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1. The problem considered in this paper is that of finding conditions on a
range space such that the closed-graph theorem holds for linear mappings from
a class of linear topological spaces. The concept of a D(x; #)-space, which is
a result of this investigation, is meaningful for commutative topological groups
but we limit our consideration in this paper to linear topological spaces. On
restricting ourselves to locally convex linear topological spaces, we see that the
notion of a Z)(T; #)-space is an extension of the powerful idea of a 5-complete
space.

The study in section 2 is of a preliminary nature. D(r; ^-spaces and Dr(x', ^)-
spaces are defined, and some general results which hold for them are presented.
Section 3 contains closed-graph theorems. Theorem 3.1, for example, extends
in different directions a result of V. Ptak ((7), 4.9). The results in section 3 are
used in section 4 to extend some results of A. P. Robertson and W. Robertson
((8), Theorems 2 and 3, corollary of Theorem 3). Throughout, we use the
terminology and notation of (3) and (4). All our topological spaces shall be
assumed separated (Hausdorff).

The method of presentation of the results in this paper is similar to that
used in (1). The idea of writing this paper in this way was suggested to the
author by Professor J. D. Weston to whom he hereby expresses his gratitude.
The author wishes to thank Professor A. P. Robertson for his help and encour-
agement throughout the period of time when the work reported in this paper
was being done. He is grateful to the Government of the Republic of Nigeria
for financial support.

2. As in (1), we shall express our results in " category form ". Throughout,
<& shall denote a certain category; the objects in %> shall be linear topological
spaces (l.t.s.), and the maps shall be linear maps of such spaces. If u, v are
different topologies on a linear space E such that {E, u), {E, v) are objects in
#, the two spaces (E, u), {E, v) are to be regarded as different objects in <€.
However as <€ is a category, for objects E, F,Gm^ and maps in C6,11 of E into
F and t2 of F into G, the composition map t2 o tl of E into G is in #.

The concepts of 5-completeness and ^-completeness with respect to # are
meaningful (see (1)). Precisely, an object E in <€ is said to be B-complete (in <&)
if every continuous nearly open map in # of E onto an l.t.s. is open. The object
E is said to be Br-complete (in #) if every continuous nearly open (1 — 1) map
in # of E onto an l.t.s. is open.

E.M.S.—G
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Let E, F be objects in <i? and t a map in <# of F into E. Let <%, •f be bases of
balanced neighbourhoods of the origin for the topologies of F, E respectively.
Let w be the linear topology on E with (t(U)+V: Ue %, Ve y) as a base of
neighbourhoods of the origin. Let us consider the following restriction on "<?.

(Cj) With the notation above, (£, w) is an object in # whenever it is separ-
ated, and the identity map from E onto (E, w) is in (€.

If <6 is a category of linear maps of linear topological spaces satisfying (Cx),
then it is not difficult to show that for a space E which is incomplete in <<?, every
closed nearly continuous map in %> from any object in <g into E is continuous.

If # is such that

(C2) for two objects Eu E2 in # and a (1 — 1) map t in # of E1 onto £2.
the map t'1 of E2 onto i^ is also in #, then the following are equivalent:

(i) An object E in <g is incomplete.
(ii) Every closed nearly open (1 -1) map in % of E onto an l.t.s. is open,
(iii) Every closed nearly continuous map in %> from an object in <8 into E

is continuous.

If in addition,

(C3) (a) for every object is in # and each closed linear subspace Eo of E the
quotient space E/Eo is an object in <tf and the quotient map is in #, (6) for every
map t in 'g from an object £ in #, the induced map of t is in # whenever £/<" ̂ O)
is separated, then the following are equivalent:

(i) An object E in <6 is incomplete.
(ii) Every closed nearly open map in <<? of E onto an l.t.s. is open,

(iii) Every closed nearly continuous map in # from any object in # into
each quotient of £ by a closed linear subspace is continuous.

We shall as from now assume that <€ satisfies conditions (C2) and (C3).
Some examples are as follows.

(a) The category of all linear maps of all linear topological (semiconvex,
locally convex) spaces. This shall be denoted by <&x (<62, #3).

