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Abstract
Scattering of membrane coupled gravity waves in deep water by partial vertical
barriers is investigated by the recently developed expansion formulae for wave structure
interaction problems. The horizontal thin membrane is considered to be under uniform
tension and is covering the free surface. The analysis is based on the linearized theory of
water waves, and by combining the kinematic and dynamic conditions at the membrane
covered surface, one may derive a not so well-posed mixed boundary value problem
for Laplace’s equation with third-order boundary condition. The flexible membrane is
attached by a spring to the surface piercing barrier, giving suitable edge conditions for
the unique solution. The boundary value problem has been converted into dual integral
equations with kernels composed of trigonometric functions, which are then solved
analytically. The important physical quantities such as reflection and transmission
coefficients for both cases of submerged and surface piercing barriers are obtained
analytically in terms of modified Bessel functions. It is found that complete reflection
or transmission is possible at certain resonant frequencies for the incident membrane
coupled waves. Numerical results are plotted and discussed for different values of the
nondimensional membrane tension parameter.
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1. Introduction

Design of floating flexible breakwaters to protect offshore structures in deep water has
in recent times attracted a lot of attention. Among various wave barriers, flexible
membranes have a number of advantages: they are easy to carry, reusable, cost
effective, removable and, most importantly, have less environmental impact on coastal
processes. They are mainly made up of synthetic fibre, rubber or a polymeric material.
Oil booms and slit curtains are examples of membrane structures (Sawaragi [12]).
Another advantage of using these floating structures is that they can be used in
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unfavourable seabed soil conditions as well. Mathematically, the membrane can be
modelled as a tensioned-beam plate for which the bending stiffness approaches zero.
In such a situation, the membrane is modelled as a thin and inextensible sheet acting
under tension at the interaction boundary where the membrane meets the open water
region. Thus, under the assumption that the membrane is of constant and uniform
density, its response is governed by the two-dimensional string equation.

Cho and Kim [2] investigated the interaction of oblique waves in finite depth with
a submerged horizontal membrane by using a mode expansion method as well as
a boundary integral equation method. Other investigations (Sahoo et al. [11], Yip
et al. [16], Cho and Kim [3]) in finite depth prove that these floating structures are
very effective in reducing wave transmission over a wide range of wave periods. In
this context, the study of the scattering of membrane coupled waves by partial vertical
barriers placed in the fluid domain may be of interest.

Various methods of solution are explained for different vertical as well as other
barrier topographies in free surface wave scattering by Ursell [14], Williams [15] and
others. Evans [6] first investigated the surface tension effect on the two-dimensional
transmission problem of time-harmonic water waves for partially immersed vertical
barriers. Later, Rhodes-Robinson [10] studied the same problem more generally
by involving vertical wave-makers. The physically important quantities, such as
reflection and transmission of an incident wave, were derived in terms of the edge
slope constants which are presumed to be known. However, numerical computation of
these quantities was not done since values of these presumed constants have not been
found experimentally. When the free surface is covered with a flexible membrane,
the governing mixed boundary value problem is the same as that corresponding to the
scattering problem involving surface tension for a submerged barrier. Except for the
edge conditions specified at the surface edge of the barrier, the equivalence is true even
for the case of a surface piercing barrier. Since the velocity across the barrier is not
continuous at the intersection point on the surface, the induced unknown constants can
be determined from the naturally specified edge constants.

In the present paper, a simple and straightforward method is demonstrated to solve
the mixed boundary value problem associated with the scattering of linear membrane
coupled gravity waves by partial barriers. These are a completely submerged vertical
barrier extended to the bottom of the water column of infinite depth and a finite-
length surface piercing barrier. The problem has been reduced to solving a dual
integral equation with a kernel comprised of trigonometric functions. It may be
remarked that the crucial factor in the reduction process has been the utilization of
expansion formulae developed by Manam et al. [9]. The behaviour of one of these dual
integral equations, at the point where the boundary condition changes, plays a crucial
role in determining their solution. The reduced dual integral equations are solved
subsequently with the aid of a weakly singular integral equation (see Chakrabarti
and Manam [1] and Estrada and Kanwal, [5]). The method forces its solution to be
bounded at both end points and that brings out certain conditions to be satisfied by the
forcing function of the integral equation.
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The mathematical description of the mixed boundary value problem is given
in Section 2. The reduction of the boundary value problem for the two barrier
configurations into dual integral equations and their analytical solution procedure are
described in Sections 3.1 and 3.2. The numerical results for the reflection coefficient
of an incident membrane coupled gravity wave are discussed in Section 3.3.

2. Mathematical formulation

A general mixed boundary value problem modelling membrane coupled gravity
wave scattering by partial vertical barriers is formulated under the assumption of
linearized water wave theory and small amplitude membrane response. The fluid
domain is assumed to be two-dimensional in nature and the floating membrane is
considered as a one-dimensional string.

