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Abstract

A semigroup over a generalized tree, denoted by the term -rf'.Sf'-semigroup, is
a compact semigroup S such that Green's relation •#* is a congruence on S

- and Sp? is an abelian generalized tree with idempotent endpoints and
E(S/Jf) a Lawson semilattice. Each such semigroup is characterized as being
constructible from cylindrical subsemigroups of 5 and the generalized tree
SI^C in a manner similar to the construction of semigroups over trees and
of the hormos. Indeed, semigroups over trees are shown to be particular
examples of the construction given herein.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 22 A 15;
secondary 20 M 10, 54 H 10.

Keywords: compact semigroup, generalized tree, semigroup over a tree,
Lawson semilattice, inverse limit preserving functor.

1. Introduction

Mislove (1969, 1974) defines a compact semigroup 5 to be a semigroup over a tree
if Green's «3f -relation is a congruence on S and Spf is an abelian tree with
idempotent endpoints. He then proceeds to characterize completely the semigroup
S in terms of S/Jf and certain cylindrical subsemigroups of S.

Our purpose here is to generalize this result by obtaining a similar characteri-
zation of those compact semigroups S with S/Jf an abelian generalized tree with
idempotent endpoints and E(S/jfT) a Lawson semilattice. As is to be expected in
an undertaking of this nature, several of the basic techniques used by Mislove are,
with modification, applicable to this more general situation. While new formu-
lations and arguments must be given as the paper proceeds, we will follow the
basic pattern established by Mislove. We will present the information however,
in the much neater categorical approach developed by Bowman (1971).

The notation and terminology will be that of Hofmann and Mostert (1966).
Along with this, Kelley (1955) and Mitchell (1965) will serve as our standard
references. This work forms a portion of the author's doctoral dissertation and he
wishes to express his gratitude and appreciation to Professor J. H. Carruth for his
patience and advice during its preparation.
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178 T. E. Hays [2]

2. Preliminaries
Throughout this paper the term "semigroup" will always mean topological semi-

group.

DEFINITION 2.1. A continuum is hereditarily unicoherent if the intersection of
any two subcontinua is connected. A generalized tree is a hereditarily unicoherent
continuum on which there exists a closed monotone partial order with unique
minimal element (Koch and Krule, 1960).

The structure of generalized trees has been studied by Koch and Krule (1960) and
Ward (1954, 1957, 1958). We now list some of the properties established in these
works, and shall use these properties throughout this work without specific
reference.

If a, b e X, a generalized tree, there is a unique arc in X from a to b, denoted by
[a,b]. Each subcontinuum of a generalized tree is itself a generalized tree (Ward,
1957), and if/: X-+X is a continuous function, there is an x in X with/(x) = x;
that is, generalized trees possess the fixed point property (Ward, 1957).

DEFINITION 2.2. A point xeC, a continuum, is a weak cutpoint of C if there are
y,z in C\{x} such that any subcontinuum of C containing y and z also contains x.

DEFINITION 2.3. A point JC of an arc-wise connected continuum X is an
endpoint of X if it separates no arc in X.

LEMMA 2.4. Let T be a generalized tree. If x is not a weak cutpoint of T, then x
is an endpoint of T.

PROOF. Let A be an arc in T with endpoints a and b. Let x separate A. Then
xeA with a^x and b^x. If C is a subcontinuum of T containing a and ft, then
A n C is a subcontinuum of the arc A containing a and b. Thus A n C = A and
JC e C. As C was an arbitrary continuum containing a and b, x is a weak cutpoint
of T. The result then follows by contraposition.

We now proceed to establish some results about semigroups whose underlying
space is a generalized tree. In several cases they are extensions of Mislove's work
with semigroups whose underlying space is a tree. In most of what follows we
will be concerned with semigroups on generalized trees with idempotent endpoints
and commuting idempotents. The following result shows that we can assume that
the generalized trees with which we work are abelian.

LEMMA 2.5 (Hunter, 1959). Suppose T is a semigroup on a hereditarily uni-
coherent arc-wise connected continuum. If the endpoints of T are idempotent and
commute, one with another, then T is abelian.
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[3] Semigroups over generalized trees 179

LEMMA 2.6. Suppose T is a semigroup on a generalized tree with idempotent
endpoints in which the idempotents commute. Then the maximal subgroups of T are
totally disconnected and hence T has a zero.

PROOF. Let eeE(T). Then Cnie)(e), the identity component of H(e), is a compact
connected subgroup of T, and so it is a generalized tree. As CH(e)(e) then has the
fixed point property, CK(e)(e) = {e} and H(e) is totally disconnected.