(b) For a fixed real A ^ 2, the category of all linear maps of all linear
topological spaces having bases of neighbourhoods of the origin consisting of
balanced A-convex sets.

(c) The category of all linear maps of all ultrabarrelled (hyperbarrelled,
barrelled) spaces.

(d) The category of all linear maps of all ultrabornological (hyperborno-
logical, bornological) spaces.

(e) The category of all linear maps of all quasi-ultrabarrelled (quasi-
hyperbarrelled, quasi-barrelled) spaces.

[For the definitions of ultrabarrelled, ultrabornological, quasi-ultrabarrelled
{hyperbarrelled, hyperbornological, quasi-hyperbarrelled} spaces see for
example, (3) {(4)}].
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We observe that examples (a), (6) and (c) also satisfy condition (C t ) . That
of (a) and (b) is pretty obvious. That example (c) satisfies condition (Cx) can
be seen from the following consideration. Let <& be as in example (c). If with
the notation of condition (C^), f in <g is a map of F into E, then t is nearly
continuous. This implies that the continuous identity map from E onto (E, w)
is nearly open. And since E is ultrabarrelled (hyperbarrelled, barrelled), so is
(E, w).

If # is a category of linear maps of linear topological spaces, we shall denote
by T a class of spaces consisting of objects in <6 such that if G is an object in <g
and H is in T, then (i) every map in # from G onto H is nearly open, and (ii)
every map in <g from H into G is nearly continuous. We say that an object
E in # is a D(T ; ^)-space if for every F in T, any closed map in %> from £ onto F
is open. We call E a X>r(

Ti ^)-space if the same condition is satisfied by (1 — 1)
maps in # . The class of all D(x; #)-spaces (Dr(x; #)-spaces) shall be denoted
by D(x; # ) (Dr(x; #))• It is assumed throughout that x satisfies conditions
(i) and (ii) above.

Clearly, for any <g and x, D(x; <£) £ Dr(x\ <£) and if TX E X2 then 2>(z2; # )
S Z>(*i; <i?) as well as Dr(r2l ^) E A-fri! ^ ) - Also, if £ is a Z>(T; ^)-space,
then for any closed linear subspace Eo of E, E/Eo is a D(x; <<f)-space. For let
F be in T and t in # be a closed map of ^/JEO o n t o &• If ^ is t n e canonical map
of £ onto E/EQ, then the map t o k of E onto JF is in <i? and is closed. Therefore
t o k is open. This implies that f is open, and thus E/Eo is a D{x; <^)-space.
It is also not difficult to show that if E is a Dr(x; <^)-space then it is a Z)(T; # ) -
space if and only if E/Eo is a 2?r(

T; ^)-space for every closed linear subspace
£ 0 of E.

Let T be a class of barrelled spaces. Then according to T. Husain (2), a
locally convex space E is a 5(t)-space CBr(t)-space) if, for every F in T, any
continuous (continuous (1 — 1)) nearly open linear map of E onto F is open.
Clearly, every D(x; #3)-space (# 3 is the category of all linear maps of all locally
convex spaces) is a 5(t)-space, and every Dr(x; #3)-space is a Sr(r)-space.
However, I do not know of any 5fT)-space (5r(t)-space) which is not a D(x; (4?3)-
space (Dr(x; <^>

3)-space).
The letters a, au, ah, /}„, fi, 0U piu 5 , g ^ g u , A, r\, tiu rjlu fa shall respec-

tively stand for the classes of all barrelled, ultrabarrelled, hyperbarrelled,
Banach, second-category locally convex, second-category linear topological,
second-category semiconvex, Frechet, complete metric linear, semiconvex
complete metric linear, complete locally bounded, sequentially complete
bornological, sequentially complete almost convex ultrabornological, sequenti-
ally complete almost convex hyperbornological, and finite-dimensional linear
topological spaces. (For the definition of an almost convex l.t.s., see (3)).