The two-dimensional Cartesian coordinate system is used in which the y-axis is
taken vertically downward so that y > 0, x ∈ R is the region occupied by the fluid.
Assuming that motion is irrotational in an incompressible inviscid fluid under the
action of gravity, there exists a velocity potential 8(x, y, t) satisfying

∂28

∂x2 +
∂28

∂y2 = 0, x ∈ R, y > 0. (2.1)

The linearized kinematic and dynamic boundary conditions on the mean free surface
y = 0 are

∂8

∂y
=
∂η

∂t
and −P = ρ

∂8

∂t
− ρgη. (2.2)

Here η is the vertical displacement of the membrane, ρ is the constant fluid density,
P is the hydrodynamic pressure and g is the acceleration due to gravity. Considering
that the membrane is a thin, homogeneous and inextensible sheet with uniform mass
ms (ms = ρsd; d is the thickness of the membrane, ρs is the uniform membrane
mass density) under constant tension S, the membrane displacement is related to the
differential pressure Ps acting on the membrane by

−Ps(x, y, t)=−S
∂2η

∂x2 + ms
∂2η

∂t2 . (2.3)

Balancing the hydrodynamic pressure P with the sum of the atmospheric pressure
(without loss of generality it can be assumed to be zero) and the differential pressure Ps
on the membrane covered region, and eliminating η from the relations (2.2) and (2.3),
the boundary condition on the surface y = 0 is obtained as

S
∂38

∂y3 + ms
∂38

∂t2∂y
+ ρg

∂8

∂y
− ρ

∂28

∂t2 = 0.

Considering simple-harmonic fluid and membrane motions of an angular
frequency ω, the velocity potential and the displacement are represented as
8(x, y, t)= Re{φ(x, y)e−iωt

} and η(x, t)= Re{ζ(x)e−iωt
}. Then the surface
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boundary condition becomes

M
∂3φ

∂y3 +
∂φ

∂y
+ Kφ = 0 on y = 0, x ∈ R, (2.4)

where M = S/(ρg − msω
2) and K = ρω2/(ρg − msω

2).
Further, we assume that the membrane is elastically supported by a spring of zero

vertical stiffness at the mean surface level to the surface piercing barrier (see [8]).
Thus, on both sides of the barrier at the surface,

∂2φ

∂x∂y
= 0 at (x, y)= (0±, 0). (2.5)

On the rigid vertical structure occupied at x = 0, y ∈ (b,∞) or (0, b) with b > 0,
φ(x, y) satisfies the Neumann boundary condition

∂φ

∂x
= 0, (2.6)

also known as the condition of vanishing normal velocity.
Also, since the fluid flow is continuous across the gap x = 0, y ∈ (0, b) or (b,∞),

the potential function φ(x, y) satisfies

φ(0−, y)= φ(0+, y), (2.7)

in standard notation and

φ,
∂φ

∂x
,
∂φ

∂y
→ 0 as y→∞, (2.8)

representing no motion as the depth of the fluid becomes large.
The behaviour of φ(x, y) at infinity in the horizontal direction is given by

φ(x, y)→

{
eiλx−λy

+ Re−iλx−λy as x→−∞,

T eiλx−λy as x→∞,
(2.9)

where R and T are the unknown reflection and transmission coefficients in wave
scattering (see Stoker [13]) and λ is the positive real root of a dispersion equation
Mx3
+ x − K = 0. Note that the dispersion relation has, for specified values of M

and K , one positive real root λ and complex conjugate roots λ1 and λ̄1 with negative
real part.

The barrier edge conditions, as required for the energy to be finite in the
neighbourhood associated with the flow (see Stoker [13, Section 2.4]), are given by

∂φ

∂x
(0, y)∼ O

(
|y − t |−1/2

)
as y→ t, (2.10)

where t = b+ and t = b− are the end points of the thin vertical structures under
consideration. Thus, the boundary value problem is now well defined for the two
physical problems concerning the scattering of thin vertical partial barriers. It may be
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FIGURE 1. Schematic diagram for a flexible membrane covered surface with (a) submerged and (b)
surface piercing vertical rigid barrier.

noted that the linearized surface condition for capillary gravity waves is recovered in
the relation (2.4) with ms = 0. It is worth mentioning that the surface tension value
is much smaller than the membrane tension value. A schematic diagram is shown in
Figure 1 for these physical situations of scattering involving partial vertical barriers.

3. The method of solution

It can be shown (Manam et al. [9]) that the unknown velocity potentials φ(x, y) in
the two regions x > 0 and x < 0 are expanded as

φ(x, y)=


T eiλx−λy

+

∫
∞

0
B(ξ)L(ξ, y) e−ξ x dξ, x > 0,

eiλx−λy
+ Re−iλx−λy

+

∫
∞

0
A(ξ)L(ξ, y)eξ x dξ, x < 0,

(3.1)
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where L(ξ, y)= ξ(1− Mξ2) cos ξ y − K sin ξ y, A(ξ) and B(ξ) are unknown
functions, and R and T are the unknown complex-valued reflected and transmitted
amplitudes of the incident wave eiλx−λy .