If eeE(T)nM(T), H(e) = eTe is connected and totally disconnected, whence
H{e) is trivial. Thus M(T)^E(T) and, hence, M(T) is a point since E(T) is abelian.

LEMMA 2.7. Suppose T is an abelian semigroup on a generalized tree with idem-
potent endpoints. Then [0, e] is a standard thread and H(e) = {e} for each eeT.

PROOF. Fix eeE(T). According to Lemma 2.6, H(e) is totally disconnected for
each eeE(T). Thus by Exercise 8 of Hofmann and Mostert (1966), p. 159 there is
a standard thread / running from e to 0. But [0, e] is the unique arc from a to 0 in
T, and so / = [0, e\

Since Thas idempotent endpoints, T= \J {[0,f]: fe E(T)}, and so

eTe=\J{[0,ef]:feE(T)}.

Since eTe is a generalized tree with idempotent endpoints and no point of H(e)
can be a weak cutpoint of eTe (see Hunter, 1961, and Koch, 1957), we must have
H(e) = {e} by Lemma 2.4.

DEFINITION 2.8. Let T be an abelian semigroup on a generalized tree with
idempotent endpoints and X = E(T). We define X' — {xeX\{0}: x is isolated in
[0, x] n X} and x' = sup ([0, x) n X) if x e X'.

We conclude this section with the establishment of some convergence properties
inT.

PROPOSITION 2.9. Let T be an abelian semigroup on a generalized tree with
idempotent endpoints, {x^ieI a net in X converging to x, xeX' with xtx = xtfor
each iel. Then for a residual subset J^I, xteX', x'xt = x\for each ieJ and the
net {x'i)ie j converges to x'.

PROOF. Since {xjf e7 converges to x, and xx' = x' by Lemma 2.7, the net
{x'x^ieI converges to x' by the continuity of multiplication. Hence there is an
element jel such that i^j implies x'x^Xf. Let J—{ieI: i^j} and let ieJ.
Then by Phillips (1963), [x',xx^\ = [x'x^x^. Since T is abelian, translation by xt

is a homomorphism and (x',x)nX = • implies by Cohen and Krule (1959) that
(x'xi,xi)nX= n . Since [x ' ^x^s l t yx j , xteX' and x\ = x'^. Clearly the net
{xj}i6 j converges to x'.
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The following proposition was proved by Mislove (1974; 1969, p. 79) for trees,
but his proof is also valid in the more general setting and hence we content ourselves
with the statement of the more general proposition.

PROPOSITION 2.10. Let T be an abelian semigroup on a generalized tree and
X — E(T). If xeX' and x is not isolated in xX, then D = {yeX: xy = y and y
isolated in yX} is a directed set under j < z if and only if yz — y. Furthermore, the
net {y}V£D converges to x.

LEMMA 2.11. Let T be an abelian semigroup on a generalized tree with idempotent
endpoints. If{x^ex converges to x with xtx = Xifor each iel, then [0,xj\ converges
in the lim sup-lim inf sense to [0,x]. Moreover, if xieX', xeX' with xtx' = x\,
then \x\, x] converges to [xr, x].

PROOF. By Phillips (1963), [0, x] xt = [0, x{]. It is easy to see that [0, x] xi converges
to [0 ,x ]x= [0,x]. Hence [0, x j converges to [0,x]. A similar argument shows
that [x't, x j will converge to [xr, x].

3. A generalization of semigroups over trees
In this section we prove the first major result of the paper, a generalization of

Mislove's construction of semigroups over trees. In doing this we resort to the
convenient language of category theory with Mitchell (1965) as our basic reference.

NOTATION. A semilattice X will be considered a category throughout this paper
by letting the elements of X be the objects and defining Hom (y, x) to be singleton
if yx = x and the empty set otherwise. The unique morphism from y to x will be
denoted by y<=->x. Throughout the remainder of the paper 'tf will denote the
category of cylindrical semigroups and continuous homomorphisms and J( will
denote the category of surmorphisms whose domains and ranges are objects of #
and whose morphisms are ordered pairs of homomorphisms such that

if and only if the following diagram has meaning and commutes:

h

where Df is the domain of /and Rf the range of/.

h!2
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[5] Semigroups over generalized trees 181

DEFINITION 3.1. A Lawson semilattice is a semilattice whose topology has a basis
of subsemilattices.

