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Abstract

In order to classify solvable groups Philip Hall introduced in 1939 the concept of isoclinism.
Subsequently he defined a more general notion called isologism. This is so to speak isoclinism
with respect to a certain variety of groups. The equivalence relation isologism partitions the
class of all groups into families. The present paper is concerned with the internal structure of
these families.
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1. Introduction, preliminaries and notational conventions

It is a well-known fact that solvable groups are difficult to classify because of the
abundance of normal subgroups. In a certain sense the class of groups of prime-
power order is the simplest case to handle. But already here the classification is
far from being complete. Up to now there are only a few classes of such prime-
power order groups which have been adequately analysed. The first to create
some order in the plethora of groups of prime-power order was Philip Hall. He
observed that the notion of isomorphism of groups is really too strong to give
rise to a satisfactory classification and that it had to be replaced by a weaker
equivalence relation. Subsequently he discovered a suitable equivalence relation
and called it isoclinism of groups (see [6]). It is this classification principle that
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[2] Varieties of groups and isologisms 23

underlies the famous monograph of M. Hall and J. K. Senior on the classification
of 2-groups of order a t most 64.

Shortly after the notion of isoclinism was defined, Hall generalized this to
what he called ty-isologiam, where 93 is some variety of groups. Isologism is so
to speak isoclinism with respect to a certain variety. In this way for each variety
an equivalence relation on the class of all groups arises. The larger the variety,
the weaker this equivalence relation is. If 93 is the variety of all abelian groups,
93-isologism coincides with isoclinism. The groups in a variety 93 fall into one
single equivalence class: they are 93-isologic to the trivial group.

For 93 the variety of all ni lpotent groups of class a t most n (n > 0), the notion
of 93-isologism is nothing else bu t the notion of n-isoclinism (where it is under-
stood tha t 1-isoclinism equals isoclinism). The s t ruc ture of n-isoclinism classes
was extensively studied in [8]. The aim of the present paper is to investigate
which results on n-isoclinism (see [8]) can be generalized to 53-isologism, and
how this depends on the defining laws and internal s t ructure of the variety 93.

The paper is organized as follows.
Section 2 deals with the basic propert ies of verbal and marginal subgroups

needed in the sequel. If N is a normal subgroup of the group G we introduce
(following [11]) a subgroup of G denoted by [JVV*G], depending on a variety 93.
This group [NV*G] plays a prominent role in this paper . For example, it tu rns
u p in calculating the verbal subgroup of a group which can be wri t ten as the
product of a subgroup and a normal subgroup (see (2.4)). The group [./VV*G]
features also as the verbal subgroup of a group with respect to a certain product
variety to be defined in Section 3. (We remark t h a t there is still another place
where the usefulness of the group [ i W * G ] is demonst ra ted . The definition of
the so-called Schur-Baer multiplicator (see [11] and [1], Chapte r IV, Section 7)
involves this group. However we will not deal with the Schur-Baer multiplicator
since our results are not established by cohomological means.)

There exist many ways in which a variety can be produced s tar t ing from two
given ones. Section 3 deals with one of these fashions, namely a certain product
variety enters the scene. The definition here stems from [11].

In Section 4 the definition of 93-isologism is introduced and some of its ele-
mentary properties are derived.

A result of P. M. Weichsel and J . C. Bioch (see [21] and [2]) s tates t h a t two
n-isoclinic groups G\ and Gi have a common n-isoclinic ancestor G, t ha t is, G\
and G2 can be realized as quotients of a group G, while G, G i and G2 are in
the same n-isoclinism class. This can directly be generalized to 93-isologism. On
the other hand, it was proved in [8] t ha t any two isoclinic groups G i and Gi
have a common isoclinic descendant G, t ha t is, G\ and G2 can be realized as
subgroups of a group G, whereas G, G\ and G2 are isoclinic to each other. It is
unknown whether this result allows a 93-isologic generalization. However under
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a mild restriction on the variety 53 a theorem similar to the isoclinic case can be
derived. All this is the object of Section 5.

It was proved in [8] that an n-isoclinism between two groups yields certain
n-isoclinisms for the corresponding lower commutator subgroups and for the
corresponding upper central factor groups. In Section 6 this phenomenon will
be illustrated from a varietal point of view. The product variety as defined
in Section 3 comes into play here. The ceiling function [x] of a real number x,
defined as the smallest integer not smaller than x, has to be employed to describe
the so-called induced isologisms. This is caused by a multiplicative property of
the lower commutator subgroups (see [15], 5.1.11(ii)).

Section 7 is concerned with characterizations of groups being 33-isologic to
finitely generated groups of a certain type. The results obtained, extend a the-
orem in [8] on the characterization of groups being n-isoclinic to a finite group.
Moreover they are related to solutions of Hall's problem on Schur pairs (see [14],
Chapter 4, Section 2 and also [18]).

It was Philip Hall who coined the name stemgroup for groups having their
center contained in its commutator subgroup. He proved their existence within
an arbitrary isoclinism class and hence recognized the importance of stemgroups
in classifying groups of prime-power order. The obvious generalization to a
variety 23 of a stemgroup — groups having their 23-marginal subgroup contained
in its 03-verbal subgroup (see [1], Chapter IV, 7.25) — cannot be maintained,
if one requires the existence of such groups within 93-isologism classes. This is
one of the matters brought up in Section 8. Here we define 93-stemgroups as
being groups with the property that its 93-verbal subgroup contains the center
of the whole group. This agrees with an earlier notion introduced in [8] in the
n-isoclinic case. Finally the existence of 23-stemgroups within a 23-isologism class
is proved for 23 being the variety of all polynilpotent groups of some fixed class
row.

As to the use of terminology and notational conventions in this paper, the
following is relevant. The reader is referred to the book of Hanna Neumann [13]
for the basic definitions and facts concerning varieties of groups. On the whole
the notation of [15] will be adhered to. Capital Roman letters will denote groups
and capital Gothic letters will denote varieties of groups. The following notation
of special varieties will be in force throughout:

<£: the variety of all trivial groups,

% „ : the variety of all abelian groups of exponent dividing m (m > 0),

2t: the variety of all abelian groups,

9tc: the variety of all nilpotent groups of class at most c (c > 0),

6 ; : the variety of all solvable groups of length at most I (I > 0),
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[4] Varieties of groups and isologisms 25

^ci,. . . ,ci : the variety of all polynilpotent groups of class row ( c i , . . . ,cj)

(d > 1,1 > 1) (see [13], 14.66 and 21.52).

If G is a group and 23 a variety, then V(G) denotes the verbal subgroup and
V*(G) the marginal subgroup of G wi th respect to 23 (see also [11] and [15],
Chapter 2, Section 3). T h e la t ter nota t ions run according to the following rule:
whenever a capital Gothic let ter is used to denote a variety, the corresponding
capital Roman letter is employed to denote the verbal and marginal subgroups.
In some cases the verbal and marginal subgroups can be calculated explicitly:
the terms of the lower and upper central series of a group G are denoted by

7 l ( G ) = G > 7 2 ( G ) > 7 3 ( G ) > - - - and fc(G) = 1 < fc(G) < fc(G) < •••

respectively (see [15], Chapte r 5, Section 1). These are the verbal, respectively
the marginal subgroups of G wi th respect to *Ho, 9 t i , 9t2, Recall that the
marginal subgroups are characteristic, while the verbal subgroups are even fully
invariant.

The letter F will denote an (absolutely) free group of unspecified rank; we
write F3 if the free group is of finite rank s. For the elements of F (or Fs) the
small Roman letters x, Xi, 12, 13 , . . . will be used.