The potential function φ(x, y) automatically satisfies the partial differential
equation (2.1) and conditions (2.4), (2.8) and (2.9) for an appropriate choice of the
functions A(ξ) and B(ξ).

In what follows, the solution procedure is given separately for each of the scattering
problems involving submerged as well as surface piercing barriers.

3.1. Submerged barrier The problem configuration for this case is sketched in
Figure 1(a). Since the horizontal velocity is continuous along the positive y-axis,
including the point of contact with the flexible membrane, we obtain that∫

∞

0
ξ [A(ξ)+ B(ξ)]L(ξ, y) dξ = iλ(T + R − 1)e−λy for y ≥ 0.

The functions L(ξ, y), ξ, y ≥ 0 and e−λy are orthogonal with respect to the mode-
coupling relation (see Manam et al. [9])

〈 f, g〉 =
∫
∞

0
f (y)g(y) dy +

M

K
f ′(0)g′(0),

where ′ denotes the derivative and hence

T = 1− R, A(ξ)=−B(ξ).

This may also be achieved by equating real and imaginary parts to zero and then by
making use of the orthogonal mode-coupling relation. Applying conditions (2.7) and
(2.6) to relation (3.1), we derive a pair of integral equations∫

∞

0
A(ξ)L(ξ, y) dξ = −Re−λy on y ∈ (0, b),∫

∞

0
ξ A(ξ)L(ξ, y) dξ = −iλ(1− R) e−λy on y ∈ (b,∞),

or alternatively,

L
∫
∞

0
A(ξ) sin ξ y dξ = −Re−λy on y ∈ (0, b), (3.2)

L
∫
∞

0
ξ A(ξ) sin ξ y dξ = −iλ(1− R)e−λy on y ∈ (b,∞), (3.3)

where
L= (Md3/dy3

+ d/dy − K ).

Then (3.2) and (3.3) yield the dual integral equations∫
∞

0
A(ξ) sin ξ y dξ = C1eλy

+ C2eλ1 y
+ C3eλ̄1 y

+
Re−λy

Q(λ)
≡ f (y) for y ∈ (0, b)

(3.4)
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and ∫
∞

0
ξ A(ξ) sin ξ y dξ = D1eλ1 y

+ D2eλ̄1 y
+ D3eλy

+
iλ(1− R)

Q(λ)
e−λy

≡ h(y) for y ∈ (b,∞). (3.5)

Here Q(λ)= λ(1+ Mλ2)+ K and C1, C2, C3, D1, D2 and D3 are arbitrary
constants. As mentioned earlier, λ, λ1 and λ̄1 are the roots of the dispersion relation
Mx3
+ x − K = 0.

In order to accommodate the point at infinity along the positive y-axis, D3 in (3.4) is
taken to be zero and at the point at zero the function f (y) satisfies f (0)= f

′′

(0)= 0,
that is,

C1 + C2 + C3 +
1

Q(λ)
R = 0 (3.6)

and

λ2C1 + λ
2
1C2 + λ̄

2
1C3 +

λ2

Q(λ)
R = 0. (3.7)

We now define ∫
∞

0
ξ A(ξ) sin ξ y dξ = g(y) for y ∈ (0, b), (3.8)

where g(y) is an unknown function to be determined. By the Fourier sine transform,
relations (3.5) and (3.8) give

A(ξ)=
2
πξ

∫
∞

0
P(y) sin ξ y dy where P(y)=

{
g(y), for y ∈ (0, b),

h(y), for y ∈ (b,∞).
(3.9)

Putting A(ξ) into (3.4) and after utilizing the result (see Gradshteyn and Ryzhik, [7,
Equation 3.741(1)])∫

∞

0

sin ξ y sin ξ t

ξ
dξ =−

1
2

log

∣∣∣∣ y − t

y + t

∣∣∣∣ for y, t ∈ (0,∞),

we observe that g(y) satisfies the weakly singular integral equation (see Chakrabarti
and Manam [1])

1
π

∫ b

0
g(u) log

∣∣∣u + x

u − x

∣∣∣ du = f1(x) for x ∈ (0, b), (3.10)

where

f1(x)= f (x)−
1
π

∫
∞

b
h(t) log

∣∣∣∣ x + t

x − t

∣∣∣∣ dt.

The dual integral equations (3.4) and (3.5) can be differentiated twice as they satisfy
the third-order differential equation. The result is∫

∞

0
ξ2 A(ξ) sin ξ y dξ =−

d2 f

dy2 for y ∈ (0, b) (3.11)
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and ∫
∞

0
ξ3 A(ξ) sin ξ y dξ =−

d2h

dy2 for y ∈ (b,∞).

Again, since ∫
∞

0
ξ3 A(ξ) sin ξ y dξ =−

d2g

dy2 for y ∈ (0, b),

we obtain

ξ2 A(ξ)=−
2
πξ

∫
∞

0

d2 P

dy2 sin ξ y dy. (3.12)

Substituting the result of (3.12) into relation (3.11), we derive that the function
g1 = d2g/dy2 satisfies

1
π

∫ b

0
g1(u) log

∣∣∣u + x

u − x

∣∣∣ du = f2(x) for x ∈ (0, b), (3.13)

where

f2(x)=
d2 f

dx2 −
1
π

∫
∞

b

d2h

dt2 log
∣∣∣ x + t

x − t

∣∣∣ dt.

