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Results of stabilization for the higher order of the Kadomtsev-Petviashvili equation
are presented in this manuscript. Precisely, we prove with two different approaches
that under the presence of a damping mechanism and an internal delay term
(anti-damping) the solutions of the Kawahara–Kadomtsev–Petviashvili equation are
locally and globally exponentially stable. The main novelty of this work is that we
present the optimal constant, as well as the minimal time, that ensures that the
energy associated with this system goes to zero exponentially.
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1. Introduction

In the last years, properties of the asymptotic models for water waves have been
extensively studied to understand the full water wave system1. As well know, we can
formulate the waves as a free boundary problem of the incompressible, irrotational
Euler equation in an appropriate non-dimensional form. Some physical conditions
give us the so-called long waves or shallow water waves. For example, in one spatial
dimensional case, the so-called Kawahara equation which is an equation derived by
Hasimoto and Kawahara in [14, 17] that takes the form

± 2ut + 3uux − νuxxx +
1
45
uxxxxx = 0. (1.1)

If we look at two spatial dimensions, wave phenomena that exhibit weak transver-
sality and weak nonlinearity are modelled by the Kadomtsev–Petviashvili (KP)
equation

ut + αuxxx + γ∂−1
x uyy + uux = 0, (1.2)

1See for instance [3, 19] and references therein, for a rigorous justification of various asymptotic
models for surface and internal waves.
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where u = u(x, y, t) and α, γ are constants. Equation (1.2) was introduced by
Kadomtsev and Petviashvili [15] in 1970. In 1993, Karpman included the higher-
order dispersion in (1.2) which led to a fifth-order generalization of the KP equation
[16]

ut + αuxxx + βuxxxxx + γ∂−1
x uyy + uux = 0, (1.3)

which will be called the Kawahara–Kadomtsev–Petviashvili equation (K-KP). Note
that, by scaling transformations on the variables x, t, and u, the coefficients in
equation (1.3) can be set to α > 0, β < 0, γ2 = 1. For the sequel, we consider this
scaled form of the equation:

ut + uux + αuxxx + βuxxxxx + γ∂−1
x uyy = 0, γ = ±1. (1.4)

When γ = −1 we will refer to the case as K-KP-I and for γ = 1 as K-KP II, respec-
tively. This is motivated in analogy with the usual terminology for the KP equation,
which distinguishes the two cases for the sign of the ratio of the highest derivative
terms in x and y, that is, focussing and defocusing cases, respectively.

It is important to point out that there are several physical applications in
modelling long water waves in a shallow water regime with a strong dispersion
represented by systems (1.1)–(1.4). We can cite at least two of them, the first one
is to describe both the wave speed and the wave amplitude [13], and the second
one is modelling plasma waves with strong dispersion [17].

1.1. Problem setting

There is an important advance in control theory to understand how the damp-
ing mechanism acts in the energy of systems governed by a partial differential
equation. In particular, exponential stability for dispersive equations related to
water waves posed on bounded domains has been intensively studied. For exam-
ple, it is well known that the KdV equation [23], Boussinesq system of KdV-KdV
type [24], Kawahara equation [1], and others are exponentially stable using the
Compactness-Uniqueness developed by J.L. Lions [22]. Other results, such as those
presented in [5] and [7] are obtained by using Urquiza’s and Backstepping approach.
All these results use damping mechanisms in the equation or the boundary as a
control.

Recently, in [8, 9], the authors obtained exponential decay for a fifth-order
KdV type equation via the Compactness-Uniqueness argument and Lyapunov
approach. Additionally to that, in [11] and [10], exponential decay for the KP-
II and K-KP-II was shown2. In both works, the authors can prove regularity and
well-posedness for these equations and show that the energy associated with these
equations decays exponentially in the presence of a damping term acting on the
equation.

As we can see in these articles, in the mathematical context, there is interest in
studying the asymptotic behavior of solutions of equation (1.4). Additionally, as
pointed out, the model under consideration in this article has importance in the
context of the dispersive equations as well as, physical motivation. So, motivated by

2See also the references therein for stabilization of KP-II and K-KP-II.

https://doi.org/10.1017/prm.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.92


Delayed K-KP-II system 3

[8–11] we will analyse the qualitative properties of the initial-boundary value prob-
lem for the K-KP-II equation posed on a bounded domain Ω = (0, L) × (0, L) ⊂ R

2

with localized damping and delay terms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) + α∂3
xu(x, y, t) + β∂5

xu(x, y, t)

+ γ∂−1
x ∂2

yu(x, y, t) +
1
2
∂x(u2(x, y, t))

+ a(x, y)u(x, y, t) + b(x, y)u(x, y, t− h) = 0,

(x, y) ∈ Ω, t > 0,

u(0, y, t) = u(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),

∂xu(L, y, t) = ∂xu(0, y, t) = ∂2
xu(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),

u(x,L, t) = u(x, 0, t) = 0, x ∈ (0, L), t ∈ (0, T ),

u(x, y, 0) = u0(x, y), u(x, y, t) = z0(x, y, t), (x, y) ∈ Ω, t ∈ (−h, 0).

(1.5)

Here h > 0 is the time delay, α > 0, γ > 0 and β < 0 are real constants. Addition-
ally, define the operator ∂−1

x := ∂−1
x ϕ(x, y, t) = ψ(x, y, t) such that ψ(L, y, t) = 0

and ∂xψ(x, y, t) = ϕ(x, y, t)3 and, for our purpose, let us consider the following
assumption.

Assumption 1.1. The real functions a(x, y) and b(x, y) are non-negative belonging
to L∞(Ω). Moreover, a(x, y) � a0 > 0 is almost everywhere in a nonempty open
subset ω ⊂ Ω.

Our propose here is to present, for the first time, the K-KP-II system not only
with a damping mechanism a(x, y)u, which plays the role of a feedback-damping
mechanism (see e.g. [10]) but also with an anti-damping, that is, some feedback
such that our system does not have decreasing energy. In this context, we would
like to prove that the energy associated with the solutions of system (1.5)

Eu(t) =
1
2

∫ L

0

∫ L

0

u2(x, y, t) dxdy

+
h

2

∫ L

0

∫ L

0

∫ 1

0

b(x, y)u2(x, y, t− ρh) dρdxdy.

(1.6)

decays exponentially. Precisely, we want to answer the following question:
Does Eu(t) → 0 as t→ ∞? If it is the case, can we give the decay rate?

1.2. Notation and main results

Before presenting answers to this question, let us introduce the functional space
that will be necessary for our analysis. Given Ω ⊂ R

2 let us define Xk(Ω) to be the

3It can be shown that the definition of operator ∂−1
x is equivalent to ∂−1

x u(x, y, t) =

− ∫ L
x u(s, y, t) ds.
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Sobolev space

Xk(Ω) :=
{
ϕ ∈ Hk(Ω): ∂−1

x ϕ(x, y) = ψ(x, y) ∈ Hk(Ω) such that,
ψ(L, y) = 0 and ∂xψ(x, y) = ϕ(x, y)

}

endowed with the norm ‖ϕ‖2
Xk(Ω) = ‖ϕ‖2

Hk(Ω) +
∥∥∂−1

x ϕ
∥∥2

Hk(Ω)
. We also define the

normed space Hk
x (Ω),

Hk
x (Ω) :=

{
ϕ : ∂j

xϕ ∈ L2(Ω), for 0 � j � k
}

with the norm ‖ϕ‖2
Hk

x (Ω) =
∑k

j=0

∥∥∂j
xϕ

∥∥2

L2(Ω)
and the space

Xk
x (Ω) :=

{
ϕ ∈ Hk

x (Ω): ∂−1
x ϕ(x, y) = ψ(x, y) ∈ Hk

x (Ω) such that
ψ(L, y) = 0 and ∂xψ(x, y) = ϕ(x, y)

}

with ‖ϕ‖2
Xk

x (Ω) = ‖ϕ‖2
Hk

x (Ω) +
∥∥∂−1

x ϕ
∥∥2

Hk
x (Ω)

. Finally, Hk
x0(Ω) will denote the closure

of C∞
0 (Ω) in Hk

x (Ω).
The next result will be used repeatedly throughout the article:

Theorem 1.2 [2, Theorem 15.7]. Let β and α(j), for j = 1, . . . , N, denote n-
dimensional multi-indices with non-negative-integer-valued components. Suppose
that 1 < p(j) <∞, 1 < q <∞, 0 < μj < 1 with

N∑
j=1

μj = 1,
1
q

�
N∑

j=1

μj

p(j)
, and β − 1

q
=

N∑
j=1

μj

(
α(j) − 1

p(j)

)
.