We now come to the generalization of the concept of generalized collection
(see Mislove, 1974; 1969, p. 80). In fact with the exception of two significant
additions, this is the reformulation of that concept in terms of the language of
category theory.

DEFINITION 3.2. The ordered pair (T, F) is a generalized pair if T is an abelian
generalized tree with idempotent endpoints, X = E(T) is a Lawson semilattice,
and F is a functor from X into the product category 'tfy.^K which satisfies the
following:

(a) II « ^ is inverse limit preserving from X into <&.
(b) Letting Sx = n<?*X*), »* = I l ^ (* )> mxy = UvF(y^^x), then Sx, mxy,

and nx satisfy the following:
(i) Sx is the domain of nx for each xeXand nx(s) = nx(i) if and only if

s and t are ,3^-related in Sx.
(ii) If x$ X' then Sx = H(\x) = Mx is a group and nx(Sx) = {x}.

(iii) If xeA" then nx{Sx) = [x',x].
(iv) If x¥=y then Sx n Sy = n .
(v) If xeX' then m^^My. is an injection, where Mx is the minimal

ideal of Sx.
(vi) l{xe[0,y),mxv(.Sy)^H(lx).
(vii) If x j e l ' , xj' = x and JC' = y , then mxy\n~x\y',t] is an injection

into n-^x', t], where t = sup ([*', x] n [/, j^]).
(viii) If x,yeX with jcy = x, then seSy implies nx(mxy(s)) = xny(s).

NOTATION. If (T,F) is a generalized pair, let 5 ' = \J{SX- xeX} and p: S'->X
be defined by p(s) = x if and only if j s S^.

The following proposition indicates how a compact semigroup may be
constructed utilizing a generalized pair. It follows immediately from the definition
of a generalized pair and Theorem 1.3 of Bowman (1971).

PROPOSITION 3.3. Let (T, F) be a generalized pair and S' = \}{SX; xe X).
(A) For s,teS', define st = mvp(s)(s)mvpW(t) where v=p(s)p(t). With this

multiplication S' is an algebraic semigroup.
(B) For U open in X, V open in Su where u is zero of the compact semilattice

generated by U, define W(U,V)= p~\U)n{seS': mupis){s)eV}. The
collection of W(U, V) forms a basis of a topology on S' relative to which
S' is a compact semigroup.

The proof of the following proposition is straightforward and is omitted.
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PROPOSITION 3.4. Let everything be as in Proposition 3.3. For each xeX, the
topology induced on Sx as a subset of S' is the same as its original topology.

PROPOSITION 3.5. Let everything be as in Proposition 3.3. Then p: S'-+X and
n: S'->T defined by n(s) = np(s)(s) are continuous surmorphisms of S' onto Xand T,
respectively.

PROOF. The proof that p is a continuous surmorphism is straightforward. The
proof by Mislove (1974; 1969, p. 94), that n is an algebraic surmorphism is still
valid in this setting and so we concern ourselves with showing the continuity of n.
We do this by a net argument.

Let {Si}ieI converge to s in S'. Since p is continuous, {p(s^)}ieI converges to
p(s) = x. Let xt = />(jf) and yt = p(st)p(s). By passing to subnets if necessary we
have one of the following: yt = xfor each iel or yrfx for each iel. Let B = {U:
U is an open semilattice containing x} be directed by U^ V if and only if F s U.
In the former case define the net {xu}UeB by xv = x for each UeB, and in the
latter case let xv be the zero of U*, where * denotes closure, for each UeB.
Note that in either case the net {xv}UfiB has the property xux = xu and
xuxr = xu if U^ V. Since {xi}ieI converges to x, we have for UeB, the set
{iel: xuxi = xv} is residual in /. Furthermore, since T is compact, the net
inxjisi)}iei must cluster at some point teT. Since {x^ieI converges and
t e lim sup [0, xt], we have xt = /.

Fix UeB and jel such that xux = xu for i^j. Let J = {iel: i^j}. Then
{mxnxii

si>}iBJ^Sxn and converges to mXvX(s) in SXu as a subset of S'. Since the
topology on SXu as a subset of S' is the same as its original topology, this net must
also converge to mXvX(s) in SXu. Therefore the net {nXn{mXvX({s^)}UJ converges
to nXn(mXn(s)) in T. Note that for each i^j, nXD(mXaX((sJ) = X ^ H ^ . Thus the
net {xvnX((sx)}UJ must converge to nXn(mXnX(x)) = xvnx(s). Since {nXl(stJ}ieJ

clusters at /, we have that xvnx(s) = xvt. Hence xvt = xvnx(s) for each UeB
and {xu}UeB converging to x imply t = xt = xnx(s) = nx{s). Thus the net
{nXi(st)}ieI converges to nx(s) and n is continuous.