A variety is nilpotent if it is contained in 9te for some c.
A variety is finitely based if it can be defined by a finite set of laws, and hence

by one law.
Let ^ be a property of groups. A variety 23 is locally £P if the finitely

generated members of 23 satisfy the property &'.
A ^splitting group is a group G € 23 such that any extension of a group of 23

by the group G is split. The relatively free groups F/V(F), FS/V(FS),... are
called 23-free groups. A 23-free group is 23-splitting (but not conversely, see [13],
Chapter 4, Section 4).

The letters X and 2) are reserved for denoting classes of groups. A class
of groups is understood to contain a group of order 1 and to be closed under
isomorphisms. The class of finite groups will be denoted by 5. A group G is
jE-by-Sp if it contains a normal subgroup N such that N € X and G/N € 2J. The
letter ir will always denote a non-void set of prime numbers. By Xn the subclass
of 7r-groups of X is meant.

The Frattini subgroup $(G) of an arbitrary group G is defined to be the
intersection of all maximal subgroups of G, with the convention that $(G) = G
in case G does not possess any maximal subgroups.

The socle soc(G) of an arbitrary group G is the group generated by the mini-
mal normal subgroups of G, with the stipulation that soc(G) = 1 if G is lacking
minimal normal subgroups.

A group is polycyclic if it has a series with cyclic factors. A cyclic group of
order n is denoted by Cn or Z/nZ.
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If H is a subgroup of G we set [H, oG] — H and by induction [H, n + i G ] =

[[H,nG],G] (n > 0). Note tha t [H,n+iG] is a normal subgroup of G.

2. Basic properties of verbal and marginal subgroups

In this section we provide some preliminary properties and notions concerning
verbal and marginal subgroups.

(2.1) DEFINITION. If N < G and 93 is a variety, define [NVG] to be the
subgroup of G generated by

{v(gi ,...,gi-i, gtn, gi+1,..., gs)(v(g!,..., ft-i, ft, ft+i,.. •, ffs))"1:

1 <i<s <oo,v€V(Fs),gi,...,gs€G,neN}.

It is easily checked that [./VV*G] is the smallest normal subgroup T of G con-
tained in N, such that N/T C V(G/T). In other words, G/[NV*G] is the
largest quotient of G in which N becomes marginal. The following examples will
be helpful in the rest of this paper: if 93 = <£, then [NV*G] = N; if 93 = «nc, then
[NV*G] = [N,CG]. In Section 6 we will calculate [NV*G] for 93 = %., C|.

(2.2) LEMMA. Let N < G and 93 and 233 varieties such that 23 C [2U, «£].
Then the following hold.

(a) [N,W(G)}C[NV*G].

PROOF, (a) If w e W(FS) is a law of 20, then [w,xs+i] is a law of 93.

So if we put v(xu...,x3+i) = [w{xi,... ,xs),xs+i], then Mffi,.. .,ga),n] =
v(gi, • • • ,gs,n)v(gi,... ,ga, I )" 1 is an element of [A^y*G] for all n € N and
9l,...,gseG. Hence [N,W(G)} C [NV*G\.

(b) As [V*{G)VG] = 1, it follows from (a) that [V*{G),W{G)\ = 1.

(2.3) PROPOSITION. Let N < G and 93 a variety. Then the following
properties hold.

(a) V{V(G)) = 1 and V*{G/V{G)) = G/V(G).
(b) V(G) = 1 <=> V(G) = G o G e 93.
(c) [ATV*G] = 1^JVC V*(G).
(d) V(G/7V) = V{G)N/N and V*(G/N) D V*(G)N/N.
(e) V(JV) C [ATF*G] C AT n V(G). /n particu/ar V(G) = [GV*G].
(f) //ArnV(G) = 1, then N C V*{G) andV*(G/N) = V*(G)/N.
(g) If[G,N] C V(G), «/ien [V(G),JV] = 1. In particular [V(G),V(G)} = 1.

PROOF, (a), (b), (c) and (d) are clear from the definitions.
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(e) Let n i , . . . , n 8 € N and v G V{FS). Then v ( r c i , . . . , n s ) =

u ( m , . . . , ns)i>(l, n 2 , . . . , n ^ ) " 1 • v ( l , n 2 , . . . , ns)t>(l, 1, n 3 , . . . , n^'1

• • • v(l,..., 1, n s _ i , n s )w( l , . . . , 1 , 1 , n s ) - 1 • v(l, ...,l,na)

and this is clearly an element of [NV*G]. We conclude tha t V{N) C [AT*G].

The inclusion [AVG] C NnV(G) is immediate.
(f) The first part of the assertion follows from (c) and (e). From (d) we

have V{G)/N C V*(G/N). Put V*(G/N) = M/N, so that M < G and
[MF*G] C AT. From (e) we see that [MV*G] C V(G). Hence [MF*G] = 1 and
by virtue of (c) we get M C V*{G). Whence V*{G)/N = V*{G/N).

(g) Let v G V(FS), gx,..., ga G G and n € iV. Then

Kffi, • • •, ffs),«] = v(gi,..., ffs)"1^^"1^!^...,n~1gsn)

= «(ffi, • • •, ̂ r M f f i ^ i i " ] , • • •! 9sbs, n])

= v{gi,...,ga)~
1v(g1,...,ga) = 1.

We conclude that Â  centralizes V(G).

We remark that Phillip Hall called the assertion (2.3)(g) the Permutability
Theorem (see [7]). Next we turn to the computation of a verbal subgroup of the
group G, when G is given as a product of certain subgroups.

(2.4) THEOREM. Let H <G and N <G such that G = //AT. Let 37 be a
variety. Then V{G) = V(H)[NV*G].

PROOF. By (2.3)(e) we have [NV*G] C V(G). Also V(H) C V{G). Hence
V{H)[NV*G] C V(G). Next we claim that V(H)[NV*G\ is a normal subgroup
of G. Indeed, [A'V'G] < G and if normalizes V(i/), so that it suffices to show
that N normalizes V(H)[NV*G], as G = HN. Let n G Â  and v G F(i/) .
Then n^ tm = w^.n] G V{H)[V(H),N] C V(^)[V(G), AT] C V(^)[JW*G], by
(2.2)(a). This proves the claim. By virtue of (2.3)(e) we have V(G) = [GV*G\.
So, let us consider an element

«(0i, • • • 19i- i ,9 i9 ,9i+i , - • •. 9s)v{gi,- • •, ft, • • •, ffa)""1

where g,gi,• • • ,gs € G and w € V(FS). Now write g = hn and gt = /it«t, with
h,hi G /f and n,rii E N (i = 1,..., s). Then, if bar ' denotes reduction modulo
V{H)[NV*G), we get

. , hi—ifii—i, hih • h Hih • n,

= T.
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Note that the second equality sign follows from the fact that N is marginal
in G (see (2.1)). Hence it follows that V{G)/V(H)[NVG] = I . So V{G) C
V(H)[NV*G\. We obtain V{G) = V{H)[NV*G], as required.

A part of the next lemma can be found in [22], Lemma 6.4 and also, in case of
finitely based varieties, in [18], Lemma l(d). For the convenience of the reader
we provide a short proof.

(2.5) LEMMA. Let H <G and 93 be a variety. Suppose that G - HV*{G).
Then the following properties hold.

(a) V*(ff) = V(G)nf f .
(b)V(H)=V(G).
(c) V{H) n V*{H) = V{G) n V*{G).

PROOF, (a) By definition it is clear that V*{G) n H C V{H). Now
V*(G) = V*{HV*{G)) = V*{H)V*{G), so that V*(H) C V*(G). Hence
V*(H) CV*{G)nH.