Proposition 2.1. (a) Let <€ be a category of linear maps of linear topo-
logical spaces, and let x be a class of objects in^?. If E, E± are objects in <&
such that there is a continuous {continuous (1 — 1)) map in <£ of E onto Eu

then Et is a D(x; <#)-space (Dr(x; <#)-space) if E is.
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(b) Let x be a class of barrelled spaces. If u,v are locally convex topologies
on a linear space E such that (is, u), (is, v) have the same dual, then (E, u) is a
D(T; <€zy space (Dr(x; ^3)-space) if and only if (E, v) is.

Proof, (a) Suppose that E is a D(j; <^)-space and that h is a continuous
map in # of E onto Ex. I f / in <£ is a closed map of is\ onto some Hin T then
the map/o h of E onto H is in <& and is closed. Therefore/o h is open. This
implies that/is open, and thus Et is a D(z; #)-space. Similarly, Ev is a i)r(T; #)
space if £ is, provided that there is a continuous (1-1) map in <& of E onto i^.

(Z>) Let m, w respectively denote the Mackey and weak topologies on E with
dual (E, «)'(= (E, v)'). By (a), it is sufficient to prove that {E, m) is a D(x; <g3)-
space (Z>r(

T; ^3)-space) if (E, w) is.
Suppose that (is, w) is a D(y; ^3)-space, and let h be a closed linear map

of (is, m) onto some H in T. The graph of h is also closed in (is, w) x H, since
the graph is a linear subspace of is x H, and the locally convex spaces {E, w) x H,
(E, m)xH have the same dual. Therefore h is an open map of (E, w) onto H.
Now, (is, w)/h~ 1(0), (is, w)//?"" 1(0) have the weak and Mackey topologies respec-
tively with the same dual. I f / i s the induced map of h then, s ince/"1 is a
continuous linear map from Hinto (is, M')//J~1(0) and //has a Mackey topology,
/ ~ x is a continuous linear map from H into (E, m)jh~l(0). Therefore h is an
open map of (E, m) onto H, and thus (is, m) is a D(j; #3)-space. Similarly,
(E, u) is a Dr(T; ^3)-space if and only if (is, v) is.

Let (is, w) be a metrizable l.t.s. with dual E' separating the points of E.
Let mx be the Mackey topology on £" with (is, MO0)A (the completion of the
linear space E considered under the locally convex topology derived from w)
as dual. By an application of ((8), p. 9), we see that (is", m^) is a 5-complete
locally convex space. If m2 is the Mackey topology on E' with E as dual, it
follows from Proposition 2.1 and the result stated after condition (C3) that
(E',m2) is a D(x; ^)-space, where % = ^ j (<^2, f3) and T = aH (afc, a). In
particular, this is so if E is a metrizable locally convex space and m2 is the
Mackey topology on E' with E as dual. We note that for #3, this result is at
least as strong as Theorem 3 of (2).

Let us consider the following restriction on our category C6.

(C4) If F is a linear space, (isr: y eW) are objects in #, and each uy is a
linear map of Ey into F, then there is a finest topology, w say, on F such that

(a) The space (F, w) if separated, is an object in <̂ , and each map uy of Ey

into (i^ w) is in (€.

(b) The topology w is the finest one on F satisfying (a) for which each uy is
continuous.

(c) If G is an object in <£, then a map/in <g" from (/*, w) into G is continuous
if and only if each/o u is continuous.
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(d) If Fo is a closed linear subspace of (F, w) and k is the canonical map of
Fonto F/Fo, then the quotient topology on (F, w)/F0 is the finest topology
on F/Fo for which (F, w)/F0 is an object in <£ and such that (i) each
k o uy is continuous and (ii) for an object /f in <g, a map/in # of (F, w)/F0

into 7/ is continuous if and only if each/o k o uy is continuous.

If (C4) is satisfied and if the union of the linear subspaces uy(Ey) spans F,
we say that (F, w) is the ^-inductive limit of (£,,; M?: ye ¥).

Clearly the ordinary inductive limit of locally convex spaces satisfies the
conditions for defining a "ifj-inductive limit. Also, the concept of a *-inductive
limit of linear topological spaces (an jc-inductive limit of semiconvex spaces)
defined in (3)((4)) satisfies the conditions for defining a ^-inductive limit
("gyiriductive limit).