Then, for f(x) ∈ C∞
0 (Rn),

∥∥Dβf
∥∥

q
� C

N∏
j=1

∥∥∥Dα(j)
f
∥∥∥μj

p(j)
.

Where, for non-negative multi-index β = (β1, . . . , βN ) we denote Dβ by Dβ =
Dβ1

x1
. . . Dβn

xn
and Dβi

xi
= ∂βi

∂x
ki
i

From now on, the constants of system (1.5) satisfy α > 0, β < 0, and γ2 = 1.
With this, the first result of this work ensures that without a restrictive assumption
on the length L of the domain and with the weight of the delayed feedback small
enough energy (1.6) associated with the solution of system (1.5) is locally stable.

Theorem 1.3 Optimal local stabilization. Assume that the functions a(x, y),
b(x, y) satisfy the conditions given in assumption 1.1. Let L > 0, ξ > 1, 0 < μ < 1
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and T0 given by

T0 =
1
2θ

ln
(

2ξκ
μ

)
+ 1, (1.7)

with θ = 3αη
(1+2ηL)L2 , κ = 1 + max

{
2ηL, σ

ξ

}
and η ∈ (0, ξ−1

2L(1+2ξ) ) satisfying

2αη
(2 + 2ηL)L2

=
σ

2h(ξ + σ)

where σ = ξ − 1 − 2Lη(1 + 2ξ). Let Tmin > 0 given by

Tmin := −1
ν

ln
(μ

2

)
+

(
2‖b‖∞
ν

+ 1
)
T0, with ν =

1
T0

ln
(

1
(μ+ ε)

)
.

Then, there exists δ > 0, r > 0, C > 0 and γ, depending on Tmin, ξ, L, h, such
that if ‖b‖∞ � δ, then for every (u0, z0) ∈ H = L2(Ω) × L2(Ω × (0, 1)) satisfying
‖(u0, z0)‖H � r, the energy of system (1.5) satisfies

Eu(t) � Ce−γtEu(0), for all t > Tmin.

Next, following the ideas presented in [8], we obtain some stability properties
about the next system, called μi–system. Note that if we choose a(x, y) = μ1a(x, y)
and b(x, y) = μ2a(x, y) in (1.5), where μ1 and μ2 are real constants we obtain the
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) + α∂3
xu(x, y, t) + β∂5

xu(x, y, t)

+ γ∂−1
x ∂2

yu(x, y, t) +
1
2
∂x(u2(x, y, t))

+ a(x, y) (μ1u(x, y, t) + μ2u(x, y, t− h)) = 0,

(x, y, t) ∈ Ω × R
+,

u(0, y, t) = u(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
∂xu(L, y, t) = ∂xu(0, y, t) = ∂2

xu(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
u(x,L, t) = u(x, 0, t) = 0, x ∈ (0, L), t ∈ (0, T ),
u(x, y, 0) = u0(x, y), u(x, y, t) = z0(x, y, t), (x, y) ∈ Ω, t ∈ (−h, 0).

(1.8)

Here, μ1 > μ2 are positive real number and a(x, y) satisfies assumption 1.1. We
define the total energy associated to (1.8)

Eu(t) =
1
2

∫ L

0

∫ L

0

u2(x, y, t) dxdy

+
ξ

2

∫ L

0

∫ L

0

∫ 1

0

a(x, y)u2(x, y, t− ρh) dρdxdy,

(1.9)

where ξ > 0 satisfies

hμ2 < ξ < h(2μ1 − μ2). (1.10)
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Note that the derivative of energy (1.9) satisfies

d
dt
Eu(t) � −C

(∫ L

0

(∂2
xu(0, y, t))

2 dy +
∫ L

0

(
∂−1

x ∂yu(0, y, t)
)2

dy

+
∫ L

0

∫ L

0

a(x, y)u2(x, y, t− h) dxdy

)

for C := C(μ1, μ2, ξ, h) � 0. This indicates that the function a(x, y) plays the role
of a feedback-damping mechanism, at least for the linearized system. Therefore,
for system (1.8) we split the behavior of the solutions into two parts. Employing
Lyapunov’s method, it can be deduced that the energy Eu(t) goes exponentially to
zero as t→ ∞, however, the initial data needs to be sufficiently small in this case.
Precisely, the second local result can be read as follows:

Theorem 1.4 Local stabilization. Let L > 0. Assume that a(x, y) ∈ L∞(Ω) is a
non-negative function, that relation (1.10) holds and β < − 1

30 . Then, there exists

0 < r <
4
√

216α3

CL
5
2

such that for every (u0, z0(·, ·, −h(·))) ∈ H satisfying ‖(u0, z0(·, ·, −h(·)))‖H � r,
the energy defined in (1.9) decays exponentially. More precisely, there exists two
positives constants θ and κ such that Eu(t) � κEu(0)e−2θt for all t > 0. Here,

θ < min
{

η

(1 + 2ηL)L2

[
3α− 1

2
C

4
3 r

4
3L

10
3

]
,

ξσ

2h(ξ + σξ)

}
, κ = 1 + max{2ηL, σ}

and η and σ are positive constants such that

σ <
2h
ξ

(
μ1 − μ2

2
− ξ

2h

)

η < min
{

1
2Lμ2

[
ξ

h
− μ2

]
,

1
2Lμ1 + Lμ2

[
μ1 − μ2

2
− ξ

2h
(1 + σ)

]}
.

The last result of the manuscript, still related to the system (1.8), removes the
hypothesis of the initial data being small. To do that, we use, as mentioned before,
the compactness-uniqueness argument due to J.-L. Lions [21], which reduces our
problem to prove an observability inequality for the nonlinear system (1.8) and
removes the hypotheses that the initial data are small enough.

Theorem 1.5 Global stabilization. Let a ∈ L∞(Ω) satisfies assumption 1.1. Sup-
pose that μ1 > μ2 satisfies (1.10). Let R > 0, then there exists C = C(R) > 0 and
ν = ν(R) > 0 such that Eu, defined in (1.9) decays exponentially as t tends to
infinity, when ‖(u0, z0)‖H � R.
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1.3. Novelty and outline of the article

We finish the introduction by highlighting some facts about our problem in com-
parison with the works previously mentioned, as well as the organization of the
paper.

a. Observe that the absence of drift term ux, in comparison with Kawahara
equation in [8, 9], leads to get stabilization results without restriction in the
length of the spatial domain. This term is not important in our analysis, the
term only plays an important role in the problems where the control (damping
or delay) is acting in the boundary condition4.

b. As stated earlier, we introduce an anti-damping together with the damping
mechanism to show that the energy of system (1.5) decays exponentially.
Compared with the known result [10], the novelty of this paper is twofold:
(i) Our work gives the precise decay rate, see theorems 1.3 and 1.4.

(ii) Lyapunov’s method shows an optimal decay rate in terms of θ in theorem
1.3. Observe that the value of θ can be optimized as a function of η, that
is, we can choose

η ∈
(

0,
ξ − 1

2L(1 + 2ξ)

)
(1.11)

such that the value of θ is the largest possible, which implies that the
decay rate θ obtained in this way, is the best one. It can be shown defining
functions f, g : [0, ξ−1

2L(1+2ξ) ] −→ R by

f(η) =
3αη

L2(1 + 2ηL)
, g(η) =

ξ − 1 − 2Lη(1 + 2ξ)
2h(2ξ − 1 − 2ηL(1 + 2ξ))

,

and considering γ(η) = min{f(η), g(η)}. So, the function f is increasing
in the interval [0, ξ−1

2L(1+2ξ) ) while the function g is decreasing in this same
interval. In fact, note that

f(η) =
3α
2L3

(
1 − 1

1 + 2ηL

)

and

g(η) =
1
2h

−
(

ξ

4hL(1 + 2ξ)

)(
1

ξ
2L(1+2ξ) + ξ−1

2L(1+2ξ) − η

)
.