(b) By (2.4) we have V(G) = V{H){V*{G)V*G]. But (2.3)(c) tells us that
[V(G)V*G] = 1.

(c) This is a consequence of (a) and (b).

(2.6) PROPOSITION. Let 93 be any variety. Then V*{G)nV(G) C $(G).

PROOF. If G does not have maximal subgroups, there is nothing to prove. So
let M be a maximal subgroup of G. Then either V*(G) C M or V*(G)M - G.
From (2.5)(c) it follows that in each case V*{G) D V(G) C M.

3. A product variety

There are several ways to construct a variety out of two given varieties il and
5J. An obvious way to do this is taking the intersection, ilA2J, of the varieties, or
defining the variety ilV53 as the variety generated by il and 93 (see [13], page 20).
More sophisticated, Hanna Neumann introduced the product iCU of the varieties
as being the variety of all groups that are extensions of a group in il by a group
in 93. Still another way of producing a new variety out of iX and 9J is taking
their commutator product [U,9J] (see [13], Chapter 2, for properties and details).
From the definition it follows immediately that ilV9J C [il,9J]. Following C.
R. Leedham-Green and S. McKay, we define a product of the varieties il and 93
which lies between il V 93 and [il, 93].

(3.1) DEFINITION ([11], page 104). If il and 93 are varieties, then the product
il * 93 is the variety of all groups G such that U(G) C V*(G).
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It is not so difficult to show tha t this class of groups i l * 23 is in fact a
variety and tha t the verbal subgroup of a group G with respect to tha t variety
is [U(G)V(G)\ (see [11], Proposition 1.5).

Our notation differs from the one used by Leedham-Green and McKay; they
write il23* rather than i l * 23. In general the product * is not commutative (see
[11], Example 2 on page 106) and in a moment we will see tha t it is not even
associative. To give some examples, if 23 is a variety, then <£*23 = 23 = 23*<£
and we have [23, <£] = 2J * SI. Further, for any non-negative integers m and n,
%n * %i = %n+n (see [11], Example 1 on page 105).

With respect to the marginal subgroup of a group G corresponding to the
variety i l * 23, we have the following.

( 3 . 2 ) THEOREM. Let il and 23 be varieties and put 233 = il * 23. Then for
any group G the following hold.

(a) V*(G) C W*(G).
(b) W*(G)/V{G) C U*{G/V*{G)) C W*{G/V*(G)).

We observe that the first inclusion of (3.2) (b) is equivalent to

[[W*{G)U*G]V*G] = 1.

Moreover, if we put U*(G/V*(G)) = M/V*(G), then M < G and M e 233.
Indeed, [MU*G] C V(G), so [[MU*G\V*G\ = 1 by (2.3)(c). Hence by virtue of
(2.3)(e) [U{M)V*M] = \[MU*M)V*M) C \[MU*G\V*G\ = 1, so that U(M) C
V*(M), as desired.

For the proof of (3.2) we need a lemma.

(3.3) LEMMA. Let il and 23 be varieties and put 233 = il * 23. Then the
following are equivalent.

(a) For any group G: W*(G)/V*{G) C U*(G/V*{G)).
(b) For any group G and N < G: [[NU*G\V*G\ C [NW*G\.

Moreover the equality sign holds in (a) if and only if the equality sign holds in
(b).

PROOF. (a)=>(b): Let bar ' denote reduction modulo [NW'G]. Hence N C
W(G). Now NV*(G)/V*Jp) QW*(G)/V*{GlC C/*(G/V^(G)) by_assertion.
It follows from (2.1) that [NV{G)U*G] C V*(G). So (NU*G] C V ( S ) , that is
by (2.3)(c) {{~NU*G]V*G] = T. But this is clearly equivalent to [{NU*G]V*G} C
[WG].

(b)=>>(a): Take Â  = W*(G) and apply (2.3)(c). This concludes the proof of
the first part of the theorem.

To prove the last assertion, assume first that for any group G it holds that
W*{G)/V*{G) = U*{G/V*{G)). Now fix a group G and N < G. By the
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first part of the proof [[NU*G]V*G] C [NW*G\. To obtain the reverse inclu-
sion let now bar T denote reduction modulo [[iV£/*G]V*G]. Then apparently
[NU*G] C V*(G) and this implies that NV*{G)/V*{G) C U*(G/V(G)). But
U*(G/V*(G)) = W*(G)/V*{G) by assertion, whence N C W*(G). Thus by
(2.3)(c) \NW*G] = I , that is [NW*G] C [[NU*G]V*G], as required.

Finally assume that for any group G and N < G it holds that [[NU*G]V*G] =
[AW*G]. Pick a group G and put U*(G/V*(G)) = M/V*(G). Then M < G
and \MU*G] C V*(G). Thus [[Mf/*G]V*G] = 1 by (2.3)(c). By hypoth-
esis [[MU*G]V*G] = [MWG], so M C W*(G). Hence U*(G/V*(G)) C
iy*(G)/V*(G) and the reverse inclusion is again assured by the first part of
the lemma.

PROOF OF (3 .2) . It holds that QJ C 20. Indeed, if G G 53, then by (2.3)(b)
G = V ( G ) . Obviously tf(G) C V*(G) = G, thus G € 20. It follows that
V*{G) C W*(G) for an arbitrary group G, which proves (a).

The second inclusion in (3.2)(b) holds as soon as we have shown that il C 2D.
Indeed, if G € it, then U(G) = 1 by (2.3)(b). Hence W{G) = [U(G)VG] = 1,
thus G G 2U, again by virtue of (2.3)(b). We are left with proving the first
inclusion of (3.2)(b). On invoking the Lemma (3.3) it suffices to prove that for
any G and N < G we have [{NU*G]V*G} C [NW*G]. So let N < G. We
use that if u (x i , . . . ,xr) and v(x%,..., xa) are words in respectively U(Fr) and
V(Fa), the laws which determine 2B are given by

u ( i i , . . . , Xiu(xa+U ..., xa+r),xi+i,..., xa)v(xi,..., n,..., i s ) " 1 ,

where 1 < z' < s (see [11], Proposition 1.5(ii)). A generating element of

[[NU*G]V*G]

is of the following form:

(*) v(gi,..., giu{gs+1,..., ga+jn,..., ga+r)u(ga+1,..., ffs+r)"1, • • •, ffs)

•^(ffi .---,^)"1.

where 3 i , . . . , g s + r 6 G, n € TV, 1 < i < s and 1 < j < r. Put u =
u (g s + i , . . . , g s + r ) and w' = u(£s+i, . . . ,gs+jn,... ,ga+r)- Then the element in
(*) takes the form:

v(gi, • • •, giu'u~1,gi+i,..., ga)v(gi,..., gs)'1

= v{gi,..., giu~l • uu'u~l, gi+i,..., ga)v(gi,..., giW1, gi+i,..., t/^)"1

•v(gi,. • •, fttf \ gi+i,..., ga)v(gi,..., &,)"1

and this is clearly an element of [NWG]. We conclude that [[NU*G]VG] C
[NWG], as required.

For later purposes we need the following facts.
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(3 .4) PROPOSITION. Let i l and 23 be varieties and put 20 = il * 23. Let
N <G. Then the following hold.

(a) IfN C W*{G), then [NU*G] C V(G).
(b) #JVnV(G) = l, «/jen/VrW*(G)C[/*(G).

