics using posterior predictive
distributions. Readers desiring more knowledge are referred to
more extensive texts [19,41], and SAS help manuals [44].

In summary, statistical software now allows Bayesian analyses
as a standard approach. We have provided an overview of
regression analysis components, and shown how to interpret
Bayesian analyses, and results are quite stable for a wide range of
prior distributions. Informative priors are useful for incorporating
existing clinical or prior trial knowledge, knowledge translation, or
existing scientific knowledge such as biologically plausible ranges
of values. These cases are of high interest in translational science
initiatives, such at the National Center for Advancing
Translational Science in the National Institutes of Health, which
is interested in knowledge translation from animal to human
studies [45], and at the Food and Drug Administration [46].

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.689.
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