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a-REFLEXIVE SEMIGROUPS AND RINGS 
BY 

M. CHACRONO AND G. THIERRIN(2) 

We shall call a semigroup S a o-reflexive semigroup if any subsemigroup H in S 
is reflexive (i.e. for all a, b e S, ab e H implies baeH ([2], [5]). It can be verified 
that any group G is a a-reflexive semigroup if and only if any subgroup of G is 
normal. In this paper, we characterize subdirectly irreducible o-reflexive semigroups. 
We derive the following commutativity result: any generalized commutative ring 
R ([1]) in which the integers n=n(x, y) in the equation (xy)n = (yx)m can be taken 
equal to 1 for all x, ye R must be a commutative ring. 

CONVENTIONS. If S (R) is a semigroup (ring), then the multiplicative subsemi­
group that is generated by a given element x is written [x], A polynomial/(/) eZ[t] 
(the ring of integral polynomials) having the form 

/ = /(*) = *k + rk+1t*
+1+...+rk+mtk+m (k> 1) 

is termed lower monic polynomial of co-degree k. Henceforth, all polynomials 
f(t) eZ[t] are assumed to be without constant term. 

1. In this part S is a multiplicative semigroup. Our aim is to characterize sub-
directly irreducible a-reflexive semigroups S. The following proposition is evident. 

PROPOSITION 1. Any semigroup S is o-reflexive if and only if it satisfies the 
following condition: 

Vfl, b e S, 3m = m(a, b) > 1 ; ab = (ba)m. 

From Proposition 1 follows 

PROPOSITION 2. Let a, b be any two noncommuting elements of a o-reflexive semi­
group S. Then for some m> 1, (ab)m=ab. 

Proof. There exists r> 1 such that ba = (ab)r. As ab^ba, r>\. As ba e [(ab)r], 
we have ab e [(ab)r]. 

Therefore for some s>l, (ab)rs=ab with rs> 1. 
Proposition 2 is elementary and is an important tool for the present considera­

tions. We can now prove our first theorem. 
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THEOREM 1. Any group G is a-reflexive if and only if every subgroup of G is normal. 

Proof. The "only if" is evident. To prove the "if" suppose that G is not com­
mutative. Then G is a Hamiltonian group and all one has to show is that if a, b 
are any two elements of G which do not commute, then [ab] coincides with the 
cyclic subgroup that is generated by ab, that is to say, that ab is of finite order. 
Since ab does not commute with a'1, ab is not central. Now it is well known (see 
[3]) that any noncentral element of a Hamiltonian group is of finite order. Hence 
ab is of finite order and the theorem is established. 

THEOREM 2. (1) Any o-reflexive semigroup S is a central idempotent semigroup. 

(2) Any a-reflexive semigroup S without central idempotents is commutative. 

Proof (1). Let e be an idempotent in S. Let xe S. There are r, s> 1 such that 
ex=(xe)r, xe=(ex)s (Proposition 1). Then exe=(xe)re = (xe)r=ex and exe=e(ex)s 

= (ex)s=xe. 

(2) By (1), S does not have idempotents. By Proposition 2, no elements a, be S 
do not commute pairwise. 

Let us recall now some properties of subdirectly irreducible semigroups [6]. 
A semigroup S is said to be subdirectly irreducible if the intersection of all the 

congruences of S different from the equality is a congruence different from the 
equality. Every semigroup is a subdirect product of subdirectly irreducible semi­
groups. 

Let S be a semigroup and let / be an ideal of S. Define a pbto mean either a=b 
or else both a and b belong to /. We call p the Rees congruence modulo /. The 
equivalence classes of S mod p are / itself and every one-element set not in /. If S 
is subdirectly irreducible, it is immediate that the intersection of all ideals of S 
containing more than one element is an ideal with more than one element. 

If S is a subdirectly irreducible semigroup, then every central idempotent e of S 
is either the zero of S or the identity of S. Indeed let us suppose that e is not the 
zero element of S. Then / = eS is an ideal of S containing more than one element 
and the Rees congruence p mod / is not the equality. Define a a b to mean that 
ea = eb. It is immediate that CT is a congruence and that the intersection of p and a 
is the equality. Since S is subdirectly irreducible, then a must be the equality. From 
e x o x follows that e is the identity of S. 

The following proposition is evident. 

PROPOSITION 3. Any a-reflexive semigroup is a subdirect product of subdirectly 
irreducible a-reflexive semigroups. 

We are now in a position to show our main result. 

THEOREM 3. Let S be a noncommutative a-reflexive semigroup which is subdirectly 
irreducible. Then S satisfies the following conditions : 
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(1) S has an identity and G={x | x e S, y e S, xy~ 1} is a o-reflexive group which 
is noncommutative (Hamiltonian group). 