PROOF, (a) If N C W*(G), then by (2.3)(c) [NW*G] = 1. By utilizing
(3.3) in connection with (3.2)(b) we get [[NU*G]V*G] - 1. Again (2.3)(c) gives
[NU*G] QV*{G).

(b) Here, [(TV n W{G))U*G] C TV n [W(G)tf"G] C JVn V(G) . Hence, if
TV n V*(G) = 1, then (2.3)(c) gives the required result.

(3.5) PROPOSITION. Let iX, %} and W be any varieties. Then

i l* (23*20) C (il*23)*2D.

PROOF. Let G 6 il * (23 * 20). Put X = 23 * 20. Hence U{G) C T* (G). Now
an application of (3.4)(a) yields [U{G)V*G] C W(G) . Thus 5(G) C W(G),
where 6 = il * 23. We conclude that G € (il * 23) * 20.

In general equality does not hold in (3.5). Equality does hold however for
arbitrary il with the stipulation that in (3.3) the equality sign holds every-
where for the varieties 23 and 20. That is, for any group G it holds that
T*(G)/W*{G) = V(G/W*(G)), where 1 = 23 * 20. Indeed, if G € (il * 23) * 20,
then [S(G)WG] = 1, with 6 = il * 23. By (3.3) we have that [U(G)T*G] =
\[U{G)V*G]W*G] = [S(G)W*G]. Hence G e il * (23 * 20), which proves the
above claim. In a moment we will encounter an example where the inclusion of
(3.5) is strict.

(3.6) PROPOSITION. Let i l C ill and 23 C 23i be varieties. Then the fol-
lowing hold.

(a)il*23Cili*23!.

(b)il*2lD2Uil.
(c) For anym, n > 0, ii*%n+n = (ii*%n) *%,.

PROOF, (a) If G e U* 23, then UX{G) C U(G) C V*{G) C Vi(G), so
G e i l i *23i.

(b) Let G € 21 * il, so 72 (G) C U*(G). Then (2.3) (g) ensures the inclusion
f/(G) C f(G). Thus G €11*21

(c) This follows immediately from the remarks made after (3.5) and the fact
that for any group G and integers m, n > 0, fm+n(G)/fn(G) = fm(G/fn(G)) (see
[15] 5.1.11(iv)).
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(3.7) EXAMPLE. The example we describe has a threefold purpose. First
it shows that the product * as defined in (3.1) is not associative. Secondly, it
provides an instance where in (3.3) (a) strict inclusion holds. Thirdly, it indicates
that in (3.6) (b) the variety 21 cannot be replaced by the variety 5^.

Consider the varieties il = 93 = 21 and 233 = 62 — [21,21]. We claim that, with
this notation, strict inclusion in (3.5) holds. For suppose that 2t * (2t * 62) =
(2t * 21) * 6 2 . Then by applying (3.6) several times we get (21 * 21) * 6 2 =
2t * (21 * 62) C (21 * 62) * 21 C (6 2 * 21) * 21 = 6 2 * (21 * 21). Hence it would follow
that 9I2 * 62 ^ 6 2 * ^ 2 , which is not the case by virtue of Example 2, page 106
in [11]. This also explains the third purpose, as referred to above.

Next, there exists a group G, such that T*{G)/W*(G) % V{G/W(G)),
where X = 93*2U = 2l*62- Indeed, if this would not be the case, then the
observations made after (3.5) would yield that 21 * (21 * 62) = (21 * 21) * 62.
However, we have just shown that this is false. Hence here we see that in (3.3)
the inclusion signs can be strict. This justifies the following definition.

(3.8) DEFINITION. Let il and 53 be varieties and put 233 = il * 53. For a
group G let Au,*(G) = U*(G/V*(G))/(W*(G)/V*(G)).

In other words, Au>«o(G) measures to what extent the group U*(G/V*(G))
deviates from the group W*(G)/V*{G), following (3.3). In Theorem (5.3) we
will prove that Aa,<o(G) is a so-called family invariant for 213-isologism.

We close this section with examining the relations between the varietal prod-
uct (as defined by Hanna Neumann), the product * and the commutator product
of varieties.

(3.9) PROPOSITION. Let ii, 93 and233 be varieties. Then the following hold.
(a)ilv53Cil*93C93U.
(b) / / il C 233 * 21, then il * 93 C [SB, 93]. In particular il * 93 C [il, 93].

PROOF, (a) By (2.3)(e) we have [U(G)VG] C U(G)nV(G) for any group G.
HenceHV93 C H*93. Now assume G €il*93, so that U(G) C V*{G). According
to (2.3)(a) we get V{U{G)) = 1. Thus G € 93U. We conclude that il * 93 C 93il

(b) Let G e 11*93, so that U(G) C V*{G). By hypothesis U{G) 2 [W{G),G\.
Hence [W{G),G] C V*{G) and (2.3)(g) ensures [V(G),W{G)\ = 1. Thus G €
[233,93]. This shows that il * 93 C [233,93]. Certainly il C il * 21, so that the last
assertion follows by setting 233 = il.

4. Isologisms

In a short paper, [7], Philip Hall introduced the notion of isologism, an equiv-
alence relation on the class of all groups. This equivalence relation depends on
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some fixed variety 53 and has the property tha t the groups in the variety 53 form

a single equivalence class. The notion of isoclinism, which also originated with

Hall, is a special case of isologism by taking for 53 the variety of all abelian

groups. As Hall pointed out, the idea behind isologism is t o build a general

theory of classification of groups, more precisely, to "obtain a distinct system of

classification corresponding to every fully invariant subgroup of the free group

with a denumerable infinite number of generators".

( 4 . 1 ) DEFINITION. Let 53 be a variety and G and H be groups. A 93-

isologism between G and H is a pair of isomorphisms (a , 0) with a: G/V*(G) ^+

H/V*{H) and 0: V{G) ^ V(H), such tha t for all s > 0, all v(xi,...,x3) G

V(F3) and all gi,...,ga G G, it holds tha t 0{v{gi,...,ga)) = v{hu... ,ha),

whenever hi G a(giV*(G)) (i = 1, . . . , s). We write G ~ H and we will say that

G and H are 53- isologic.

Notice that if one puts 53 = <Jln, the above definition is nothing else but the
definition of n-isoclinism (see for example [8], Section 3). In that case we write
G ~ H in stead of G ~ H. For the rest of this paper the word "isoclinism" will

n <Ttn

mean "n-isoclinism", for some unspecified n > 0. (This, in contrast to [8], where
"isoclinism" and "1-isoclinism" are synonymous.)

We collect some elementary properties of 53-isologisms.

(4.2) LEMMA. Let{a,0) be a XI-isologism between Gi andG?. The follow-
ing hold.

(a) # V*(Gi) < Hx < d and a[i?i/K*(Gi)] = H2/V*{G2), then Hx ~ H2.

(b) IfNi < Gi and Nx C V(Gi), then d/Ni ~

PROOF. Omitted. It runs along the same lines as in the n-isoclinic case, see
[2], Lemma 1.2.

(4.3) PROPOSITION. Let (a,0) be a W-isologism between G and H. Let
v G V{G). Then the following hold.

(&)a(vV*(G))=0(v)V*(H).
(b) Ifg&Gandhe a{gV*(G)), then 0{v°) = 0{v)h.

PROOF, (a) This is clear from the definition of 53-isologism.
(b) Let w G V(FS), say w = w{xi,... ,xs). Let g,gi,.-.,ga G G and

choose h G a(gV*(G)), hi G a(&V(G)) (i = l , . . . , s ) . Observe that h% G
a(g?V*(G)), because a is a homomorphism. We have 0{{w{g\,.. -,ga))

9) =
0(w(gl..., gi)) = w(hl ...,hh

a) = («;(&!,..., hs))
h = 0(w(9l,..., ga))

h.
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(4 .4) LEMMA. Let H <G, N <G and 93 be a variety. Then the following
hold.