If F is the ^-inductive limit of (Ey; uy: y e t ) and F is the union over y
of uy{Ey), then we say that (F, w) is the generalized strict ^-inductive limit of
(Ey; uy: y e T ) .

If # is a category of linear maps of linear topological spaces satisfying (C4)
and T is a class of objects in C6, we shall denote by x* the class of all objects in
<€ each of which is the "if-inductive limit of some {Ey; uy: ye <!>), where each
Ey is in T.

Proposition 2.2. Let <& satisfy (CJ . Suppose further that if E, F are objects
in <6 and t is a (I —1) map of E into F, then t(E) is an object in ft and the map
t'1 of t(E) onto E is in (€. If x is a class of objects in <€ such that every quotient
by a closed linear subspace of each member of x is also in x, then an object in
<€ is a D(x; ty-space if and only if it is a D(x*; ^)-space.

Proof. It is sufficient to prove that D(x; <£) £ D(x*; %). Let / be a
closed map in •£? from a D(x; #)-space E onto some Et in T*. There is no loss
of generality in assuming that/is a (1 — 1) map, since otherwise/could be put
in the form/ = f± o k, where ft is the induced map of/and is in <€ as a map of
Ej'/"^O) onto Et. Since by the hypothesis every quotient by a closed linear
subspace of each member of x is also in x, we may also assume that Ey is the
^"-inductive limit of some (Fy; iy: ye F), where each Fy is in x and each iy is a
(1 — 1) map of Fy into Et. Because of the second restriction on ^ in the state-
ment of this proposition, the map i~lofofE onto Fy is in <<? for each y. The
graph of i"1

 o / i s closed, since it is the inverse image of the graph of/by the
continuous map (x,y)->(x, iy(y)) of ExFy into ExEt. Therefore i"1 of is
open and thus for every neighbourhood V of the origin in E, i~l of(V)
(= ( / - 1 o /?)"

1(K)) is a neighbourhood of the origin in F r This implies that
/ ~i

 o iy is a continuous map of Fy into E for each y in r . Therefore / ~x is
continuous. Thus/is open and E is a D(x*\ #)-space.

Corollary.

(ii)
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(iii) D(A;

(iv) DO?;

(v) £G?n;

The proof of the following result is easy and is therefore omitted.

Proposition 2.3. Let %> be a category of linear maps of linear topological
spaces, and let T be a class of objects in <€. If every continuous (continuous
(1 — 1)) nearly open linear image in *$ of each member of x is also in T, then
every D(x; ^)-space (Dr(r; ^)-space which is in T is B-complete (Br-complete)
in<€.

In ((5), p. 195, problem D(a)\ G = Ev xE2, where Et is 5-complete in #3,
being a countable direct sum of reflexive Banach spaces, and E2 is a Frechet
space. Also G is barrelled, hyperbarrelled, and ultrabarrelled, but not B-
complete in ^3, q>2, or ^ It follows that a product of two D(z; "^-spaces
need not be a D(x; #)-space.

A separated quotient E of an L.F. space is in D(fi; ^ 3 ) and Difi^; ^t) (see,
for example Theorem 4.2), but if E is not complete (there are such examples),
then by Proposition 2.3, it is not in Dr{a\ < 3̂) or D(<xu;

 c€^). Every separated
locally convex space is in D(%d; <g3) and D{%s;

 <€^). But if E is an infinite-
dimensional Banach space, then the space E considered under its finest locally
convex topology is not in Dr(Jin; ^3) or D r (5 i ; ^ I ) - In Proposition 2.4, (i),
(ii), (v), and (vi) follow from these observations and the corollary of Proposition
2.2. Parts (iii) and (iv) of the same result are easily established.

Proposition 2.4.

(i) Dr(ocu; ^ ) c D r ( f t ; tfjEDXg,; tfj <= Dr(3fa; *fa).