A proposition similar to the following was stated and proved by Mislove
(1969), p. 97 and that proof is still valid in this setting.

PROPOSITION 3.6. Let everything be as in Propositions 3.3 and 3.5. Let R be the
relation on S' whose cosets are R[s] = {teS': n(s) = n(t) and mxpis)(s) = mxpU)(t)}
where x = p(s)p(t). Then R is a closed congruence on S".

DEFINITION 3.7. Let (T,F) be a generalized pair and S' = \J{SX: xeX} be the
semigroup constructed in Proposition 3.3, R be the congruence on S' defined in
Proposition 3.6 and, finally, let S(T,F) = S'/R. Then S(T, F) is called the semi-
group generated by the generalized pair (T, F).
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[7] Semigroups over generalized trees 183

Two of the main motivations of this work were, first, to generalize the construc-
tion of semigroups over trees, and second a desire to obtain a generalization of the
following theorem.

THEOREM 3.8 (Mislove, 1974). Let S be a compact semigroup. Then #P is a
congruence on S and S/34? is an abelian tree with idempotent endpoints if and only
if S = Sf(T, X, Sx, mxy, nx) for some generalized collection (T, X, Sx, mxy, nx).

The last section of this paper is devoted to the latter of these. As to the former,
we now show that the construction given in this section does indeed generalize that
of semigroups over trees. We first state a result that was announced by J. D. Lawson
at the Second Florida Symposium on Automata and Semigroups at the University
of Florida in April 1971.

THEOREM 3.9. Let S be a semigroup on a tree. If E(S) is a semilattice, then it is a
Lawson semilattice.

THEOREM 3.10. Let (T,X,Sx,mxy,nx) be a generalized collection. Then (T,F) is
a generalized pair where F(x) = (Sx, nx) and F(y <=-j>- x) = (mxy, hxy) where hxy is
such that hxy ny = nx mxy. Moreover, S(T, F) is identical, algebraically and topo-
logically, to Sf(T,X,Sx,mxy,nx).

PROOF. Since T is an abelian tree with idempotent endpoints, it is also a
generalized tree with idempotent endpoints, and by Theorem 3.9 X = E(T) is a
Lawson semilattice. Furthermore, from the definition of a generalized collection
(see Mislove, 1974) it is clear that F: X->'£-xJ? defined as above is such that
(T, F) is a generalized pair.

Let S' denote the semigroup constructed in Proposition 3.3 and SM denote the
corresponding semigroup constructed from the generalized collection (see Mislove,
1974).

Define i: S'^SM by i(s) = s. Let i(s)e W(U,z, V) a basic open set in SM. Here
U is a connected open set in T containing zeX and V is open in Sz. We consider
two cases and the forms that W(U,z, V) must have in each case.

Case 1, z is isolated in zX. Then by definition

W{U,z, V) = {teSM: p(t)e U, zp(t) = z and mspU)(t) e V}.

Clearly there is an open set O in X contained in U with zeO and z = inf O, since
X is a Lawson semilattice. Hence W{0, V) is a basic open set in S' containing s
and it is trivial to show that i(W(0, F))£ W(U,z, V).

Case 2, z is not isolated in zX. In this case

W(U, z, V) = {teSM:ze [O,p(t)) n U, mzpU)(t) e V}.
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Since Q = {yeX: ze[O,y)} is open in X (see Ward, 1954), there is an open semi-
lattice Ut of X containing p(s) with U^QnU. Let Vx = m~£(V) which is open in
Su, where u = inf Uv Hence W{UX, Fx) is open in S" containing p{s), and if
teWiU^Vj), then p(t) is in U^QnU and mw ( ( , ( / )6m;W. Whence m^wW is
in F, that is, teW(U,z, V) and / ( W ^ , VJ) is contained in JF(£/,z, V).

From the above, i is a continuous one-one map of the compact space S' onto
the Hausdorff space SM, that is, i is a homeomorphism and S' = SM. Since the
same congruence R is employed in both instances, we have that S(T, F) = S'/R and
S'/R = SM/R = ^ ( r , Z, 5a, mxv, nx).