(a) H ~ HV*(G). In particular, if G = HV*(G), then G~H. Conversely,

if G/V*(G) satisfies the descending chain condition on subgroups and G ~ H,

thenG = HV*{G).
(b) G/N ~G/{NnV{G)). In particular, tfNnV(G) = l, then G ~ G/N.

Conversely, ifV(G) satisfies the ascending chain condition on normal subgroups

and G ~ G/N, then N n V(G) = 1.

PROOF, (a) We define a map a by putting a{hV*(H)) = hV*(HV*{G)) {h e
H). Since V*{HV*(G)) = V*(H)V*(G), a is an isomorphism from H/V*{H)
onto HV*{G)/V*{HV*(G)). Since V(H) = V{HV*{G)) and a induces the
identity on V(H), the pair (a,idy(H)) 1S a 2J-isologism between H and HV*(G).

Now suppose H < G and H ~ G. By the above we may assume that H D

V*(G). Now put H = Ho. There exists an isomorphism c*o: G/V*(G) —>
H/V*{H). Define Ht < H by ao[H/V*(G)] = Hi/V*(H). So i?i 2 V*(if) and
by (4.2)(a) we have H ~ Hi, thus G ~ Hi. Observe that G = H if and only if

H = Hi. Apparently there exists an isomorphism c*i: H/V*{H) —» Hi/V*{H{).

Define /f2 < -^l by ai[ffi/V*(ff)] = Hi/V*{Hi). Hence i / 2 2 V*(i?i) 3
and by (4.2)(a) Hi ~ F 2 , so that G ~ H^. Again, observe that H = Hi

if and only if i?i = i/2- Continuing the above process, we get a sequence of
subgroups of H, H = Ho > Hi > H2 > • • • > V*(H), with the property that
G ~ /f, for each i > 0. If however G/V*{G), and hence H/V{H), satisfies the

descending chain condition on subgroups, then it follows that for some i > 0 we
have Hi = Hi+i. But this is equivalent to G = H, as desired.

(b) We denote G = G/N and G = G/{N n V(G)). Note that if u, w e V(G),
then u — W •**• w = w. Hence, if v{xi,..., xs) € V(FS) and </i,..., gs S G, then
for a (/ £ G we have (1 < t: < s)

o v { g i , . . . , g i g , . . . , g 3 ) = v ( g i , . . . , g i , . . . , g a ) .

Hence g € V*(G) if and only if g G V*(G). If we define a map a by setting
a{gV*(G)) = ffV*(G), then a is an isomorphism from G/V*{G) onto G/V*{G).
Let u € V(G) and put /?(u) = u. Then ^ is an isomorphism from V(G) onto
V(G) and clearly the pair (a,/?) is a 5J-isologism between G and G.

Conversely, if TV < G and G ~ G/N, then by the above we may assume that

N C V{G). Let /30: V(G) ->• V{G/N) = V(G)/N be an isomorphism. Write
N = NQ. Define Ni C V(G) by ^O[/Vo] = -/Vi/^o- We are assured by (4.3)(b)
that Ni < G. By virtue of (4.2) (b) G ~ G/JVX. Observe that N = 1 if and only
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if No = Ni. Now there exists an isomorphism 0\: V(G) —<• V{G/N\). Define

N2 > Ni by 0i[Ni] = N2/NL Hence N2 C V{G) and N2 < G. Moreover
G ~ G/N2 and No = JVi if and only if Ni = N2. Continuing this construction

we arrive at a sequence N = No < Ni < N2 < • • • < V(G) of normal subgroups
of G, with the property that G ~ G/Nj for each j > 0. If V(G) satisfies the
ascending chain condition on normal subgroups, then we must have Nj = Nj+\
for some j > 0. It follows that N = 1, as required.

If (a, 0) is a 53-isologism between G and H, then it is not difficult to see that
Proposition (4.3) implies that 0 induces an isomorphism from V* (G) C\V(G) onto
V*{H)S1V{H). Also, for instance, G/V*{G)V{G) ~ H/V*(H)V(H). We are
here dealing with so-called family invariants, groups which only depend on the 53-
isologism class. Other examples are contained in the following two propositions.

(4.5) PROPOSITION. Let 53 be a variety and let {a,0) be a VG-isologism
between G and H. Then the following hold.

(a) For alln>0: a\ln+1(G)V*{G)/V*{G)\ = ln+1(H)V*(H)/V*(H).

(b) For all n > 0: /%n(G) nV(G)) = $n(H)nV(H).

PROOF, (a) Clear. In fact, 7n +i(G), respectively 7 n + i ( i / ) , can be replaced
by any verbal subgroup W(G), respectively W{H), where 233 is any variety.

(b) This is proved by applying induction on n and utilizing (4.3)(b). The
proof runs as in the analogous n-isoclinic case as given in [8], Theorem 3.12 (b).

(4.6) PROPOSITION. Let 53 be a variety and let (a,0) be a W-isologism
between G and H. Let M < G and put a[MV{G)/V*{G)} = N/V*{H). Then
0[{MV*G]] = [NV*H].

PROOF. Let m e M, gi,...,g3 € G and v(x1,...,xs) € V(FS). Choose
hi G a{giV*{G)) (i = 1 , . . . ,s) and n G a(mV*(G)). By definition of 53-
isologism we h a v e t h a t 0(v(gi,..., g , m , . . . , gs)) = v(hi,..., hin,..., hs) a n d
0(v(gi, ...,git..., gs)) = v(hu. ..,hi,..., hs). H e n c e

0{v(g1:..., gim,..., gs)v{gi, ...,gi,..., & , ) " 1 )

= v(hi,..., hin,..., hs)v{hi,. ..,hi,..., ha)"1.

We conclude that /?[[A/V*G]] C [NV*G] and the reverse inclusion follows by
applying the above arguments to 0~l.
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5. Constructions

Not all results known to be true for n-isoclinisms carry over to the general
23-isologisms. We will encounter examples of this phenomenon later on. The
next theorem however is fortunately an exception. As we will see, it will be very
useful in proving certain results in Section 6.

(5.1) THEOREM. Let 23 be a variety and G\ andG2 be groups. ThenGi~

G2 if and only if there exists a group G containing normal subgroups Ni and N2,

such that Gi ~ G/Ni, G2 =* G/N2 and d ~ G ~ G2.

PROOF. The "if" part is clear. So let us assume that G\ ~ G2, say (a,/?) is

a 93-isologism between G\ and G2. Consider a subgroup G of G\ x G2 given by

G = {{91,92) € d x Ga: a{giV{Gi)) = g2V(G2)}.

Let Nx = {(l ,n2): n2 € V*{G2)} and N2 = {(m,l ) : nj € V ( d ) } . Then
TVi and N2 are normal subgroups of G. Moreover G/Ni ~ Gi (i — 1,2). By
definition of 23-isologism V(G) is generated by elements of the form

Mffi ,• • • , 9 s ) , P ( v ( g i , . . . , g , ) ) ) { g u . . . , g s e G , v e V{FS)).

It follows that Ni n V(G) = 1 (t" = 1,2). By virtue of (4.4) (b) we have G ~

G/Ni ~Gi(i = 1,2).

We mention that the case 9J = 21 was proved by P. M. Weichsel (see [21]), while
the case 23 = %, is attributed to J. C. Bioch ([2], Theorem 1.4). In the latter
case the reader is also referred to [8], Sections 4 and 5, for some applications.
Here we exhibit the following corollary. It could also be proved directly, but is
somewhat tricky to do so.