(ii) D(ccu; «1)«

(iii)

(iv)

(v)

D(P; <#3

Dip,; %

DX«; «:

) <= Dip;
\) S DO?;

,) e= Dr(y5*

(vi) D(a;

3. We shall now suppose that % satisfies the following condition, one which
is satisfied by examples (a), (b), (c), (d), (e) of & in section 2.
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(C5). (a) For any linear space E, there is a finest topology, denoted by
co, such that (E, co) is an object in <€. (b) If for each of two topologies u, v on a
linear space E, the space is an object in (6, then the identity map from (E, u)
onto (E, v) is in (€.

Let <€ satisfy (C4) and (a) of (C5), and let T be a class of objects in #. We
say that T is a "g'co-inductive class if (E, co) is in x for every linear space E, and
for every (F.f: i = 1, 2, ..., n) in x any "^-inductive limit of (E,: i = 1, 2, ..., n)
is in T.

It is easy to see that

(a) ccu,P*, 8f?, g*, A*, p*, PX, are ^ c o inductive classes,

(b) och, p*, gJi, g*. A*, y?*, jS?!, are V2co inductive classes, and

(c) a, )?*, /?*, g* are 'S^co inductive classes.

Now, any inductive limit (in the usual sense) of a sequence of Banach spaces
is a quotient of their topological direct sum. Since an inductive limit of a
sequence of Banach spaces need not be sequentially complete ((6), p. 437), we
see that t](t\u nlx) is not a ^3co— {^^co—, (€2<x>—') class.

Theorem 3.1. Let <& satisfy (C4) and (C5), and let x be a ^(o-inductive class.
Then, an object (E, u) in ^ is a Dr(x', %>)-space if and only if for every F in x,
any closed map in % of F into {E, u) is continuous.

Proof. Suppose that (£, u) is a Dr(x; #)-space. Let / be a closed map in
# from some F in x into {E, u). Since F/f'1^) is also in T and the induced
map of/is in %, we may also suppose that/is a (1 — 1) map.

As/ is closed and linear,/is continuous from .Finto (E, vt), where vt is a
separated linear topology on E which is coarser than u. Since / i s (1 — 1), we
may identify F with the linear subspace f(F) = Et say of E. Let (JEup) be
this space with the topology of F. The space (Eu p) is in x and p is finer than
the Uj-induced topology on E1. Let E2 be an algebraic supplement of Et in E.
As E is algebraically isomorphic to EXKE2, we may identify Et x E2 with E.
With this identification, let (E, q) be the "^-inductive limit of (Eu p) and (E2, co)
by the injection maps. Clearly, q is finer than vlt {E,q) is in T, and the m a p /
is continuous from Finto (is, q). Now, the identity map, i say, from (E, u) onto
(E, fj) is closed, being continuous. Therefore, the graph of i is closed in
(£•, u) x {E, q). Moreover, by (b) of (C5), the map i is in <€ as a map of (E, u)
onto (if, q). Since (is, w) is a Dr(t; ^-space and (E, q) is in T, it follows that w
is coarser than q. Therefore/is continuous from Finto (E, u).

The converse is easy, cf. ((7), 4.9).
By using Theorem 3.1, one can prove the following result.

Theorem 3.2. Let <6 and x be as in Theorem 3.1. Then, an object E in <g
is a D(x; ^)-space if and only if, for every F in x, any closed map in ^ of F
into each quotient of E by a closed linear subspace is continuous.
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With ^ and x as in Theorem 3.1, it is not difficult to show that if £ is a
Dr(x; ^)-space, and Eo in ^ is a closed linear subspace of E, then Eo is also
a Z>r(T; <^)-space, provided that a map into Eo which is in <6 is also in <tf as a
map into E. One can in a similar situation deduce from Theorem 3.2 that a
closed linear subspace of a D(T ; <g>space is also a £> (T ;#)-space. In this
case, one uses the following result.

Lemma 3.3. Let Eo be a linear subspace of a separated l.t.s. E and suppose
that for some l.t.s. F, t is linear map of Eo into F, with induced map f. If
the graph of t is closed in ExF, then Elt~l(0) is separated. The graph of t is
closed in ExF if and only if the graph off is closed in E/t ~i (0) x F.

From Theorem 3.2 and Proposition 2.2, the following result is immediate.