If − 1
2L < η, then

[f ′(η) =
3α
2L3

2L
(1 + 2Lη)2

> 0.

4For details about this situation the authors suggest reference [6].
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In particular, f ′(η) > 0 when

η ∈
[
0,

ξ − 1
2L(1 + 2ξ)

)
.

Analogously,

g′(η) = −
(

ξ

4hL(1 + 2ξ)

)
1(

ξ
2L(1+2ξ) + ξ−1

2L(1+2ξ) − η
)2 < 0,

since ξ > 1 and η < ξ−1
2L(1+2ξ) , showing our claim. Now, we claim that

there exists only one point satisfying (1.11) such that f(η) = g(η). To
show the existence of this point, it is sufficient to note that f(0) = 0,
g( ξ−1

2L(1+2ξ) ) = 0 and

f

(
ξ − 1

2L(1 + 2ξ)

)
=

3α
2L3

(
3ξ − 1

3ξ

)
> 0, g(0) =

1
2h

(
1 − ξ

2ξ − 1

)
> 0.

The uniqueness follows from the fact that f is increasing while g is
decreasing in this interval.

c. Taking into account the above information about f and g, the maximum
value of the function must be reached at the point η satisfying (1.11), where
f(η) = g(η). The figure 1 below shows, in a simple case, what was said earlier
to the functions f and g when we consider some values, for example, L = 1,
ξ = 2.3, α = 0.5 and h = 1.5:

d. Still concerning the theorem 1.3, observe that we do not need to localize the
solution of the transport equation in a small subset of (0, L) as in [29, Section
4]. Moreover, we emphasize that we can take a = 0 in theorem 1.3. Finally,
it is important to mention that we do not know if the time Tmin is optimal.

e. Aiming to present optimal decay results, note that for the nonlinear system,
we obtain one stabilization result with no restriction in the length of the
spatial domain but carries a restriction in one parameter of the system, see
theorem 1.4. Once again, it is possible to waive one of the conditions (either
the restriction on L or a restriction in one system parameter). Observe that,
using theorem 1.2 like as (2.7) below, we have∫ L

0

∫ L

0

u3(x, y, t) dxdy � cL ‖uxx‖
1
2
L2(Ω) ‖u‖

5
2
L2(Ω)

� 1
4
(CL)4 ‖uxx‖2

L2(Ω) +
3
4
r

4
3 ‖u‖2

L2(Ω) .

(1.12)

This estimate allows obtaining, with an analogous argument another result for
exponential stability without restriction in the parameter β but with restric-
tion in the length L of the domain. Thus, in theorem 1.4, we can remove the
hypothesis over β, however, a hypothesis over L is necessary. The result is
the following:
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Figure 1. Maximum of γ(η) = min{f(η), g(η)}.

Theorem 1.6 Local stabilization-bis. Let 0 < L < 4

√
−30β

C . Assume that
a(x, y) ∈ L∞(Ω) is a non-negative function and that the relation (1.10) holds.
Then, there exists 0 < r <

4√
216α3

CL
5
2

such that for every (u0, z0(·, ·, −h(·))) ∈ H
satisfying ‖(u0, z0(·, ·, −h(·)))‖H � r, the energy defined in (1.9) decays expo-
nentially. More precisely, there exists two positives constants θ and κ such that
Eu(t) � κEu(0)e−2θt for all t > 0, where θ, κ, η and σ are positive constants
defined as in theorem 1.4.

f. The results obtained here can be easily adapted for the KP-II system (1.2)
with or without the drift term ux, extending the results of [10] and [11].

The work is organized as follows:
– § 2 is devoted to proving the first, and optimal, local stability result, that is,

theorem 1.3.
– In § 3 we are able to prove the exponential stability, theorem 1.4, for the energy

associated with the μi–system (1.8).
– Additionally, to extend the local property to the global one, in § 3 we give the

proof of theorem 1.5.
– For the sake of completeness, we present in Appendix A, at the end of the work,

the well-posedness of the time-delayed K-KP-II system.
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2. The damping-delayed system: optimal local result

This section deals with the behavior of the solutions associated with (1.5). The first
result ensures local stability considering the perturbed system. After that, we are
in a position to prove the first main result of the article, theorem 1.3.

2.1. Preliminaries

We are interested in analysing the well-posedness of (1.5) with total energy
associated defined by (1.6) that satisfies

d
dt
Eu(t) �

∫ L

0

∫ L

0

b(x, y)u2 dxdy +
β

2

∫ L

0

u2
xx(0, y, t) dy

− γ

2

∫ L

0

(
∂−1

x uy(0, y, t)
)2

dy −
∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy.

This implies that the energy is not decreasing, in general, since the term b(x, y) � 0.
So, we consider the following perturbation system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) + α∂3
xu(x, y, t) + β∂5

xu(x, y, t)

+ γ∂−1
x ∂2

yu(x, y, t) + a(x, y)u(x, y, t)

+ b(x, y)(ξu(x, y, t) + u(x, y, t− h)) = f,

(x, y) ∈ Ω, t > 0,

u(0, y, t) = u(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
∂xu(L, y, t) = ∂xu(0, y, t) = ∂2

xu(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
u(x,L, t) = u(x, 0, t) = 0, x ∈ (0, L), t ∈ (0, T ),
u(x, y, 0) = u0(x, y), u(x, y, t) = z0(x, y, t), (x, y) ∈ Ω, t ∈ (−h, 0),

(2.1)

with f = − 1
2∂x(u2(x, y, t), which is ‘close’ to (1.5), where ξ a positive constant,

and now the following energy associated with the perturbed system

Eu(t) =
1
2

∫ L

0

∫ L

0

u2(x, y, t) dxdy

+
ξh

2

∫ L

0

∫ L

0

∫ 1

0

b(x, y)u2(x, y, t− ρh) dρdxdy,

(2.2)

is decreasing. In fact, note that

d
dt
Eu(t) � β

2

∫ L

0

u2
xx(0, y, t) dy − γ

2

∫ L

0

(
∂−1

x uy(0, y, t)
)2

dy

−
∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy +
1
2

∫ L

0

∫ L

0

(b(x, y)

− ξb(x, y))u2(x, y, t) dxdy

+
1
2

∫ L

0

∫ L

0

(b(x, y) − ξb(x, y))u2(x, y, t− h) dxdy � 0,
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for ξ > 1. Note that system (2.1) can be written as a first-order system⎧⎨
⎩
∂

∂t
U(t) = AU(t),

U(0) = (u0(x, y), z0(x, y,−ρh)) .
(2.3)

Here A = A0 +B with domain D(A) = D(A0), A0 is defined by

A0(u, z) =
(
(−α∂3

x − β∂5
x − γ∂−1

x ∂2
y − a(x, y))u− b(x, y)(ξu+ z(·, ·, 1)),−h−1∂ρz

)
and the bounded operator B is defined by B(u, z) = (ξb(x, y)u, 0), for all (u, z) ∈
H. Observe that system (2.3) has a classical solution (see proposition A.2).

Consider (eA0t)t�0 the C0–semigroup associated with A0. First, let us prove the
exponential stability of system (2.1), with f = 0, by using Lyapunov’s approach.
To do that, let us consider the following Lyapunov’s functional

V (t) = Eu(t) + ηV1(t) + σV2(t),

where η and σ are suitable constants to be fixed later, Eu(t) is the energy defined
by (2.2), V1(t) is giving by

V1(t) =
∫ L

0

∫ L

0

xu2(x, y, t) dxdy (2.4)

and V2(t) is defined by

V2(t) =
h

2

∫ L

0

∫ L

0

∫ 1

0

(1 − ρ)b(x, y)u2(x, y, t− ρh) dρdxdy.

Note that Eu(t) and V (t) are equivalent in the following sense

Eu(t) � V (t) �
(

1 + max
{

2ηL,
σ

ξ

})
Eu(t). (2.5)

Then, we have the next results for exponential stability to the system (2.1) with
f = 0.