(5.2) COROLLARY. Let il and 5J be varieties. Then the following are equiv-
alent.

(a) H C 93.
(b) For any two groups G and H, G ~ H implies G ~ H.

PROOF. (a)=$>(b): Let G and H be groups with G ~ H. We may assume by

(5.1) that H ~ G/N for some N <G with N f~l U{G) = 1. As H C 93, we have

U{G) D V{

as desired.

U{G) D V{G), whence N n V{G) = 1. By virtue of (4.4)(b) we get G ~ G/N,

(b)=^(a): Let G € il, so certainly G ~ 1, see (2.3)(b). By hypothesis this

implies G ~ 1, so in particular V(G) = 1. Again (2.3)(b) shows that G € 93.
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Note that (5.2) really says tha t the larger the variety, the cruder the equiva-

lence relation of isologism becomes. Next we fulfill a promise made after (3.8)

about Aii,2j(G). This group is a family invariant in the sense of Section 4.

(5.3) THEOREM. Let il and 5J be varieties and put 2U = il * 5J. Suppose
G~H. Then Au,<o(G) ~ Aa,v(H).

PROOF. Again, in view of (5.1), we may assume that H = G/N for some
N < G with N n W{G) = 1. By (2.3)(f) it follows that N C W*(G) and
W*{G/N) = W*{G)/N. Now put V*{G/N) = M/N, so that M < G and
NV*{G) C M. Hence

(*) AuMG/X) = U*((G/N)/V*(G/N))/(W*(G/N)/V*(G/N))

~U*((G/V*(G))/(M/V*(G)))/(W*(G)/V*(G))/(M/V*(G)).

We have that [MV*G] Q N. Thus

[(M n U{G))V*G] C [MV '̂G] n [U(G)V*G] C TV n W(G) = 1.

Then (2.3)(c) gives M n f/(G) C V(G), whence M/V(G) D U(G/V(G)) = T.
An application of (2.3)(f) again shows that

Substituting this last formula in (*), we obtain that Au!<n(G/N) ~ Au,5j(G), as
wanted.

As we have seen, given two 5J-isologic groups G\ and G2, one can construct
a so-called common 5J-isologic ancestor G, that is, Gi and G2. occur as factor
groups of G, whereas G, Gi and G-i are 2J-isologic to each other. This is the
contents of (5.1). Now consider a dual question. Do two 9J-isologic groups G"i
and G2 always have a common QJ-isologic descendant G, that is, can Gi and G2
be embedded in a group G, while G, G% and G2 are 27-isologic to each other? In
case 9J = 21 there is an affirmative answer to this question (see [8], Theorem 4.2),
but in its full generality it remains unanswered. Here we supply a partial answer
which shows for instance that for any abelian variety 5J the above question can
be solved.

(5.4) THEOREM. Let 5J be a variety and let (a, /3) be a V-isologism between
G\ and Gi- Then there exists a group H with subgroups Hi and H2, such that

V(G0] * Hu G3IP[[GuV"{Gl))^V[G1)\ =* H2 and Hx~H~ H2.

PROOF. Consider the following subgroup of G\ xG 2 given by

X = {&,&) e G! x Ga: a(g1V*(G1)) = g2V*(G2)}.
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Then V(X) = {(gi,0(gi)): gi € V{Gi)}, by the definition of 2J-isologism. Next,
as in the proof of Theorem (5.1), put

TV! = { ( l , n 2 ) : n2 € V*(G2)} and N2 = { ( m , l ) : n , e V ( G i ) } .

Thus, Ni < X, X/Ni ~ Gj and N{ n V(X) = 1 (t = 1,2). Define

(1) G = X/Ni x X/V{X).

Observe that G ~ Gi ~ X. Since the intersection of AT, and V(X) is trivial, X

can be embedded in G by an injective homomorphism t: X -* G defined by

Now L[N2] is in general not a normal subgroup of G. Therefore let N be the
normal closure of i[iV2] in G, that is

N = t[N2][G,i[N2]].

One easily checks that

N = t[7V2]

Next define two homomorphisms / i : Gi —• G/iV and / 2 : G2 —»• G/7V as follows.
First, let gi e Gi and choose j 2 € G2 such that (g1} g?) € X. Then put

Secondly, let /i2 € G2 and choose h\ e Gi such that (hi, hi) € X. Then put

h(h2) = ((fti, AaM, (fci, ha)V(A-)) • AT.

We claim that f\ and / 2 are indeed well-defined homomorphisms and satisfy the
following property

(2) MdjV^G/N) = G/N = h\G2\V*(G/N).

Now the definition of A^ guarantees / i being well-defined, and the fact that
LV^2] Q N yields that / 2 is well-defined. Clearly / i and / 2 are homomorphisms.
It follows from (1) and (2.3)(a)(f) that

V(G) = V(X)/Ni x X/V(X).

Now let (gi,g2) and (hi,h2) be elements of X. Then on the one hand we have

((gi,g2)N1,(huh2)V(X))-N

= ((ffi, 92)Nlt (1, l)V(X)) • N • ((1,

€ M d ] • V*(G)N/N C /i l

On the other hand it holds that

((gi,92)N1,(h1,h2)V(X))-N

= ((9i,92)N1,(g1,g2)V(X)) • N • ((l,l)N1,(g^1hl,92
1h2)V(X)) • N

G /2[G2] • V*(G)N/N C /2[G2] • V*(
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We conclude tha t (2) holds, which proves the above claim.

Finally, we calculate the kernels ke r ( / i ) and ker( /2) .

PROOF OF (i). Suppose 3X € ker(/i). Choose g2 € G2 with (31,32) € X.
Hence ((g1,92)N1,{l,l)V(X)) E N, say for m E V(Gi) and a E [Glf V(GX)]

, ( 1 , 1 ) W ) = ((m, 1)NU {m,l)V(X)) • ((1,

Hence 91 = m and (mci.l) € Vpf). Then m = c^1 e [Gi,V(Gi)], so
0i € [Gi, V*(Gi)]. Conversely, if gx e [Gi, V(Gi)], then (glt 1) e JV3. Hence

= ((ffi, l)JNTi, (<7i, l)V(X)) • ((1,

E t[JV2] • (((l,l)JVi,(Cl,l)V(X)): Cl € [Gi,V*(Gi)]> = iV.

So /i(<7i) = T. This proves (i).

(ii) ker(/2) = W{Gi) D [GuVid)]].

PROOF OF (ii). Suppose g2 € ker(/2). Choose gi € Gi with (31,32) S
X. Hence ((91,02)^1, (ffi,ffa)V(X)) € AT, say for nx € V(Gi) and cx €

1, (ffi,

Hence 31 = nx and {gic^1 rql, g2) eV(X). So (gicf 1n'[1) = g2

). But as ci € [Gi, V*(Gi)], we have that

So ff2 € /?[V(Gi) D [Gi, V(Gi)]]. Conversely, if g2 E /?[K(GX) D [Gi, V(Gi)]],
say 32 = P(9i), where 31 e V(GX) n [GuV*{Gi)\, then (31,32) € X by virtue of
(4.3)(a). In particular (31,32) G V'(X). Now we can write

= ((31, l)JVi, (3i, l)V(A-)) • ((l.ffaW, (1,

= ((01, l ) ^ i , (3i, l)V(A-)) • ((1, \)NU fa"1,
E t[JVa] • <((l,l)iV1,(c1,l)V(^:)): ci E [Gi,y*(Gi)]> =N.