Corollary to Theorem 3.2. Let %>, x be as in Theorem 3.1. Suppose that xx

is a subclass of x such that every quotient by a closed linear subspace of each
member of xt is also in x±. If every member of x is the ^-inductive limit of
some (Ey; uy: ye O), where each Ey is in xu then an object E in <& is a D{xx; %>)-
space if and only if every closed map in ^ from any member of TX into each
quotient of E by a closed linear subspace is continuous.

The hypothesis of the above corollary is satisfied if

(a) for Vlt x is either fi*, 3f*. 5J, g^ , P*, fit, fii ,or A*, and Tl is respectively

is P*. & Su, P,

chosen

(*)
Pll,OT

(c)

to be

for «
A;

for #

A,,
'2> T

5» 5l» CTl

is either,

is P*, 3*,

ft, 3*

or)?,

i> Pn .

. Ofu.

and T!

or

j 8 .

is

A;

, /??!, or A*, and

Pn, g, or 0.

Consider the case when # is ^ i (^2, ^3) a n d ^ is »?! (»/u, rf). Then every
member of x is the 'g'-inductive limit of some (Ey; uy: ye O), where each Ey is
in A (A, /?„). It is then easy to see that for an object F in <6, every closed linear
map from each member of x into F is continuous if and only if every closed
linear map from each member of A (A, /?„) into F is continuous. By using the
method of proof of Theorem 3.1, one can then show that in this case, an object
E in <̂  is a Dr(x; #)-space if and only if every closed linear map from any
member of x into E is continuous. This then implies that

(i) Dr{nx; V1) = Dr(A*; Vl) = D£ti\; <€&

(iii) DM; V3)

4. For any %>, we shall throughout this section assume that x is the class of
all objects in <& each of which is of the second category in itself. This does not
contradict the restriction imposed on x when the concept of a D(x; #)-space
was defined.
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An object E in # is said to be extracomplete if every quotient of £ by a
closed linear subspace is complete.

For #3 , any 5-complete space is extracomplete, since each quotient by a
closed linear subspace of a 5-complete locally convex space is 5-complete and
by (7), a fi-complete locally convex space is complete. However, an extra-
complete space space need not be 5-complete. For, any linear space is extra-
complete under its finest locally convex topology, but such a space need not be
fi-complete.

We call an object E in <£ a -£>I(T; ^)-space if there exists a continuous linear
map from some F onto E, where F is either an extracomplete D{x; 'g'J-space
or is the generalized strict *-inductive limit of a sequence of extracomplete
D(x; 'ifj-spaces.

If {E, u) is a 5-complete l.t.s. (i.e. if (E, u) is 5-complete in ^ J or an L.F.
space then, for any separated linear (semiconvex, locally convex) topology v
on E coarser than u, (E,v) is a D^x; ^^-(D^x; <£2)-, D^x; <#3)-) space.
Also if (£•, w) is the ""-direct sum of a sequence (Et) of linear topological spaces,
where for each i, E{ = I" or Hp for some p in the open interval (0, 1) then, for
any linear (semiconvex, locally convex) topology v on E coarser than u°°, {E, v)
is a D^x; VJ- (Dt(x; <#2)-, Dy{x; W3)-) space.

There may not exist a continuous linear map from a incomplete locally
convex space onto a D^x; <^>

3)-space. For, let (E, u) be the sequence space /*.
Then the incomplete barrelled normed space {E, u°°) is a D^x; #3)-space. If
there were to exist a continuous linear map / say, from a B-complete locally
convex space onto (E, u°°) then / would be open and this would imply that
(£, M°°) is complete.

From the corollary of Theorem 3.2, we derive the following result.

Lemma 4.1. Let %> be a category of linear maps of linear topological spaces
satisfying (C4) and (C5). Then, an object E in % is a D(x; ty-space if and only
if every closed map in <€ from any F in x into each quotient of E by a closed
linear subspace is continuous.

Let Fbe an object in <€ and (Fn) be a sequence of Dt(x; "^-spaces. Suppose
that, for each n, un is a continuous map in ^ from Fn into F and that F is the
union over n of un(Fn). For each n, there is a continuous map gn say, in # from
Gn onto Fn, where Gn is an extracomplete D(x: ^ - s p a c e or Gn is the generalized
strict *-inductive limit of some (Gni; wnt: i = 1, 2, ...) where each Gn. is an
extracomplete D(x; #i)-space.