In order to solve the integral equation (3.13) completely, we must know the
behaviour of the unknown function g(u) at the end point u = b.

Letting
∂φ

∂x
(0, y)= F(y) for y ∈ (0, b),

relation (3.1) gives (
M

d3

dy3 +
d

dy
− K

)∫
∞

0
ξ A(ξ) sin ξ y dξ

= iλ(1− R) e−λy
− F(y) y ∈ (0, b). (3.14)

Using the behaviour of the function F(y) at the endpoint u = b from relations (2.10)
and (3.14), it is found that the unknown functions g(y) and d2g/dy2 are bounded at
the end point y = b. In particular,

d2g

dy2 ∼ O
(
|y − t |1/2

)
as y→ b−.

Therefore, the bounded solution of the integral equation (3.10) is given (see [1]) by

g(u)=
2
π

u
√

b2 − u2
∫ b

0

f ′1(t)
√

b2 − t2(u2 − t2)
dt u ∈ (0, b),

constrained such that ∫ b

0

f ′1(t)
√

b2 − t2
dt = 0. (3.15)
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Also, the bounded solution g1(u) of the integral equation (3.13) is

g1(u)=
d2g

du2 =
2
π

u
√

b2 − u2
∫ b

0

f ′2(t)
√

b2 − t2(u2 − t2)
dt u ∈ (0, b), (3.16)

provided that ∫ b

0

f ′2(t)
√

b2 − t2
dt = 0. (3.17)

Now equating A(ξ) from relations (3.9) and (3.12), we derive, by integration by
parts and then by using the bounded property of g at the end points 0 and b, conditions
to be satisfied by the functions g and h:

h(b)= 0 that is, eλ1b D1 + eλ̄1b D2 −
iλ

Q(λ)
e−λb R =−

iλ

Q(λ)
e−λb (3.18)

and
g′(b)= h′(b). (3.19)

Conditions (3.15) and (3.17) are now expressed as

λJ1(λ)C1 + λ1 J1(λ1)C2 + λ̄1 J1(λ̄1)C3 − K0(−bλ1)D1 − K0(−bλ̄1)D2

−

[ λ

Q(λ)
J1(−λ)+

iλ

Q(λ)
K0(bλ)

]
R =

iλ

Q(λ)
K0(bλ) (3.20)

and

λ3 J1(λ)C1 + λ
3
1 J1(λ1)C2 + λ̄

3
1 J1(λ̄1)C3 − λ

2
1K0(−bλ1)D1 − λ̄

2
1K0(−bλ̄1)D2

−

[ λ3

Q(λ)
J1(−λ)+

iλ3

Q(λ)
K0(bλ)

]
R =

iλ3

Q(λ)
K0(bλ), (3.21)

where K0(x) is the modified Bessel function and Ji (x), i = 1, 2, 3, 4, are given in
the Appendix.

At this stage, the unknown constants C1, C2, C3, D1, D2 and R can be determined,
in principle, from relations (3.6), (3.7), and (3.18)–(3.21). However, condition (3.19)
is not in a suitable form to express as a linear equation in unknowns with computable
coefficients.

In order to modify condition (3.19) to a suitable form, we integrate (3.16) and make
use of some of the integrals in the Appendix to get

−bg′(b)=
∫ b

0

t2 f ′′′(t)
√

b2 − t2
dt −

4

π2

∫
∞

b

t2h′′(t)
√

t2 − b2
dt +

4

π2

∫
∞

b
th′′(t) dt. (3.22)

Hence (3.19) and (3.22) together produce a linear equation in a computable form as
given by

λ3 Q1(λ)C1 + λ
3
1 Q1(λ1)C2 + λ̄

3
1 Q1(λ̄1)C3 − λ1 Q2(λ1)D1 − λ̄1 Q2(λ̄1)D2

−
λ2

Q(λ)

[
λQ1(−λ)− i Q3(−λ)

]
R =

iλ2

Q(λ)
[Q3(λ)+ λK0(bλ)], (3.23)
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where

Q1(x) = J2(x)−
1
2

J1(x),

Q2(x) = x

{
4

π2 J3(x)+
1
2

K0(−bx)

}
− bexb

(
1−

4

π2

)
,

Q3(x) = x

{
4

π2 J3(−x)−
1
2

K0(bx)

}
+ be−xb

(
1−

4

π2

)
and Ji (x), i = 1, 2, 3, 4, are given in the Appendix.

Thus, the case of scattering of membrane coupled waves by a submerged vertical
barrier is completely solved.

3.2. Surface piercing barrier We now turn to the fully analytical solution for the
boundary value problem corresponding to scattering of waves by a barrier cutting
through the membrane covered surface. The physical problem in this case is sketched
in Figure 1(b).