Proposition 2.1. Let L > 0. Assume that a(x, y) and b(x, y) belonging to L∞(Ω)
are non-negative functions, b(x, y) � b0 > 0 in ω and ξ > 1. Then for every
(u0, z0(·, ·, −h(·))) ∈ H the energy defined in (2.2) decays exponentially. More pre-
cisely, there exists two positives constants θ and κ such that Eu(t) � κEu(0)e−2θt

for all t > 0. Here,

θ < min
{

3αη
(1 + 2ηL)L2

,
σ

2h(ξ + σ)

}
, κ = 1 + max

{
2ηL,

σ

ξ

}

and η and σ are positive constants such that σ = ξ − 1 − 2Lη(1 + 2ξ) and η <
ξ−1

2L(1+2ξ) .
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Proof. Consider (u0, z0(·, ·, −h(·))) ∈ D(A0). Let u be the solution of the linear
system associated with (2.1). Differentiating (2.4) and using (2.1)1, we obtain

d
dt
V1(t) = −3α

∫ L

0

∫ L

0

u2
x(x, y, t) dxdy + 5β

∫ L

0

∫ L

0

u2
xx(x, y, t) dxdy

− γ

∫ L

0

∫ L

0

(
∂−1

x uy

)2
dxdy − 2

∫ L

0

∫ L

0

xa(x, y)u2(x, y, t) dxdy

− 2
∫ L

0

∫ L

0

xξb(x, y)u2(x, y, t) dxdy

− 2
∫ L

0

∫ L

0

xb(x, y)u(x, y, t)u(x, y, t− h) dxdy.

Therefore, for θ > 0, η and σ chosen as in the statement of proposition we have
d
dtV (t) + 2θV (t) � 0, which is equivalent to

Eu(t) �
(

1 + max
{

2ηL,
σ

ξ

})
e−2θtEu(0), ∀t > 0,

thanks to (2.5). �

The next result shows that the energy (1.6) associated with the system (2.1) with
appropriate source term f decays exponentially.

Proposition 2.2. Consider a(x, y) and b(x, y) ∈ L∞(Ω) non-negative functions,
b(x, y) � b0 > 0 in ω and ξ > 1. So, there exists δ > 0 such that if ‖β‖ � δ then,
for every initial data (u0, z0(·, ·, −h(·)) ∈ H the energy of the system Eu(t), defined
in (1.5) is exponentially stable.

Proof. Consider a function v satisfying system (2.1) with f = 0, initial condition
v(x, y, 0) = u0(x, y), and z1(1) = u(x, y, t− h) where z1 satisfies

⎧⎪⎨
⎪⎩
hz1

t (x, y, ρ, t) + z1
ρ(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t > 0,

z1(x, y, 0, t) = v(x, y, t), (x, y) ∈ Ω, t > 0,
z1(x, y, ρ, 0) = v(x, y,−ρh) = z0(x, y,−ρh), (x, y) ∈ Ω, ρ ∈ (0, 1),

and w satisfying the source system associated with (2.1) with f = ξb(x, y)v(x, y, t),
initial condition w(x, y, 0) = 0 and z2(1) = u(x, y, t− h) where z2 satisfies

⎧⎪⎨
⎪⎩
hz2

t (x, y, ρ, t) + z2
ρ(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t > 1,

z2(x, y, 0, t) = w(x, y, t), (x, y) ∈ Ω, t > 0,
z2(x, y, ρ, 0) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1).

Define u = v + w and z = z1 + z2, then u satisfies the linear system associated with
(1.5) where z(1) = u(x, y, t− h)with z satisfying equation (A.1).
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Now, fix 0 < μ < 1 and choose

T0 =
1
2θ

ln
(

2ξκ
μ

)
+ 1 =⇒ κe−2θT0 <

μ

2ξ
,

where η, σ, θ and κ are given in the proposition 2.1. As Ev(0) � ξEu(0), it follows
that

Ev(T0) � κe−2θT0Ev(0) � μ

2ξ
Ev(0) � μ

2
Eu(0).

Observe that

Eu(T0) � 2Ev(T0) + ‖(w(·, ·, T0), w(·, ·, T0 − h(·)))‖H .

Since A generates a C0 semi-group we have that

‖(w(·, ·, T0), w(·, ·, T0 − h(·)))‖H �
∫ T0

0

e
1+3ξ

2 (T0−s)

(∫ L

0

|ξb(x, y)v|2 dx

) 1
2

ds

�
√

2κξ‖b‖∞Ev(0)
1
2

∫ T0

0

e
1+3ξ

2 (T0−s)e−θs ds

� 2ξ2‖b‖2
∞e

(3ξ+1)T0κEv(0),

thanks to the fact that∫ T0

0

e
1+3ξ

2 (T0−s)e−θs ds =
e

1+3ξ
2 T0 − e−θT0

1+3ξ
2 + θ

and
1 + 3ξ

2
+ θ > 2.

For ε > 0 such that 0 < μ+ ε < 1 and

‖b‖∞ � min

{ √
ε√

ε3κe
1+3ξ

2 ( 1
2θ ln( 2ξκ

μ )+2)
, 1

}
,

we obtain that,

Eu(T0) � μEu(0) + 2ξ3‖b‖2
∞e

(1+3ξ)T0κEu(0) < (μ+ ε)Eu(0).

Finally, considering a boot-strap and induction arguments, for T0 defined by
(1.7), we can construct another solution that satisfies the linear system associated
with (2.1) such that the following inequality holds Eu(mT0) � (μ+ ε)mEu(0), for
all m ∈ N. Picking t > T0, we note that there exists m ∈ N such that t = mT0 + s
with 0 � s < T0, then

Eu(t) � e(2‖b‖∞+ν)T0e−νtEu(0),

where

ν =
1
T0

ln
(

1
μ+ ε

)
, (2.6)

showing the result. �
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2.2. Proof of theorem 1.3

With the previous result in hand, in this section, we are going to prove a local
stabilization result with an optimal decay rate. Using the same arguments in
§ A.3 we have that (1.5) is well-posed. Besides that, we have by using Gronwall’s
inequality

‖(u(·, ·, t), u(·, ·, t− h(·)))‖2
H � e2ξ‖b‖∞t‖(u0, z0(·, ·,−h(·)))‖2

H.

This implies directly that

‖u‖C([0,T ],L2(Ω)) � eξ‖b‖∞T ‖(u0, z0(·, ·,−h(·)))‖H
and

‖u‖L2(0,T,L2(Ω)) � T
1
2 eξ‖b‖∞T ‖(u0, z0(·, ·,−h(·)))‖H.

Now, multiplying system (1.5) by xu(x, y, t) and integrating by parts in Ω × (0, T )
we get

3α
2

∫ T

0

∫ L

0

∫ L

0

u2
x(x, y, t) dxdy dt− 5β

2

∫ T

0

∫ L

0

∫ L

0

u2
xx(x, y, t) dxdy dt

�
(
L

2
+ L (‖a‖∞ + ‖b‖∞)Te2ξ‖b‖∞T

)
‖(u0, z0(·, ·,−h(·)))‖2

H

+
∫ T

0

∫ L

0

∫ L

0

|u(x, y, t)|3 dxdy dt.

From ∫ L

0

∫ L

0

u3(x, y, t) dxdy � ε4

4
‖u‖2

H2
x(Ω) +

3
4

(
CL

ε

) 4
3

‖u‖ 10
3

L2(Ω) , (2.7)

and taking Eu(0) � 1, we infer

‖u‖2
BH

� K̃
(
1 + Te2‖b‖∞T + Te

10
3 ‖b‖∞T + e2‖b‖∞T

)
Eu(0),

where

K̃ :=
1

min{1, 3α/2,−5β/2}

(
L

2
+ L(‖a‖∞ + ‖b‖∞) +

1
4

(
cL

δ̃

) 4
3
)
.

Observe that, by definition, ∂−1
x u(·, ·, t) = ϕ(·, ·, t) ∈ H2

x0 such that ∂xϕ(·, ·, t) =
u(·, ·, t). Since u ∈ H2

x0, using Poincaré’s inequality, we have that∥∥∂−1
x u(·, ·, t)∥∥

L2(Ω)
= ‖ϕ(·, ·, t)‖L2(Ω) � L2 ‖∂xϕ(·, ·, t)‖L2(Ω) = L2 ‖u(·, ·, t)‖L2(Ω) .

Therefore,

‖u‖2
BX

� (1 + L2)K̃
(
1 + Te2‖b‖∞T + Te

10
3 ‖b‖∞T + e2‖b‖∞T

)
Eu(0).