4. Characterization of <Jf£f-semigroups

The main result of the paper appears in this section. It is the characterization of
those compact semigroups S on which £F is a concruence, S/Jf is an abelian
generalized tree with idempotent endpoints, and E(S/J^) is a Lawson semilattice.
In particular we show that any such semigroup S is the semigroup S(S/J^,F)
generated by the generalized pair (S/J^,F), where Yl^F(x) is a well-chosen
cylindrical subsemigroup of S for each x in E(S/JF), and \l^F{y^-x) is translation
by \x. Conversely, if S = S(T, F), then «3f is a congruence on S and

DEFINITION 4.1. A compact semigroup S is a semigroup over a generalized tree,
hereafter called an JZ3?-semigroup, if J f is a congruence on S and S]2F is an
abelian generalized tree with idempotent endpoints and E{S\3F) is a Lawson
semilattice. The category of ̂ JS?-semigroups and continuous homomorphisms will
be denoted

The proof of the following proposition is a straightforward modification of the
analogous result by Mislove (1969), pp. 128-130 and as such its proof is omitted.

PROPOSITION 4.2. If (T, F) is a generalized pair, then S(T, F) is an object of the
category *J(£f.

DEFINITION 4.3. Let ^ be the collection of all generalized pairs (T,F). Let (T,F)
and (7", G) be elements of ^§. Then the pair (e, w) is a morphism from (T, F) to
(T',G) if e: T->T' is a homomorphism and w is a natural transformation from
n ^ ^ t o Yl^Ge which satisfies for each x in X, e(nx(s)) = nelx)(wx(s)) for all 5 in Sx,
we(x) = Uj^Ge(x)). Composition of morphisms is defined as

(e', w') o (e, w) = (e' o e, w'e o w)

if (e,w): (T^F^^iT^G) and (e',wr): (T2,G)->(T3,K). Within this framework ^
is a category.
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PROPOSITION 4.4. Let (T,F) and (T',G) be objects of & and (e, w) :(T,F)-+ (T\ G).
Then the map f: S(T,F)-*S(T',G) defined by f([s]) = [wp(s)(s)] is a continuous
homomorphism of S(T, F) into S(T', G) where [ ] denotes the image of the element
under the corresponding congruence R, as defined in Proposition 3.6.

PROOF. Let Sx and 52 be the compact semigroups constructed from (T, F) and
(T',G), respectively, as in Proposition 3.3. Define the map/ ' : S^S^ as follows:

f'(s) = wx(s) if seSx.

By use of the same argument that Bowman (1971) uses in the proof of his Theorem
1.4,/' can be shown to be a continuous homomorphism. To complete the proof
of the present proposition, we show that if (s,t)eR1 on Sx, then (/'(•*)>/'(')) e i?2

on S2, that is, / as the map induced from / ' is a continuous homomorphism. Let
(s,t)sR1; thus np{s)(s) = npW(t) and mxp(s)(s) = mxpU)(t), where x =p(s)p(t). We
show that nelpis))(wp{s)(s)) = neipU))(wpU)(t)). By definition of (e, w),

»e(p<s»Oj>(s>0)) = e(np{s){s)) = e(np(l)(t))
and

e(«3,(o(0) = ne(plt))(wp(t)(t)).

Further, since w is a natural transformation from Yl^F to H^Ge, we have
me(x)e{p(s))(wpUs)) = mdx)eipU))(wpU)(t)). Hence (wp(s)(s),wpU)(t))eR2 and / ' in-
duces/.

The following proposition follows immediately from Propositions 4.4 and 4.2
and the definition of composition in the category 'S.

PROPOSITION 4.5. If(T,F)e^, S(T,F) is the semigroup generated by (T,F) and
for (e,w): (T,F)^(Tt,G)in G,fiew) is the homomorphism from S(T,F) to S(T2,G)
given in Proposition 4.4, then the map Ffrom % into Jt&, given by F(T, F) = S(T, F)
and F(e, w) =fUiW) is a functor.

NOTATION. In what follows S will denote the universal compact solenoidal semi-
group as defined and described by Hofmann and Mostert (1966), p. 74. We are
now ready to consider the main theorem of this section.

THEOREM 4.6. A semigroup S belongs to the category Jt3? if and only ifS~ £F{T, F)
for some generalized pair (T, F).

PROOF. The sufficiency is just Propositions 4.2 and 4.4 and so we now show the
necessity, which is, in the language of category theory, to show that IF is a repre-
sentative functor.
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Let T=S/Jf and X = E{S\3tf). Then T has a zero by Lemma 2.6. Let
X' = {x£ X\{0}: x is isolated in [0, x] n X}, and if x e X', let x' = sup ([0,x) n X).