It is a remarkable that the horizontal velocity is not continuous at the intersection
point of the membrane covered surface and the rigid barrier. So, the difference in the
velocity component on both sides of the interface x = 0 may be obtained as∫

∞

0
ξ [A(ξ)+ B(ξ)]L(ξ, y) dξ

= (φx (0−, y)− φx (0+, y))+ iλ(T + R − 1) e−λy for y > 0.

Applying the orthogonal mode-coupling relation on the functions L(ξ, y), ξ, y > 0
and e−λy (see [9]), we find that

T = 1− R +
2i M(µ+ − µ−)

1+ 3Mλ2 , B(ξ)=−A(ξ)−
2M(µ+ − µ−)

π1(ξ)
,

where 1(ξ)= ξ2(1− Mξ2)2 + K 2 and the constants µ± = φxy(0±, 0)= 0, which
are determined from the edge conditions (2.5).

In this case, conditions (2.7) and (2.6) along with relations (3.1) give rise to a pair
of integral equations

L
∫
∞

0
ξ A(ξ) sin ξ y dξ = −iλ(1− R)e−λy on y ∈ (0, b), (3.24)

L
∫
∞

0
A(ξ) sin ξ y dξ = −Re−λy on y ∈ (b,∞). (3.25)

Solving (3.24) and (3.25) yields∫
∞

0
ξ A(ξ) sin ξ y dξ = C1eλy

+ C2eλ1 y
+ C3eλ̄1 y

+
iλ(1− R)

Q(λ)
e−λy

≡ f (y) for y ∈ (0, b) (3.26)
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and ∫
∞

0
A(ξ) sin ξ y dξ = D1eλ1 y

+ D2eλ̄1 y
+ D3eλy

+ R
e−λy

Q(λ)
≡ h(y) for y ∈ (b,∞), (3.27)

where C1, C2, C3, D1, D2 and D3 are arbitrary constants.
In order to accommodate zero and the point at infinity along the y-axis, D3 in (3.27)

is taken to be zero and the function f (y) must satisfy f (0)= f
′′

(0)= 0, that is,

C1 + C2 + C3 −
iλ

Q(λ)
R =−

iλ

Q(λ)
(3.28)

and

λ2C1 + λ
2
1C2 + λ̄

2
1C3 −

iλ3

Q(λ)
R =−

iλ3

Q(λ)
. (3.29)

Defining ∫
∞

0
ξ A(ξ) sin ξ y dξ = g(y) for y ∈ (b,∞)

and making use of relation (3.26), we obtain

A(ξ)=
2
πξ

∫
∞

0
P(y) sin ξ y dy where P(y)=

{
f (y), for y ∈ (0, b),

g(y), for y ∈ (b,∞).
(3.30)

By putting A(ξ) from (3.30) into relation (3.27), we derive that the unknown
function g(y) satisfies the weakly singular integral equation

1
π

∫
∞

b
g(u) log

∣∣∣u + x

u − x

∣∣∣ du = h1(x) for x ∈ (b,∞), (3.31)

where

h1(x)= h(x)−
1
π

∫ b

0
f (t) log

∣∣∣ x + t

x − t

∣∣∣ dt.

Differentiating relation (3.26) and g(y) twice and, again by application of the
Fourier sine transform, we obtain that

ξ2 A(ξ)=−
2
πξ

∫
∞

0

d2 P

dy2 sin ξ y dy, (3.32)

where the function g1 = d2g/dy2 satisfies the weakly singular integral equation

1
π

∫
∞

b
g1(u) log

∣∣∣u + x

u − x

∣∣∣ du = h2(x) for x ∈ (b,∞), (3.33)

with

h2(x)=
d2h

dx2 −
1
π

∫
∞

b

d2 f

dt2 log
∣∣∣ x + t

x − t

∣∣∣ dt.
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Following a similar argument to the earlier case, one can prove that g(y) and d2g/dy2

are bounded at the end point y = b and the behaviour is

d2g

dy2 ∼ O
(
|y − t |1/2

)
as y→ b+.

Hence the bounded solutions for (3.31) and (3.33) are given by

g(u)=
2
π

√
u2 − b2

u2

∫
∞

b

th′1(t)
√

t2 − b2(t2 − u2)
dt u ∈ (b,∞),

provided that ∫
∞

b

th′1(t)
√

t2 − b2
dt = 0, (3.34)

and

g1(u)=
d2g

du2 =
2
π

√
u2 − b2

u2

∫
∞

b

th′2(t)
√

t2 − b2(t2 − u2)
dt u ∈ (b,∞), (3.35)

provided that ∫
∞

b

th′2(t)
√

t2 − b2
dt = 0. (3.36)

Utilizing the integrals in the Appendix, we express conditions (3.34) and (3.36) in
terms of unknown constants by

J4(λ)C1 + J4(λ1)C2 + J4(λ̄1)C3 − bλ1K1(−bλ1)D1 − bλ̄1K1(−bλ̄1)D2

−

[
iλ

Q(λ)
J4(−λ)−

bλ

Q(λ)
K1(bλ)