Let (u0, z0(·, ·, −h(·))) be a initial data satisfying ‖(u0, z0(·, ·, −h(·)))‖H � r,
where r will be chosen later. The solution u of (1.5) can be written as u = u1 + u2
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where u1 is the solution of the linear system associated with (1.5) considering the
initial data u1(x, y, 0) = u0(x, y) and u1(x, y, t) = z0(x, y, t) and u2 fulfills the
nonlinear system (1.5) with initial data u2(x, y, 0) = 0 and u2(x, y, t) = 0.

Fix μ ∈ (0, 1), follows the same ideas introduced by [8, Appendix A], there exists,
T1 > 0 such that

e(2‖b‖∞+ν)T0−νT1 <
η

2
⇐⇒ T1 > −1

ν
ln

(η
2

)
+

(
2‖b‖∞
ν

+ 1
)
T0

with ν defined by (2.6), satisfying Eu1(T1) � μ
2Eu1(0). This implies together with

(2.7) that

Eu(T1) � μEu(0) +
∥∥(u2(·, ·, T1), u2(·, ·, T1 − h(·)))∥∥2

H

� μEu(0) + e(1+3ξ)T1 ‖uux‖2
L1(0,T1,L2(Ω))

� μEu(0) + e(1+3ξ)T1C2
1C

2
2T

1
2 ‖u‖4

BX

� (μ+ R)Eu(0),

where

R = e(1+3ξ)T1C2
1C

2
2T

1
2
1 (1 + L2)2K̃2

(
1 + T1e

2‖b‖∞T1 + T1e
10
3 ‖b‖∞T1 + e2‖b‖∞T1

)2

r.

Therefore, given ε > 0 such that μ+ ε < 1, we take r > 0 such that

r <
ε

e(1+3ξ)T1C2
1C

2
2T

1
2
1 (1 + L2)2K̃2

(
1 + T1e2‖b‖∞T1 + T1e

10
3 ‖b‖∞T1 + e2‖b‖∞T1

)2

to obtain Eu(T1) � (μ+ ε)Eu(0), with μ+ ε < 1. Using a prolongation argument,
first for the time 2T1 and after for mT1, the result is obtained. This completes the
proof of theorem 1.3. �

3. µi-system: stability results

The main objective of this section is to prove the local and global exponential
stability for the solutions of (1.8) using two different approaches.

3.1. Local stabilization: proof of theorem 1.4

Consider the Lyapunov’s functional V (t) = Eu(t) + ηV1(t) + σV2(t), where Eu(t)
is defined by (1.9), V1(t) defined by (2.4) and

V2(t) =
ξ

2

∫ L

0

∫ L

0

∫ 1

0

(1 − ρ)a(x, y)u2(x, y, t− ρh) dρdxdy.
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Using the same argument as in the proof of proposition 2.1 we see that

d
dt
V (t) + 2θV (t) �

(
μ2

2
− ξ

2h
+ ηLμ2

)∫ L

0

∫ L

0

a(x, y)u2(x, y, t− h) dxdy

+
(
θξ − ξ

2h
σ + θσξ

)∫ L

0

∫ L

0∫ 1

0

a(x, y)u2(x, y, t− ρh) dρdxdy

+
(
μ2

2
− μ1 +

ξ

2h
+ 2ηLμ1 + ηLμ2 +

ξ

2h
σ

)
∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy

+ (θ + 2θηL)
∫ L

0

∫ L

0

u2(x, y, t) dxdy − 3αη

∫ L

0

∫ L

0

u2
x(x, y, t) dxdy

+
2
3
η

∫ L

0

∫ L

0

u3(x, y, t) dxdy + 5βη
∫ L

0

∫ L

0

u2
xx(x, y, t) dxdy,

(3.1)
for all θ > 0. Note that, thanks to theorem 1.2 we have

∫ L

0

∫ L

0

u3(x, y, t) dxdy � 1
4
‖uxx‖2

L2(Ω) +
3
4
(CL)

4
3 r

4
3 ‖u‖2

L2(Ω) .

Putting this previous inequality in (3.1), and using Poincaré’s inequality and (1.12),
we get

d
dt
V (t) + 2θV (t) �

(
5βη +

1
6
η

)∫ L

0

∫ L

0

u2
xx(x, y, t) dxdy

+
(
θ(1 + 2ηL)L2 +

1
2
ηC

4
3 r

4
3L

10
3 − 3αη

) ∫ L

0

∫ L

0

u2
x(x, y, t) dxdy.

Consequently, taking the previous constant as in the statement of the theorem we
have that

V ′(t) + 2γV (t) � 0. (3.2)

Finally, from the following relation E(t) � V (t) � (1 + max {2ηL, σ})E(t) and
(3.2), we obtain

E(t) � V (t) � e−2θtV (0) � (1 + max{2ηL, σ})e−2σtE(0), ∀t > 0,

and theorem 1.4 is proved. �
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3.2. Global stabilization: proof of theorem 1.5

As is classical in control theory, theorem 1.5 is a consequence of the existence
of a constant C := C(T, ‖u0‖2

L2(Ω)) > 0 such that following observability inequality
holds

Eu(0) � C

(∫ T

0

∫ L

0

∂2
xu(0, y, t)

2 dy +
∫ T

0

∫ L

0

(∂−1
x ∂yu(0, y, t))2 dy dt

+
∫ T

0

∫ L

0

∫ L

0

a(x, y)(u2(x, y, t− h) + u2(x, y, t)) dxdy dt

)
.

(3.3)

Observe that using the same ideas of (A.7), we get

T ‖u0‖2
L2(Ω) � ‖u‖2

L2(0,T,L2(Ω)) − βT

∫ T

0

∫ L

0

∂2
xu(0, y, t)

2 dy dt

+ γT

∫ T

0

∫ L

0

(
∂−1

x ∂yu(0, y, t)
)2

dy dt

+ T (2μ1 + μ2)
∫ T

0

∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy dt

+ T

∫ T

0

∫ L

0

∫ L

0

a(x, y)μ2u
2(x, y, t− h) dxdy dt.

(3.4)

Moreover, multiplying (A.2)5 by a(x, y)ξz(x, y, ρ, s), integrating in Ω × (0, 1) ×
(0, T ) and taking into account that z(x, y, ρ, t) = u(x, y, t− ρh) we obtain∫ L

0

∫ L

0

∫ 1

0

a(x, y)z2(x, ρ, 0) dρdxdy

� 1
hT

∫ T

0

∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy dt

+
(

1
Th

+
1
h

) ∫ T

0

∫ L

0

∫ L

0

a(x, y)u2(x, y, t− h) dxdy dt.

(3.5)

Gathering (3.4) and (3.5), we see that to show (3.3) is sufficient to prove that for
any T and R > 0, there exists C := C(R, T ) > 0 such that

‖u‖2
L2(0,T,L2(0,L)) � C

(∫ T

0

∫ L

0

∂2
xu(0, y, t)

2 dy

+
∫ T

0

∫ L

0

(∂−1
x ∂yu(0, y, t))2 dy dt

+
∫ T

0

∫ L

0

∫ L

0

a(x, y)u2 dxdy dt

+
∫ T

0

∫ L

0

∫ L

0

a(x, y)u2(x, y, t− h) dxdy dt

)
(3.6)
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holds for all solutions of (1.8) with initial data ‖(u0, z0(·, ·, −h(·)))‖H � R.
To prove it, let us argue by contradiction. Suppose that (3.6) does not holds,

then there exists a sequence (un)n ⊂ BX of solutions of (1.8) with initial data
‖(un

0 , z
n
0 (·, ·, −h(·)))‖H � R such that

lim
n→∞

‖un‖2
L2(0,T,L2(Ω))

B(un)
= +∞

where

B(un) =
∫ T

0

∫ L

0

|∂2
xu

n(0, y, t)|2 dy +
∫ T

0

∫ L

0

|(∂−1
x ∂yu

n(0, y, t))|2 dy dt

+
∫ T

0

∫ L

0

∫ L

0

a(x, y)
(|un(x, y, t)|2 + |un(x, y, t− h)|2) dxdy dt.