Hence /2(32) = 1. This proves (ii).
From (4.4) (a) and (2) it follows that

fi[Gi]~G/N~f3[G2].

A simple application of the First Isomorphism Theorem shows us that H — G/N,
Hi = /i[Gi] and H2 = /2[G2] are the groups we are looking for.
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(5.5) COROLLARY. Let 53 be a variety and Gi ~ G2. Assume that V*(Gi)

C f(Gi). Then there exists a group G with subgroups Hi and Hi such that
Gi — Hi, G2 — H<2 and G\ ~ G ~ Ga.

The above corollary certainly applies to abelian G\ or abelian varieties 93.

Of course there are still other cases where we can apply (5.5). To give a small

example: let 93 be any variety t ha t does not contain S3 (any nilpotent variety

will do) . Then we must have V*(S3) = 1. For (2.3)(b)(g) show tha t V*{S3) ^ S3

and V*{S3) # ^ 3 - Hence V*(S3) = c(S3) = 1. So here we can take Gi to be S3.

If we choose 93 — 2C in (5.5), we obtain Theorem 4.2 of [8]. However the

construction used there to derive the result is of a completely different nature

than the one employed in the proof of (5.4). Nevertheless R. W. van der Waall

pointed out (see [20]), t ha t the group G we are concerned with here in (5.5)

in case 93 = 21 and the group G in Theorem 4.2 of [8], are in fact isomorphic.

He also proved (5.4) in the special case 93 = Win, inspired by an untransparent

passage in the book of R. Beyl and J. Tappe (see [1], page 130). As we have seen

things can be done for a general variety 93.

6. Induced isologisms

Given any two varieties il and 93 we defined in Section 3 a new variety 233 =
il * 93. Here we investigate how the isologisms with respect to il, 93 and 233 are
related. This will lead us to a generalization of Theorems 5.2 and 5.5 in [8].

(6.1) THEOREM. Let il and 93 be varieties and put W = il * 93. Suppose

G ~ H. Then the following hold.

(*)G/V(G)~H/V(H).

(b) U(G) ~ U(H).

PROOF. By virtue of (5.1) it suffices in both (a) and (b) to assume that
H = G/N, where N < G with N n W(G) = 1.

(a) Put V*{G/N) = M/N, so that M < G and NV{G) C M. We claim
that it is sufficient to show that M ("1 U(G) C V*(G). Indeed, it implies
(M n U(G))V(G) = V*{G), whence M/V*(G) n U{G/V*(G)) = T, according
to Dedekind's Rule and (2.3)(d). Therefore, by utilizing (4.4)(b),

G/V*{G) ~ {G/V*{G))I{M/V*{G)) * G/M ~ (G/N)/(M/N)

^ {GIN)fiT{GIN),
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which is precisely what we want to prove. Certainly

[(MnU(G))V'G] C [MV*G] n [U(G)VG\ CNn W{G) = 1.

So indeed by (2.3)(c) we get M n U(G) C V*(G).
(b) Here we have to show that

U(G) ~ U{G/N) = U(G)N/N ~ U(G)/(N n 17(G)).

In view of (4.4)(b) it therefore suffices to show that N f~l C/(G) n V(£/(G)) = 1.
Now N D £/(G) n V(£/(G)) = iV n V(U(G)) and it follows from (3.9)(a) that
W(G) 2 V(C/(G)). As N n W(G) = 1, we obtain JV n V(U{G)) = 1, as desired.

(6.2) COROLLARY. let n > 0 and suppose G ~ H. Then for each i €
n

{0, . . . , n} Me following hold.

PROOF. By employing (3.6)(c) we have % * Vln-i = 9^ = O^-i * <Hi for any
i with 0 < i < n. Hence the assertions follow immediately from (6.1).

For the moment let X denote a class of groups which is invariant under 1-
isoclinism (=2l-isologism). Examples of X are the class of abelian, nilpotent,
supersolvable, monomial or solvable groups, respectively.

(6.3) COROLLARY. Let%3 be a variety andW a subvariety of%L*%J. Suppose
that G~ H. Then the following hold.

an
(a) G/V*(G) eXif and only ifH/V*(H) € X.
(b) V(G) e X if and only if V(H) e X.

PROOF. We are assured by (3.6) (b) that 2 U C 2 U 9 J C 5 J + 21. Hence apply
(5.2) and (6.1).

It should be remarked that (6.2) and (6.3) entail generalizations of a theorem
of J. C. Bioch and R. W. van der Waall, which states that monomiality is invari-
ant under 1-isoclinism (see [3], Theorem 4.6). A well-known example to which
(6.3) applies is the following. Take 2D = 9l2i and 2J = 6/ (see [15], 5.1.12 for the
inclusion O^- i C &t and apply (3.6)(a)(c)).

One may wonder whether the isologisms given in (6.1)(a)(b) are the best
possible in the sense that examples can be found of varieties il and 33 and groups
G and H with G ~ H, and hence G/V*{G) ~ H/V*{H) and U(G) ~ U{H),

such that G/V*{G) and H/V*{H) are not ili-isologic, respectively U{G) and

U(H) are not QJi-isologic, for all subvarieties Hi ^ K, respectively O^ ^ 03.
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However, if one would like to handle such a definition of "best possible isologism",
this requires a thorough knowledge of the subvarieties of the given varieties il
and 53. But in general it is a difficult, if not impossible, matter to determine
exactly all subvarieties of a variety. Therefore we will employ a slightly weaker
notion of "best possible isologism" by admitting for the above ill and 53i only
subvarieties of a certain type. Moreover, we will use it only in connection with
isoclinisms. An application of (3.9)(a), (5.2) and (6.1) shows that, if n > 0
and G ~ H, then for any variety 53 it holds that G/V'{G) ~ H/V*{H) and

n n
V(G) ~ V{H). Therefore the following definition makes sense.

(6.4) DEFINITION. Let 53 be a variety and n > 0. Put k = min{m €
1>O:VG,H:G~H^ G/V*(G) ~ H/V{H)\. Thus G ~ H implies GIV(G)

~ n m n
~ H/V*(H). This Ar-isoclinism is called the best possible for 5J and n. An
K

analogous terminology is used for V(-) instead of /V*(-).

It was pointed out in [8], Remark 5.3 that in (6.2)(a) above the isoclinism is
the best possible for 9lj and n indeed. On the contrary, the isoclinism in (6.2)(b)
can be sharpened substantially. It was shown in [8], Theorem 5.5 that, if G ~ H,

n
then 7 J + 1 ( G ) ~ n+i(H), whenever 0 < i < n, and this isoclinism is

F(n-t)/(ti)l
now optimal in the sense of (6.4) (see [8], Remark 5.6). The special commutator
structure of the word [x\,..., £n+i] , which defines the variety Tin, underlies this
sharpening. In particular the Three Subgroups Lemma ([15], 5.1.10) implies
that for k,I > 1, ~tk(li{G)) < ~lki(G). This property is the key to the proof
of Theorem 5.5 of [8]. So there is the problem what conditions a variety must
satisfy to allow a sharpening of some induced isologism like the case discussed
above. In the case 0 ^ , the simple commutator word of weight n+1 gives rise to
the existence and properties of the lower and upper central series. These series
can be generalized as follows.

(6.5) DEFINITION. Let 93 be any variety. Put 930 = <£ and for n > 0
put 2In+i = 53 * 93n, so that in particular 93i = 53. The series of varieties
53o C 53i C 532 C ••• is called the %3-marginal series. The verbal and marginal
subgroups of a group G with respect to the variety 53n will be denoted by Vn(G)
and V* (G) respectively.