]
R =−

iλ

Q(λ)
J4(−λ) (3.37)

and

λ2 J4(λ)C1 + λ
2
1 J4(λ1)C2 + λ̄

2
1 J4(λ̄1)C3 − bλ3

1K1(−bλ1)D1 − bλ̄3
1K1(−bλ̄1)D2

−

[
iλ3

Q(λ)
J4(−λ)−

bλ3

Q(λ)
K1(bλ)

]
R =−

iλ3

Q(λ)
J4(−λ), (3.38)

where K1(x) is the modified Bessel function and Ji (x), i = 1, 2, 3, 4, are given in
the Appendix.

Also, by matching relations (3.30) and (3.32), conditions are obtained for the
functions g and h:

f (b)= 0 that is, C1eλb
+ C2eλ1b

+ C3eλ̄1b
− R

iλ

Q(λ)
e−λb
=−

iλ

Q(λ)
e−λb (3.39)

and
g′(b)= f ′(b). (3.40)
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It may be remarked here that it is not straightforward, as in the case of submerged
structure, to modify relation (3.40) for its suitable form by integrating the solution of
the integral equation (3.35). Instead, relation (3.27) may be differentiated twice and
integrated from b to∞ to get∫

∞

0
ξ2 A(ξ)J0(ξb) dξ =−

∫
∞

b

h′′(y)√
y2 − b2

dy.

Utilizing the expression for ξ2 A(ξ) from (3.32) and relation (3.40), we finally arrive at∫
∞

b

h′′(y)√
y2 − b2

dy + f
′

(0)= 0,

which is expressed in terms of the unknown constants as

λC1 + λ1C2 + λ̄1C3 + λ
2
1K0(−bλ1)D1 + λ̄

2
1K0(−bλ̄1)D2

+

[
iλ2

Q(λ)

(
1− i K0(bλ)

)]
R =

iλ2

Q(λ)
. (3.41)

This completes the description involved in the determination of the analytical
solution of the general mixed boundary value problem posed in Section 2,
corresponding to the case of the surface piercing vertical barrier. Hence, all of the
unknown constants can be obtained from relations (3.28), (3.29), (3.37)–(3.39) and
(3.41).

3.3. Numerical results The unknown constants C1, C2, C3, D1, D2 and R can be
analytically determined from relations (3.6), (3.7), (3.18), (3.20), (3.21) and (3.23) for
the submerged case, and from relations (3.28), (3.29), (3.37)–(3.39) and (3.41) for the
surface piercing case. The absolute values of the reflection coefficient |R| are plotted
in Mathematica for different values of a nondimensional membrane tension parameter
β = M K 2 against a nondimensional wave parameter α = K b for each of the barrier
configurations.

The membrane coupled gravity wave propagation exists purely for M 6= 0 and does
not exist when the membrane tension is ignored, that is, M = 0. However, one might
expect that the numerically calculated values for very small M would match with the
exact values in the limiting case. In the case of a submerged barrier, exact values of
the reflection coefficient for free surface gravity waves are given by

R =
K0(K b)

K0(K b)+ i I0(K b)
.

The graphical profiles of the reflection coefficient |R|, for a submerged barrier,
are plotted in Figures 2–5 for various β values. In Figure 2, the thin line denotes the
reflection coefficient curve that is computed for membrane coupled waves by choosing
a very small β parameter (say, 10−5), while the dashed line denotes the exact reflection
coefficient curve applicable for free surface gravity waves. Hence, the numerical
results for a very small value membrane parameter agree with the analytical results
pertaining to free surface gravity waves.
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FIGURE 2. Reflection coefficient |R| for submerged vertical barrier plotted against the nondimensional
wavenumber α. The dashed line shows the results for β = 0 and the solid line shows those for β = 10−5.
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FIGURE 3. (a) Reflection coefficient |R| for a submerged vertical barrier plotted against the
nondimensional wavenumber α. The dashed line shows results for β = 0 and the solid line shows those
for β = 0.01. (b) Window around a spike in |R| for β = 0.01.

With an increase in the value of the tension parameter, say, β = 0.01, at certain
frequencies, there is a sharp increase in the reflection coefficient. This is an interplay
between membrane tension and incident wave frequency. These isolated frequencies
are called “resonant frequencies” in the literature. Such a phenomenon was also
observed for free surface gravity wave scattering by a complete vertical membrane
barrier (see [8]). Also numerical computations, for different values of β, suggest that
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FIGURE 4. Reflection coefficient |R| for a submerged vertical barrier plotted against the nondimensional
wavenumber α. The dashed line shows results for β = 0 and the solid line shows those for β = 0.1.
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FIGURE 5. Reflection coefficient |R| for a submerged vertical barrier plotted against the nondimensional
wavenumber α. The dashed line shows results for β = 0 and the solid line shows those for (a) β = 0.5
and (b) β = 1.0.

these frequencies start widening and the gap between two successive frequencies
increases with an increase in the membrane tension parameter. Naturally, one might
attribute these sharp increases in the reflection curve to the natural frequencies of the
membrane under tension.