Let λn = ‖un‖L2(0,T,L2(Ω)) and vn(x, y, t) = 1/λnu
n(x, y, t), then vn satisfies

(1.8)1 with the following boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn(0, y, t) = vn(L, y, t) = 0, y ∈ (0, L), t > 0,
∂xv

n(L, y, t) = ∂xv
n(0, y, t) = ∂2

xv
n(L, y, t) = 0, y ∈ (0, L), t > 0,

vn(x,L, t) = vn(x, 0, t) = 0, x ∈ (0, L), t > 0,
vn(x, y, 0) = u0

λn
(x, y), vn(x, y, t) = z0

λn
(x, y, t), (x, y) ∈ Ω, t ∈ (−h, 0),

‖vn‖2
L2(0,T,L2(Ω)) = 1,

(3.7)

and B(vn) → 0 as n→ ∞. Therefore, we have from (3.4) that

‖vn(·, ·, t)‖2
L2(Ω) � 1

T
‖vn‖2

L2(0,T,L2(Ω)) + cB(vn)

which together with (3.7)5 and B(vn) → 0 gives that (vn(·, ·, 0))n is bounded in
L2(Ω). Additionally to that, the following inequality (see (3.5))

∫
Ω

∫ 1

0

a(x, y)
1
λ2

n

|zn(x, ρ, 0)|2 dρdxdy � 1
hT

∫ T

0

∫
Ω

a(x, y) |vn(x, y, t)|2 dxdy dt

+
(

1
hT

+
1
h

)∫ T

0

∫
Ω

a(x, y) |vn(x, y, t− h)|2 dxdy dt

ensures that (
√
a(x, y)vn(·, ·, −h(·)))n is bounded in L2(Ω × (0, 1)) and from

(A.5), (λn)n ⊂ R is bounded. On the other hand, as a consequence of proposi-
tion A.5, we have that (vn)n is bounded in L2(0, T, H2

x(Ω)). Now, using theorem
1.2, we get

‖vnvn
x‖L2(0,T,L1(Ω)) � C2 ‖vn‖ 3

2
L∞(0,T,L2(Ω)) ‖vn‖L2(0,T,H2

x(Ω))

and (vnvn
x )n is bounded in L2(0, T, L1(Ω)). Defining ∂yv

n = ∂xϕ
n, and using once

again theorem 1.2 we have
∥∥∂−1

x vn
yy

∥∥
L2(Ω)

� C2‖vn
x‖L2(Ω) <∞. Consequently, using
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the Cauchy–Schwarz inequality∣∣∣〈∂−1
x vn

yy, ξ
〉

H−3(Ω),H3
0 (Ω)

∣∣∣ �
∥∥ϕn

y

∥∥
L2(Ω)

‖ξ‖L2(Ω) � C2 ‖vn
x‖L2(Ω) ‖ξ‖L2(Ω) .

Observe that (vn)n bounded in L2(0, T ;H2
x(Ω)) implies, in particular, that (vn

x )n

is bounded in L2(0, T, L2(Ω)), so

∥∥∂−1
x vn

yy

∥∥2

L2(0,T ;H−3(Ω))
� C

∫ T

0

‖vn
xx‖L2(Ω) ‖vn‖L2(Ω) dt � C

2
‖vn‖L2(0,T,H2

x(Ω)) ,

where we have used that H2
x(Ω) ⊂ L2(Ω).

Thus, the previous analysis ensures that

vn
t (x, y, t) = −αvn

xxx(x, y, t) + βvn
xxxxx(x, y, t) + γ∂−1

x vn
yy(x, y, t)

+ λnv
n(x, y, t)vn

x (x, y, t) + a(x, y) (μ1v
n(x, y, t) + μ2v

n(x, y, t− h)) ,

is bounded in L2(0, T, H−3(Ω)), which together with classical compactness results
(see, for example, [27]), give us the existence of a sequence (vn)n relatively compact
in L2(0, T, L2(Ω)), that is, there exists a subsequence, still denoted (vn)n,

vn → v in L2(0, T, L2(Ω)) (3.8)

with ‖v‖L2(0,T,L2(Ω)) = 1.
From weak lower semicontinuity of convex functional, we obtain

v(x, y, t) = 0 ∈ ω × (0, T ) and ∂2
xv(0, y, t) = 0 in (0, L) × (0, T ). (3.9)

Since (λn)n is bounded, we can extract a subsequence denoted (λn)n which
converges to λ � 0.

We claim that ∂−1
x ∂2

yv
n → ∂−1

x ∂2
yv in L2(0, T, H−2(Ω)). In fact, from definition

of BX we have ∂−1
x vn = ϕn where ∂xϕ

n = vn, vn(·, ·, t) ∈ H1
x0(Ω) and ϕn(·, ·, t) ∈

H1
x0(Ω). Since ∂−1

x ∂2
yv

n = ∂2
yϕ

n we obtain∥∥∂−1
x vn

yy(·, ·, t) − ∂−1
x vyy(·, ·, t)∥∥

H−2(Ω)
=

∥∥ϕn
yy(·, ·, t) − ϕyy(·, ·, t)∥∥

H−2(Ω)

� c ‖ϕn(·, ·, t) − ϕ(·, ·, t)‖L2(Ω) � cL2 ‖ϕn
x(·, ·, t) − ϕx(·, ·, t)‖L2(Ω)

= cL2 ‖vn(·, ·, t) − v(·, ·, t)‖L2(Ω) .

Therefore, the desired convergence follows from the previous inequality and
convergence (3.8).

Finally, from the above convergences v(x, y, t) satisfies (3.9) and (1.8) with the
following conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
v(0, y, t) = v(L, y, t) = 0, y ∈ (0, L), t > 0,
∂xv(L, y, t) = ∂xv(0, y, t) = ∂2

xv(L, y, t) = 0, y ∈ (0, L), t > 0,
v(x,L, t) = v(x, 0, t) = 0, x ∈ (0, L), t > 0,
‖v‖L2(0,T,L2(Ω)) = 1.

Thus, for λ = 0 we obtain v = 0, thanks to Holmgren’s uniqueness theorem, which is
a contradiction with the fact that ‖v‖L2(0,T,L2(Ω)) = 1. Otherwise, if λ > 0, we can
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show that v ∈ L2(0, T, H5
x(Ω) ∩X2(Ω)) and applying [10, Theorem 1.2], follows

that u ≡ 0 in Ω × (0, T ), achieving theorem 1.5.
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Appendix A.

In this appendix, we deal with the well-posedness of the μi–system (1.8) which
provides essential tools to obtain the stabilization results for system (1.5). Since
the results are classical, we just give the main results and the idea of the proofs.

A.1. Well-posedness of the linear system associated with the µi–system
(1.8)

Here, we use the semigroup theory [25] to obtain well-posedness results for the
linear system associated with (1.8). To do that, consider z(x, y, ρ, t) = u(x, y, t−
ρh), for (x, y) ∈ Ω, ρ ∈ (0, 1) and t > 0. Then z(x, y, ρ, t) satisfies the transport
equation

⎧⎪⎨
⎪⎩
h∂tz(x, y, ρ, t) + ∂ρz(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t > 0,
z(x, y, 0, t) = u(x, y, t), (x, y) ∈ Ω, t > 0,
z(x, y, ρ, 0) = z0(x, y, ρ,−ρh), (x, y) ∈ Ω, ρ ∈ (0, 1).