Let xeX' and consider n~1[x',x], where «: S->S/H is the natural map. By
using Propositions 2.10 and 2.11 one can modify the techniques of Mislove (1974)
to show that there is a homomorphism J S ; S X Hx->n~1[x', x] with

n(<p(ZxHx)) = [x',x] and ?((0,0), h) = h

for each h in Hx, where Hx = n~\x). Choose one such homomorphism, and let

If x$X', let Sx = n~\x) = Hx. If x,ye X with xy = x, let m^: S,,-*.^ be
defined by mxy(s) = /x,y.

If xeX, let wx = n\Sx and if x j e l with xy = x.let /ixl,: ny(Sy)^-nx(Sx) be
the map induced by mxy,nx and «„ so that hxyony = nxomxy.

Now define F: X^xJt by ,F(x) = (SX,HX) and F(y <=-> x) = (mxy,hxy) for
each x in X and morphism j c-* x in X.

By a straightforward modification of the corresponding proofs by Mislove (1974)
it can be shown that F is a functor satisfying all but condition (b) (iv) of the
definition of a generalized pair. To accomplish this we make the following changes:
for xeX, let F'(x) = ({x} x Sxn'x) and F'(y <=^x) = (m'xy,h'xy), where if xy = x,
m'xy(y,s) = (x,mxy(s)) and n'x(x, s) = nx{s). Clearly, (T,F') is now a generalized
pair.

We now show that &(T,F')~S. Let 5 ' = \JiTx- xeX}, where Tx = {x}xSx

for each xe X, be the semigroup constructed in Proposition 3.3 and define/: S'->S
by f(x,s) = s for each (x,s)eSr. If we show that/ is a continuous surmorphism
such that f(x, s) = f(y, t) if and only if ((x, s), (y, t))eR, the congruence defined in
Proposition 3.6, then ^{T,F') will be isomorphic to S under the induced map.

The same proof utilized by Mislove (1974) will show that / is an algebraic
surmorphism and so we restrict ourselves to showing that / is continuous.

Let {(xi,si)}ieI converge to (x,s) in S'. Then {ij iej is a net in S' and thus must
cluster at some point teS'. By choosing a subnet we may assume convergence.
If yi = XX{ for each iel, then by possibly picking subnets, we have one of the
following: either yt#x for each ieloryi = x for each ie/. Let B, the neighborhood
system of open semilattices about x in X, be directed by U^ V if and only if F s U.
In the former case above, let {xv}UeB be a net in X with xv = infU for each
UeB. Since Xis a Lawson semilattice this net converges to x with xvx = xv for
each UeB and xvxv = xv if £/< V. If yt = x for each is I, let {xu}UeB be the
constant net {x}. Note that in either case for each UeB, the set {iel: yiXv = xv}
is a residual subset of/. Fix UeB. Let ye/such that^x,/ = xv if i>yin/and let
J = {iel: i>j}. Then { W ^ J ^ ^ S S ^ and converges to mXpX(.s) in SXv as a
subset of S'. Moreover, {lXnst}iej converges to lXvt in S as multiplication is
continuous in S. But mX(jXi(s{) = \Xvsx for each ieJ, and as SXa is a closed subset of
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S, \Xv t e SXu. By Lemma 2.4 the topology on SXu as a subset of S" is the same as its
topology as a subset of S, and hence mXvx(s) =\Xut. Since UeB was arbitrary and
!**J = mxnx(s) for each t/efi,

J7e-B

Thus {/((*<, s*))}<s/ converges to/(x,.y) and / i s continuous.
All that remains to be shown is that the kernel congruence of/ is precisely the

congruence R defined in Proposition 3.6. Iff(x,s) —f(y, f), then it is easy to show
that ((x, s), (y, t)) e R. Thus we suppose that ((x, s), (y, t)) is in R and show that
f{x, s) =f(y, t). Since ((x,s), (y, t))eR, n(s) = n'x{x,s) = n'y(y, t) = «(/). But 1 ^ = s,
lyt = t and thus lys = s and \xt = t since s and t are if-related. If z = xy, then
5 = \x\vs = 1..5 = msx(j) = ww(0 = l0f = \x\yt = / and thus/(x,s) =f(y,t).

Hence 2F(T,F')~S by the isomorphism induced by/and we have completed
the proof of the theorem.

The results of this paper stemmed from a desire to obtain at least a partial
solution to Problem P5 of Hofmann and Mostert (1966) and this we have done.
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