The graphs for the reflection coefficient |R|, for different β values, are shown in
Figures 3–5 in which the thin line represents the computed values while dashes denote
the exact value at β = 0. A typical spike in the reflection curve for β = 0.01 is shown
in Figure 3(b). For β = 0.1, 0.5, 1.0, values of the reflection coefficient are smaller
than those for free surface waves in the specific lower frequency range. As α becomes
bigger, these values catch up with the free surface reflection curve and rise sharply at
resonant frequencies. Overall, they are a little higher than the free surface reflection
values at larger α as shown in Figures 4 and 5.
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FIGURE 6. Reflection coefficient |R| for a surface piercing vertical barrier plotted against the
nondimensional wavenumber α. (a) The dashed line shows results for β = 0 and the solid line shows
those for β = 10−7; (b), (c) show windows around the spikes of |R| for β = 10−7.

Numerical results clearly suggest that the submerged vertical barrier performs well
as a wave barrier. Its performance depends on the amount of reflection it offers. For
small membrane tension, there appear to be many resonant frequencies at which sharp
reflection occurs. However, for bigger values of β, the length of the gap b can be
suitably chosen to allow the resonant frequencies to fall within a fixed range of wave
frequencies, since α = ω2b/g. As resonant frequencies move towards the right at
higher membrane tension, for better performance of the submerged wave barrier, one
may require a bigger (or a smaller) value of b for short (or long) incident waves.
Finally, energy conservation |R|2 + |T |2 = 1, with T = 1− R, is verified numerically
for a submerged barrier.

In Figures 6 and 7, the reflection coefficients |R| for a surface piercing barrier are
plotted against the parameter α for different values of β. Also, for the prescribed edge
conditions, there is no energy dissipation as shown in [6], that is, |R|2 + |T |2 = 1. This
would imply that there is a conservation of energy in this case too, and this has been
verified numerically. However, the reflection curves appear to have negligible spikes
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FIGURE 7. Reflection coefficient |R| for a surface piercing vertical barrier plotted against the
nondimensional wavenumber α. (a) The dashed line shows results for β = 0 and the solid line shows
those for (a) β = 0.01, (b) β = 0.1, (c) β = 0.5 and (d) β = 1.0.

for small values of β closer to zero. For example, when β = 10−7, the membrane
surface reflection curve is shown in Figure 6(a) along with the free surface reflection
curve which is computed from the analytical result

R =
π I1(K b)

π I1(K b)+ i K1(K b)
.

Also, these spike-like variations are shown in the Figures 6(b) and 6(c). It is worth
noting that these negligible spiky variations are not numerical discrepancies but are the
effect of very small membrane tension on waves interacting with the surface piercing
barrier. However, these spikes vanish when β is further reduced to 10−9.

The reflection coefficients are also computed for β = 0.01, 0.1, 0.5 and 1.0; these
are shown in Figure 7. Contrary to the submerged barrier case, it is observed that
there are sharp dips, at certain resonant frequencies, in the reflection coefficient for
each specified β. For small β values, say 0.01, there are also a few sharp rises in
the reflection curve at the lower frequencies. As the value of the membrane tension
parameter increases, the positions of these sharp dips or resonant frequencies move to
the right and the gap between two successive dips increases. In the process, sharp rises
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start disappearing and one can see only dips or zero reflection values at all the resonant
frequencies.

Physically, for these wave frequencies, either reflection or transmission occurs
partially or completely. In other words, the progressive wave gets trapped on either
side of the partial barrier. In designing wave barriers, these frequencies must be
considered and avoided if necessary. When the membrane tension is high, these dips
are greatly reduced and the reflection is not as high as for free surface gravity waves.

Finally, it may be remarked that this kind of trapping phenomenon has also been
studied numerically (see [4, 17]) for gravity waves at the end of a semi-infinitely long
channel of finite depth, with either rigid or porous type partial vertical barriers.

4. Conclusions

In the present study, scattering of membrane coupled gravity water waves by
partial vertical barriers is considered. Using certain mode-coupling relations, the
corresponding mixed boundary value problem has been reduced to the problem of
solving a set of dual integral equations. These equations are solved by converting them
into a pair of singular integral equations, with logarithmic kernel. The end behaviour of
solutions of these weakly singular integral equations forces a mathematical constraint
which helps in determining the unknowns associated with the dual integral equations
analytically. The graphical profiles of the reflection coefficients have been plotted
against a nondimensional wave parameter for different values of the nondimensional
membrane tension. In the limiting case M→ 0 and M 6= 0, numerical results for the
reflection and transmission coefficients match exactly with exact values for the free
surface gravity waves. Also, when M 6= 0, there exist resonant frequencies at which
either sharp rises or dips (or both) in reflection coefficient were observed. This does not
happen for the free surface gravity scattering by these structures. The present method
of solution can be extended to mixed boundary value problems corresponding to the
scattering of more general flexural gravity waves by partial vertical barriers as well as
by a vertical barrier with a finite number of gaps in it. Further, the solution procedure
applied here to solve a set of dual integral equations with trigonometric kernel is quite
useful for dealing with similar boundary value problems in other branches of science
and engineering.
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Appendix. Standard integrals