(A.1)

Let H = L2(Ω) × L2(Ω × (0, 1)), which is a Hilbert space endowed with the inner
product

〈(u, z) (v, w)〉H =
∫ L

0

∫ L

0

u(x, y)v(x, y) dxdy

+ ξ ‖a‖∞
∫ L

0

∫ L

0

∫ 1

0

z(x, y, ρ)w(x, y, ρ) dρdxdy,

where ξ satisfies (1.10). To study the well-posedness in the Hadamard sense (see,
e.g. [28]), we need to rewrite the linear system associated with (1.8) as an abstract
problem. Let U(t) = (u(·, ·, t), z(·, ·, ·, t)) and denote z(1) := z(x, y, 1, t). From
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the linear system associated with (1.8) and (A.1) we get the next system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) + α∂3
xu(x, y, t) + β∂5

xu(x, y, t)

+ γ∂−1
x ∂2

yu(x, y, t) +
1
2
∂x(u2(x, y, t))

+ a(x, y) (μ1u(x, y, t) + μ2z(1)) = 0,

(x, y, t) ∈ Ω × R
+,

u(0, y, t) = u(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
∂xu(L, y, t) = ∂xu(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
∂xu(0, y, t) = ∂2

xu(L, y, t) = 0, y ∈ (0, L), t ∈ (0, T ),
u(x,L, t) = u(x, 0, t) = 0, x ∈ (0, L), t ∈ (0, T ),
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
h∂tz(x, y, ρ, t) + ∂ρz(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t > 0,
z(x, y, 0, t) = u(x, y, t), (x, y) ∈ Ω, t > 0,
z(x, y, ρ, 0) = z0(x, y, ρ,−ρh), (x, y) ∈ Ω, ρ ∈ (0, 1),

(A.2)

which is equivalent to ⎧⎨
⎩
d

dt
U(t) = AU(t),

U(0) = (u0(x, y), z0(x, y,−ρh))
(A.3)

where A : D(A) ⊂ H → H is defined by

A(u, z) =
(−α∂3

xu− β∂5
xu− γ∂−1

x ∂2
yu− a(x, y)(μ1u+ μ2z(1)),−h−1∂ρz

)
and the dense domain D(A) given by

D(A) :=

⎧⎪⎪⎨
⎪⎪⎩

(u, z) ∈ H :

u ∈ H5
x(Ω) ∩X2(Ω),

∂ρz ∈ L2(Ω × (0, 1)),

∣∣∣∣∣∣∣∣
u(0, y) = u(L, y) = u(x, 0) = u(x,L) = 0,

∂xu(L, y) = ∂xu(0, y) = ∂2
xu(L, y) = 0,

z(x, y, 0) = u(x, y)

⎫⎪⎪⎬
⎪⎪⎭ .

The next result is classical and its proof will be omitted.

Lemma A.1. The operator A is closed and its adjoint A∗ : D(A∗) ⊂ H → H is given
by

A∗(u, z) =
(
α∂3

xu+ β∂5
xu+ γ∂−1

x ∂2
yu− a(x, y)μ1u+

ξ ‖a‖∞
h

z(·, ·, 0);h−1∂ρz

)

with dense domain

D(A∗) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u, z) ∈ H :

u ∈ H5
x(Ω) ∩X2(Ω),

∂ρz ∈ L2(Ω × (0, 1)),

∣∣∣∣∣∣∣∣∣∣

u(0, y) = u(L, y) = u(x, 0) = u(x,L) = 0,

∂xu(L, y) = ∂xux(0, y) = ∂2
xu(0, y) = 0,

z(x, y, 1) = −a(x, y)hμ2

ξ ‖a‖∞
u(x, y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.
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Proposition A.2. Assume that a ∈ L∞(Ω) is a non-negative function and (1.10)
is satisfied. Then A is the infinitesimal generator of a C0-semigroup in H.

Proof. Let U = (u, z) ∈ D(A). Thus

〈AU,U〉H � ξ ‖a‖∞
2h

∫ L

0

∫ L

0

u2(x, y) dxdy.

Hence, for λ = ξ‖a‖∞
2h we have 〈(A− λI)U, U〉H � 0 (resp. 〈(A∗ − λI)U, U〉H � 0,

for U = (u, z) ∈ D(A∗)). Since A− λI is a densely defined closed linear operator,
and both A− λI and (A− λI)∗ are dissipative, A generate an infinitesimal C0-
semigroup on H. �

The next theorem establishes the existence of solutions for the abstract Cauchy
problem (A.3). This result is a consequence of the previous proposition.

Theorem A.3. Assume that a ∈ L∞(Ω) and (1.10) is satisfied. Then, for each
initial data U0 ∈ H there exists a unique mild solution U ∈ C([0, ∞), H) for the sys-
tem (A.3). Moreover, if the initial data U0 ∈ D(A) then the solutions are classical,
i.e., U ∈ C([0, ∞), D(A)) ∩ C1([0, ∞), H).

Next results are devoted to showing a priori and regularity estimates for the
solutions of (A.3).

Proposition A.4. Let a ∈ L∞(Ω) be a non-negative function and suppose that
(1.10) holds. Then, for any mild solution of (A.3) the energy Eu, defined by (1.9),
is non-increasing and there exists a constant C > 0 such that

d
dt
Eu(t) � −C

(∫ L

0

∂2
xu(0, y, t)

2 dy +
∫ L

0

(∂−1
x ∂yu(0, y, t))2 dy

+
∫ L

0

∫ L

0

a(x, y)u2 dxdy +
∫ L

0

∫ L

0

a(x, y)u2(x, y, t− h) dxdy

)

(A.4)
where C = C(β, γ, ξ, h, μ1, μ2) is given by

C = min
{
−β

2
,
γ

2
, μ1 − μ2

2
− ξ

2h
,−μ2

h
+

ξ

2h

}
.

Proof. First, multiply (A.2)1 by u(x, y, t) and integrate by parts in L2(Ω). Next,
multiply (A.2)5 by z(x, y, ρ, t) and integrate by parts in L2(Ω × (0, 1)). Finally,
adding the results we obtain the proposition statement. �

To use the contraction principle and to obtain the Kato smoothing effect (see,
for example, [20]), for T > 0, we introduce the following sets:

BX = C
(
[0, T ], L2(Ω)

) ∩ L2
(
0, T,X2

x0(Ω)
)
,

BH = C
(
[0, T ], L2(Ω)

) ∩ L2
(
0, T,H2

x0(Ω)
)
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endowed with its natural norms

‖y‖BX
= max

t∈[0,T ]
‖y(·, ·, t)‖L2(Ω) +

(∫ T

0

‖y(·, ·, t)‖2
X2

x0(Ω) dt

) 1
2

,

‖y‖BH
= max

t∈[0,T ]
‖y(·, ·, t)‖L2(Ω) +

(∫ T

0

‖y(·, ·, t)‖2
H2

x0(Ω) dt

) 1
2

.

Here, X2
x0(Ω) denotes the space

Xk
x0(Ω) :=

{
ϕ ∈ Hk

x0(Ω): ∂−1
x ϕ(x, y) = ψ(x, y) ∈ Hk

x0(Ω) with
ψ(L, y) = 0 and ∂xψ(x, y) = ϕ(x, y)

}
.

Proposition A.5. Let a ∈ L∞(Ω) be a non-negative function. Then, the map

(u0, z0(·, ·,−h(·))) ∈ H �→ (u, z) ∈ BX × C
(
[0, T ], L2 (Ω × (0, 1))

)
is continuous and for (u0, z0(·, ·, −h(·))) ∈ H, the following estimates are satisfied

1
2

∫ L

0

∫ L

0

u2(x, y) dxdy +
ξ

2

∫ L

0

∫ L

0

∫ 1

0

a(x, y)u2(x, y, t− ρh) dρdxdy

� 1
2

∫ L

0

∫ L

0

u2
0 dxdy +

ξ

2

∫ L

0

∫ L

0

∫ 1

0

a(x, y)z2
0(x, y,−ρh) dρdxdy,

(A.5)

3α
2

∫ T

0

∫ L

0

∫ L

0

∂xu(x, y, t)2 dxdy dt− 5β
2

∫ T

0

∫ L

0

∫ L

0

∂2
xu(x, y, t)

2 dxdy dt

� C(a, μ1, μ2, L)(1 + T ) ‖(u0, z0(·, ·,−h(·)))‖H
(A.6)

and

‖u0‖2
L2(Ω) � 1

T

∫ T

0

∫ L

0

∫ L

0

u2(x, y, t) dxdy dt− β

∫ T

0

∫ L

0

∂2
xu(0, y, t)

2 dy dt

+ γ

∫ T

0

∫ L

0

(
∂−1

x ∂yu(0, y, t)
)2

dy dt+
∫ T

0

∫ L

0∫ L

0

a(x, y)μ2u
2(x, y, t− h) dxdy dt

+ (2μ1 + μ2)
∫ T

0

∫ L

0

∫ L

0

a(x, y)u2(x, y, t) dxdy dt.

(A.7)

Proof. The proof is classical and uses the Morawetz multipliers (see, for instance,
[18]). In fact, (A.5) follows from (A.4). To get the other two inequalities for
(u0, z0(·, ·, −h(·))) ∈ H, we multiply (A.2)5 by z(x, ρ, t) and (A.2)1 by xu(x, y, t)
and integrating by parts in Ω × (0, T ), (A.6) holds. Finally, multiplying (A.2)1 by
(T − t)u(x, y, t) and integrating by parts in Ω × (0, T ) we obtain (A.7). �
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A.2. Well-posedness of linear µi–system with a source term

We will study system (A.2), with a source term f(x, y, t) on the right-hand side.
The next result ensures the well-posedness of this system.