(2) If D = S—G is nonempty, then S is a semigroup with zero 0 e D, D is the 
maximum ideal of S and D is contained in the center of S. 

Proof. In view of Theorem 2, S must contain at least one central idempotent. 
Since S is subdirectly irreducible, an idempotent element of S is the zero of S or 
the identity element 1. 

Let us suppose that S has no identity element 1. Then S must have a zero element 
0. For some a, be S, we have ab^ba. Hence, by Proposition 2, (ab)m=ab for some 
m>\ and (ah)™'1 is an idempotent. Therefore (tf6)m_1 = 0, ab = 0, and ba=ab, 
which is a contradiction and R has an identity follows. If x e G and xy= 1, then, 
since 1 is a subsemigroup of S, yx= 1. This shows that G is the group of invertible 
elements of S and that G is o-reflexive. 

Assuming (2), it is evident that G is noncommutative. 
It remains to show (2). It is immediate that D is the maximum ideal of S. Let 

xe S,ae D. Suppose ax =£ xa. Then for some m > 1 we have (ax)m=ax (Proposition 
2). But ax^O and (ax)™'1 is an idempotent #0. Hence (ax)m~1 = l and a $ D, a 
contradiction. 

To see that S is a semigroup with zero, we proceed as follows. Let H be the inter­
section of all ideals of S containing more than one element. If D is reduced to one 
element z, then z is the zero of S. In the opposite case H^ D and H is in the center 
of S. As Sis subdirectly irreducible, //contains more than one element. If for each 
xe H we have Sx=xS=H, then H is a group, hence contains a nonzero idem-
potent so H must be S, a contradiction. Therefore there exists at least one element 
zeH such that Sz={z'}. As S has an identity element z—z' follows and 0=z is 
the zero of S. 

2. In this part, R is a ring. In view of Proposition 2, one can give the following 
generalization of o-reflexive semigroups. A ring R is %-reflexive if for any two 
elements a, beR either ab = ba or ab=f(ba) for some lower monic integral poly­
nomial f(t) depending on a and b of co-degree m>2. 

Clearly if the multiplicative semigroup of R is o-reflexive, then R is S-reflexive. 
Our aim is to show that any S-reflexive ring is commutative. The analog of Proposi­
tion 2 reads as follows: 

PROPOSITION 4. Let a, b be any two noncommuting elements of a ^-reflexive ring. 
Then for some lower monic polynomial f of co-degree 1 we havef(ab) = 0. 

Proof. There are g(t) and h(t) of degrees >2 such that ab=g(ba), ba=h(ab). 
Hence ab=gh(ab) and/(/) = *—gh(t) is the required polynomial. 

PROPOSITION 5. Any ^-reflexive ring R is a central idempotent ring. 
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Proof. Let e be an idempotent in R. Let x e R. We can find two polynomials 
/ , geZ(t) of degree m> 1 such that ex=f(xe), xe=g{ex). Then 

exe = f(xe)e = f(xe) — ex, exe = eg(ex) = g{ex) = xe. 

THEOREM 4. Any ^-reflexive ring R is commutative. 

Proof. Our proof will go by reduction to the case where R is subdirectly irre­
ducible. As a result of Herstein [4, Theorem 17], all we will have to show is that for 
any a e R there is some lower monic polynomial/of co-degree 1 such that/(a) e C, 
the center of R. Assume by contradiction that some a fails to satisfy the latter 
condition. Then a $ C and there must be some b such that ab^ba. By Proposition 
4, there is some lower monic polynomial s(t) of co-degree 1 such that s(ab) = 0. 
Since the co-degree of s(t) is 1, we have for some r, ab = (ab)2r and (ab)r = r(ab). 
Then e = (ab)r is an idempotent. If e = 0 then ab = 0 and ba = Q = ab, contrary to the 
hypothesis. Therefore e is nonzero idempotent. Since R is subdirectly irreducible 
and since, by Proposition 5, e is central then e must be the identity of R. Therefore 
(ab)r=r(ab)=l. 

Repeating for ba, we see that b is invertible. Consider b~1a and b. If (b~1a)b 
= b(b~1a) then b~1ab = a and ab = ba, contrary to the hypothesis. Therefore b~1a 
and b do not commute. By Proposition 4 again, there is some lower monic poly­
nomial /^) of co-degree 1 such thatf(b~1ab) = 0. Ksf(b~1ab) = b~1f(a)b we have 
b~1f(a)b=0. Hence f(a) = 0 and f(a) e C, a contradiction. This establishes the 
theorem. 

COROLLARY 1. Any o-reflexive semigroup which is the multiplicative semigroup 
of a ring is commutative. 

COROLLARY 2. Any generalized commutative ring R in which the integers n=n(x, y) 
in the equation (xy)n = (yx)m can be taken equal to 1 for all x,yeRisa commutative 
ring. 
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