In this appendix, we list certain integrals evaluated by standard contour integration
technique and a few among the other integrals utilized in the analysis with notation
Ji (x), i = 1, 2, 3, 4. The reader may refer to Equations 3.387(5, 6), 3.389(3, 4),
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3.753(3) and 6.693(7) in Gradshteyn and Ryzhik [7].∫ b

0

dt
√

b2 − t2(x2 − t2)
=

π

2x
√

x2 − b2
for x > b,∫

∞

b

t
√

t2 − b2(t2 − x2)
dt =

π

2
√

b2 − x2
for x < b,∫ b

0

t2
√

b2 − t2

(t2 − x2)
dt = −

π

4
[2x2
− 1] for 0< x < b,∫ b

0

t2
√

b2 − t2(t2 − x2)
dt = −

2
π

[
x

√
x2 − b2

− 1
]

for x > b,

J1(x) =
π

2

[
I0(bx)+ L0(bx)

]
,

J2(x) =
b2π

2

[
I0(bx)+ L0(bx)

]
−

bπ

2x

[
I1(bx)+ L1(bx)

]
,

J3(x) = −
b

x
K1(−bx)+ b2K0(−bx), J4(x)= b

[
1+

π

2

(
I1(xb)+ L1(xb)

)]
where K0, K1, I0 and I1 are modified Bessel functions and L0 and L1 are Struve
functions.

References

[1] A. Chakrabarti and S. R. Manam, “Solution of the logarithmic singular integral equation”, Appl.
Math. Lett. 16 (2003) 369–373.

[2] I. H. Cho and M. H. Kim, “Interaction of a horizontal flexible membrane with oblique incident
waves”, J. Fluid Mech. 367 (1998) 139–161.

[3] I. H. Cho and M. H. Kim, “Wave deformation by a submerged circular disk”, Appl. Ocean Res.
21 (1999) 263–280.

[4] A. T. Chwang and Z. N. Dong, “Wave trapping due to a porous plate”, Proceedings of the 15th
ONR Symposium on Naval Hydrodynamics, (National Academy Press, Washington, DC, 1984)
407–414.

[5] R. Estrada and R. P. Kanwal, “Integral equations with logarithmic kernels”, IMA J. Appl. Math.
43 (1989) 133–155.

[6] D. V. Evans, “The influence of surface tension on the reflection of water waves by a plane
vertical barrier”, Proc. Cambridge Philos. Soc. 64 (1968) 795–810.

[7] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products (Academic Press,
London, 1980).

[8] M. H. Kim and S. T. Kee, “Flexible membrane wave barrier. I: Analytic and numerical
solutions”, ASCE J. Waterway, Port, Coastal Ocean Engng 122 (1996) 46–53.

[9] S. R. Manam, J. Bhattacharjee and T. Sahoo, “Expansion formulae in wave structure interaction
problems”, Proc. R. Soc. Lond. A 462 (2006) 263–287.

[10] P. F. Rhodes-Robinson, “The effect of surface tension on the progressive waves due to
incomplete vertical wave-makers in water of infinite depth”, Proc. R. Soc. Lond. A 435 (1991)
293–319.

https://doi.org/10.1017/S1446181110000064 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000064


260 S. R. Manam [20]

[11] T. Sahoo, T. L. Yip and A. T. Chwang, “Wave interaction with a semi-infinite horizontal
membrane”, Proceedings of XXIX IAHR Congress, Theme E-Hydraulics for Maritime
Engineering, Beijing, China, 2001, (Tsinghua University Press, Beijing, 2001) 109–117.

[12] T. Sawaragi, Coastal engineering—waves, beaches, wave–structure interactions (Elsevier,
Tokyo, 1995).

[13] J. J. Stoker, “Surface waves in water of variable depth”, Quart. Appl. Math. 5 (1947) 1–54.
[14] F. Ursell, “The effect of a fixed vertical barrier on surface waves in deep water”, Proc.

Cambridge Philos. Soc. 43 (1947) 374–382.
[15] W. E. Williams, “A note on scattering of water waves by a vertical barriers”, Proc. Cambridge

Philos. Soc. 62 (1966) 507–509.
[16] T. L. Yip, T. Sahoo and A. T. Chwang, “Wave scattering by multiple floating membranes”,

Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavangar,
Norway, 2001, (International Society of Offshore and Polar Engineers, Cupertino, CA, 2001)
3, 379–384.

[17] T. L. Yip, T. Sahoo and A. T. Chwang, “Trapping of surface waves by porous and flexible
structures”, Wave Motion 35 (2002) 41–54.

https://doi.org/10.1017/S1446181110000064 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000064