Proposition A.6. Assume that a(x, y) ∈ L∞(Ω) is a non-negative function and
that (1.10) is satisfied. For any (u0, z0(·, ·, −h(·))) ∈ H and f ∈ L1(0, T, L2(Ω)),
there exists a unique mild solution for (A.2) with the source term f(x, y, t) on the
right-hand side in the class (u, u(·, ·, t− h(·))) ∈ BX × C([0, T ], L2(Ω × (0, 1))).
Moreover, we have

‖(u, z)‖C([0,T ],H) � e
ξ‖a‖∞

2h T
(
‖(u0, z0(·, ·,−h(·)))‖H + ‖f‖L1(0,T,L2(Ω))

)
(A.8)

and

δ ‖u‖2
L2(0,T,H2

x(Ω)) � C
(
‖(u0, z0(·, ·,−h(·)))‖2

H + ‖f‖2
L1(0,T,L2(Ω))

)
(A.9)

where

C = C (a, μ1, μ2, L, T, h) =
3L
2

+ L ‖a‖∞ (μ1 + μ2) + δ
(
1 + T + e

ξ‖a‖∞
h T

)
and δ = min {1, 3α/2, −5β/2}.
Proof. Note that A is an infinitesimal generator of a C0-semigroup (etA)t�0 satis-
fying

∥∥etA
∥∥
L(H)

� e
ξ‖a‖∞

2h t and the system can be rewritten as a first order system
with source term (f(·, ·, t), 0), showing the well-posed in C([0, T ], H). Finally,
observe that the right-hand side is not homogeneous, since∣∣∣∣∣

∫ T

0

∫
Ω

xf(x, y, t)u(x, y, t) dxdy dt

∣∣∣∣∣ � L

2
‖u‖2

C([0,T ];L2(0,L)) +
L

2
‖f‖2

L1(0,T,L2(Ω)) .

This proves the result. �

A.3. Nonlinear system: global results

In this last subsection of the Appendix, we consider the nonlinear term uux as a
source term.

Proposition A.7. If u ∈ BX then uux ∈ L1(0, T ;L2(Ω)) and the map u ∈ BX �→
u∂xu ∈ L1(0, T ;L2(Ω)) is continuous. In particular, there exists a constant K > 0,
such that, for all u, v ∈ BX we have

‖u∂xu− v∂xv‖L1(0,T,L2(Ω)) � K
(‖u‖BX

+ ‖v‖BX

) ‖u− v‖BX
.

Proof. The Hölder inequality and the Sobolev embedding H2
x0(Ω) ↪→ L∞(Ω) (for

details, see [4]) gives us

‖u∂xu− v∂xv‖L1(0,T,L2(Ω)) � C1 · C · T 1
4

(‖u‖BH
+ ‖v‖BH

) ‖u− v‖BH
, (A.10)

for u, v ∈ BX . Note that, u ∈ BX implies that u(·, ·, t) ∈ H2
x0(Ω) and conse-

quently u(·, ·, t) ∈ H1
x0(Ω) and ux(·, ·, t) ∈ H1

x0(Ω). Here, using the definition of
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the operator ∂−1
x and the Poincaré’s inequality (see e.g. [4]) we obtain,∥∥∂−1

x (u∂xu)
∥∥

L1(0,T,L2(Ω))
� L2 ‖u∂xu‖L1(0,T,L2(Ω)) . (A.11)

So, from (A.10), with v = 0, and (A.11) we get u∂xu ∈ L1(0, T, L2(Ω)) and the
proof is complete. �

We prove the global well-posedness of the K-KP-II with delay term.

Proposition A.8. Let L > 0, a(x, y) ∈ L∞(Ω) be a non-negative function and
assume that (1.10) holds. Then, for all initial data (u0, z0(·, ·, −h(·)) ∈ H, there
exists a unique u ∈ BX solution of (1.8). Moreover, there exist constants C > 0 and
δ ∈ (0, 1] such that

δ ‖u‖2
L2(0,T,H2

x(Ω)) � C
(
‖(u0, z0(·, ·,−h(·)))‖2

H + ‖(u0, z0(·, ·,−h(·)))‖
10
3
H

)
.

Proof. To obtain the global existence of solutions we show the local existence and
use the following a priori estimate, which is proved using the multipliers method
and Gronwall’s inequality5:

‖(u(·, ·, t), u(·, ·, t− h))‖2
H � e

ξ‖a‖∞
h t ‖(u0, z0(·, ·,−h(·)))‖2

H . (A.12)

From (A.12) we infer the local existence and uniqueness of solutions of (1.8).
In fact, pick (u0, z0(·, ·, −h(·))) ∈ H and u ∈ BX , consider the map Φ: BX → BX

defined by Φ(u) = ũ, where ũ is solution of (1.8) with the source term f = −u∂xu.
Then, u ∈ BX is the solution for (1.8) if and only if u is a fixed point of Φ. To show
this, we need to prove that Φ is a contraction.

If T < 1 then from (A.8), (A.9) and proposition A.7 we get

‖Φu‖BX
�

√
δ−1C

(
1 +

√
T + e

ξ‖a‖∞
2h T

)
‖(u0, z0(·, ·,−h(·)))‖H

+
√
δ−1C · C1 · C

(
2T

1
4 + T

1
4 e

ξ‖a‖∞
2h T

)
‖u‖2

BX

and

‖Φu− Φv‖BX
� S

(
1 +

√
T + e

ξ‖a‖∞
2h T

)
T

1
4

(‖u‖BX
+ ‖v‖BX

) ‖u− v‖BX
,

where S =
√
δ−1C · C1 · C. Now, consider the application Φ restricted to the

closed ball
{
u ∈ B : ‖u‖BX

� R
}
, with R > 0 such that R = 4

√
δ−1C‖(u0, z0(·, ·,

−h(·))‖H and T > 0 satisfying

T < 1, e
ξ‖a‖∞

2h T < 2 and 2T
1
4 + T

1
4 e

ξ‖a‖∞
2h T <

1
2
√
δ−1C · C1 · C2R

.

Therefore, it is easy to show that Φ is a contraction. From Banach’s fixed point
theorem, application Φ has a unique fixed point. �

5See [12] for the classical version of the Gronwall’s inequality and [26] for the L1 version.
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Vol. 22. (Masson, Paris, 1988).

23 G. Menzala, C. Vasconcellos and E. Zuazua. Stabilization of the Korteweg-De Vries equation
with localized damping. Q. Appl. Math. 60 (2002), 111–129.

24 A. F. Pazoto and L. Rosier. Stabilization of a Boussinesq system of KdV–KdV type. Syst.
Control. Lett. 57 (2008), 595–601.

25 A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations
(Spronger-Verlag, New York, 1983).

https://doi.org/10.1017/prm.2023.92 Published online by Cambridge University Press

https://doi.org/10.3934/mcrf.2023004
https://doi.org/10.1017/prm.2023.92


Delayed K-KP-II system 27

26 R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations, Vol. 49 (American Mathematical Society, Providence, RI, 2013).

27 S. Simon. Compact sets in the space Lp(0, T ; B). Annali di Mate. Pura ed App. CXLXVI
(1987), 65–96.

28 A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-Posed Problems (Winston, New York,
1977).

29 J. Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed
internal feedback. Math. Control Related Fields 12 (2022), 667–694.

https://doi.org/10.1017/prm.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.92

	1 Introduction
	1.1 Problem setting
	1.2 Notation and main results
	1.3 Novelty and outline of the article

	2 The damping-delayed system: optimal local result
	2.1 Preliminaries
	2.2 Proof of theorem [st3]1.3

	3 i-system: stability results
	3.1 Local stabilization: proof of theorem [st4]1.4
	3.2 Global stabilization: proof of theorem [st5]1.5

	A Appendix A.
	A.1 Well-posedness of the linear system associated with the i–system ([eqn8]1.8)
	A.2 Well-posedness of linear i–system with a source term
	A.3 Nonlinear system: global results

	References