For each n such that Gn is an extracomplete D{x; 'g'J-space, the induced
map vn of the continuous map un o gn from Gn into F is continuous and
GJ{un o gn)~

1(0) is an extracomplete D(x; 'g'J-space. Let Jt be the union over

noivn{Gnl(unogn)-\Q>)).
For each n such that Ga is the generalized strict *-inductive limit of some

(Gni; wni: i = 1, 2, ...), the induced map v'ni of the map unOgn0 wni from Gni

into Fis continuous. Also, GnJ(un °gn<>wa)~
 1(0) is an extracomplete D{x; <^l)-

space. Let J2 be the union over n and i of v'n[(GJ(unOgnOwn)~
1(0y).
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Clearly, F is the union of / t and J2. We may thus suppose that each un

is a continuous linear (1 — 1) map and that each Fn is an extracomplete D(x; C6^)-
space. With this observation, on using the method of proof of Theorems 2
and 3 (ii) of (8), but this time applying Lemma 4.1 instead of Theorem 1 of (8),
one can prove the following result.

Theorem 4.2. Let %> be a category of linear maps of linear topological spaces
satisfying (C4) and (C5). Let E be the <tf-inductive limit of (Ey; uy; y e $ ) ,
where each Ey is in x. Suppose that F is an object in # and that for each positive
integer n, vn is a continuous linear map from a D^x; ^)-space Fn into F. If F
is the union over n of vn(Fn), then any closed linear map from E into F is con-
tinuous, and any closed linear map from F onto E is open. This is so in parti-
cular if F is the generalized strict ^-inductive limit of (Fn; vn: n = 1, 2, ...).

Theorem 4.3. Let <& satisfy (C4) and (C5). For each positive integer n,
let un be a continuous linear map from a D^x; %>)-space En into an l.t.s. E,
and suppose that E is the union of the subspaces un(En). If t is a closed linear
map from E into an object F in <& such that t(E) is in x, then t{E) is closed in F.

Proof. By an argument similar to that preceding Theorem 4.2, one can
show that we may assume that each En is an extracomplete D{x; 'g'J-space
and that E is the union of the subspaces En such that the topology of En is finer
than that induced from E.

Since t(E) = un ^ it(En) is of the second category in itself, there is a positive
integer N such that t(EN) is of the second category in t{E) and t(EN) is dense in
t(E). (t(E), t(EN) are considered under the respective topologies induced from
F). The space t(EN) is of the second category in itself and the graph of the
map t from EN onto t(EN) is closed in EN x t(EN). As EN is a D(x; 'g'J-space, it
follows from Lemma 4.1 that t is an open map of EN onto t{EN).

Since JS^/f^O) is an extracomplete D(x; <^'1)-space, we may assume that t
is (1 — 1) and thus consider EN as the same space t(EN) under a coarser topology
v. Moreover, (t(EN), v) is complete and the identity map, i say, from (t(EN), v)
into F is closed.

Let (ya: a e Vf) be a net in t(EN) converging to y0 in F. Because / is an open
map from (t(EN), v) onto t(EN), (ya: ae^F) is u-Cauchy and must therefore
converge to some point y'o in (t(EN); v), since this space is complete. As the
graph of / is closed in (t(EN), v) xF, y0 = y'o and thus t(EN) is closed in F.
The result now follows from this, since t(EN) is dense in t(E).

Corollary. Let <€ satisfy (C4) and (C5). Let F be an object in <€ and E
the generalized strict <€-inductive limit of (En; «„: « = 1, 2, ...), where each
En is a Di(x; <^)-space. If t is a closed linear map of E into F, then either t(E)
is of the first category in F or t(E) = F.

Proof. If t(E) is of the second category in F then t(E) is of the second
category in itself and t(E) is dense in F. By the theorem, t(E) is closed in F,
and this gives the result.

cf. (8), Theorem 3, Corollary.
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