(6 .6) LEMMA. Let 53 be a variety and n > 0. Then for any i € {0 , . . . ,n}
it holds that 53n C 53* * 53n_i.

https://doi.org/10.1017/S1446788700030366 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030366


[22] Varieties of groups and isologisms 43

PROOF. Since 93m * 93O = 93m = 53O * 23m for each m > 0, it follows by
induction on n that for n > 0 and any t € { 0 , . . . , n } , using (3.5) and (3.6)(a),

5 3 n + 1 = 93 * 93n C 93 * (93; * VBn-i) C (53 * 53<) * 93n_i

= 9 3 i + 1 * a j ( n + 1 ) _ ( i + 1 )

holds. Together with 93n+i = 9J0 * 53n+i this proves the assertion.

The next proposition justifies the name 93-marginal of the series in (6.5).

(6 .7 ) PROPOSITION. Let 53 be a variety. Then the following hold.
(a) For alln>0: Vn(G)/Vn+1(G) C V*(G/Vn+1(G)).
(b) For alln> 0: V*+1(G)/V*(G) C V(G/V'(G)).

PROOF, (a) By (2.3)(c) we have to show that [Vn(G)VG] C Vn+i(G). But
this follows from (6.6) as 53n * 53 C 93n+i.

(b) As 23n+i = 93*53n, the assertion follows immediately from (3.2)(b).

Observe that ( S c a c ^ C ^ C - - is the 2l-marginal series which deter-
mines the lower and upper central series of a group.

Further we notice that there exists some connection between our 93-marginal
series and the lower and upper ^-marginal series as defined by J. A. Hulse and
J. C. Lennox in [9], page 140. In our notation the 93-marginal series in (6.5)
is defined by multiplication by 93, with respect to *, from the left, whereas in
[9] a similar construction is carried out by multiplying from the right. The
difference is that we define a series of varieties, where Hulse and Lennox define a
series of verbal and marginal subgroups. Now the verbal and marginal subgroups
associated with our 93-marginal series yield marginal series indeed according to
(6.7). Conversely, it is not clear whether there exists a series of varieties, which
achieves the same for the lower and upper ^-series of Hulse and Lennox.

(6.8) PROPOSITION. LetVO be a variety andn > 0. Assume that G ~ H.

Then the following hold.

(a) G ~ H.

(b) For any i € {0,..., n}: G/V* (G) ^ ~ H/V* {H).

(c) For any i e {0,..., n}: V,(G) ~ W

PROOF, (a) Apply (5.2). (b) and (c) These follow immediately from (5.2),
(6.6) and (6.1).

The above proposition should be compared with (6.2). Before seeking for
conditions on 93 to strenghten the isologism in (6.8) (c), we first prove a similar
kind of result as in (6.8)(c), but of a surprising outcome. It depends on the
special construction of the 93-marginal series.
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( 6 . 9 ) LEMMA. Let 53 be a variety and c,n>0. T/ien 53 r , ( c + 1 ) C 9 t c - 5 3 n .

PROOF. We argue by induction on c, the case c = 0 being clear. Now

D [2Jn(c+i),2Jn] (by the induction hypothesis)

2 53n(c+1)*53n (by(3.9)(b))

2 53n(c+2) (by (6.6)).

(6.10) THEOREM. Let V be a variety and n > 0. Suppose that G ~ H.
3Jn+l

Then for each i € {0,. . . , n},

Vi+x(G)
f ( )

PROOF. In view of (5.1) it is sufficient to assume that H = G/N, with N <G
Tnyn+i(G) = l. Put j = \(n-i)/{i + l)] soth&t {i+l)(j + l) >n+l. We

have to show that Vj+i(G) and Vi+i(G)/(NnVi+i(G)) are j'-isoclinic. According
to (4.4)(b) this is the case as soon as 7J+i(Vi+i(G)) fl N — 1. Since by (6.9)
5J«+i C 9J( i+1 ) ( i+1 ) C Otj -QJi+i, it follows that Vn+1(G) 2 ij+1{Vi+1{G)). As
N n Vn+i(G) = 1, this finishes the proof.

By taking 53 = a in (6.10) we get that if G ~ H, then it holds that
n

-7i+i(G) ~ ii+i(H) for each 0 < i < n. It was remarked before that
f(n/»)-ll

this last isoclinism can be improved to an \(n — t)/(t + l)]-isoclinism. The
structure of the commutator word defining 21 underlies this.

(6.11) LEMMA. Leftt be a variety. The following are equivalent.
(a) For alln>0: 5Jn+1 = 0Jn * 53.
(b) For allm,n>0: 53m + n = 53m * 53n.

PROOF, (a)^-(b): We use induction on n, the cases n = 0,1 being clear. Now

53 m + n + 1 C5J m *53 n + 1 (by (6.6))

= 53m * (53n * 53) (by assertion)

C(33m*53n)*53 (by (3.5))

= 53m + n * 53 (by the induction hypothesis)

Hence we must have equality everywhere.
(b)=>(a): Trivial, taking n = 1.
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( 6 . 1 2 ) THEOREM. LetV be a variety satisfying the following conditions.

(i) For alln>0: 23n+i = 53n * 33 and
(ii) For any group G,n > 0 and N < G with N C Vn{G) it holds that

[NV*Vn{G)\ C [NV:+1G\.
Then, if G ~ H, it holds that Vi(G) ~ Vi{H) for each i G {0,.. . , n}.

5J» 5J r ( n _ i ) / ( i + l ) - |

PROOF. By virtue of (5.1) it suffices to assume that H - G/N with N <G
and N D Vn(G) = 1. Let i € {0,. . . , n) be fixed and put j = \(n - i)/{i + 1)1, so
j > 0. Following the proof of (6.1)(b) we have to show that N n Vj{Vi{G)) = 1.
We prove first that

For j = 0 this is trivial. Since 2J,+i = QJj * V, induction on j gives

C [Vi+j+ij(G)V*Vi{G)} (by the induction hypothesis)

C [Vi+j+ij(G)V;+1G] (by (ii))

(by (

Now z + j + tj = i + (i + l)j > i + n - i = n, so V<+j+^-(G) C Vn(G). Hence
NnVj(Vi(G)) = 1, as required.

The conditions in (6.12) are fulfilled if, for instance 2J = 9tc. The condition (ii)
of (6.12) may be looked upon as a kind of substitute for the Three Subgroups
Lemma. For 23 = 9tc it reads: for any group G, n > 0 and N < G with
N C 7nc+i(G) it holds that [N,cinc+1(G)\ C [iV,c(n+1)G]. And this assertion
is easily derived by utilizing the Three Subgroups Lemma. Still it is hard to
avoid the impression that Theorem (6.12) is rather artificial. In fact 53 = 9tc is
the only instance we know of that satisfies the conditions (i) and (ii) of (6.12).
Continuing the discussion preceding (6.5), there is on the other hand a more
natural way to generalize Theorems 5.2 and 5.5 in [8] to a wider class of varieties.
Instead of fixing our attention to the simple commutators of some weight, we will
now consider more complicated commutator words, to wit, outer commutators
of some weight. Although we conjecture that the results below generalize to
varieties defined by outer commutator words, we will restrict ourselves for the
rest of this section to the variety 9te,,...,c, of polynilpotent groups of class row
(ci,...,cj). Recall that the polynilpotent variety yiCu...tCl equals the product
9tc, • ^ci_i • • • • • WC2 • *TlCl (the product in the sense of Hanna Neumann, see the
beginning of Section 3). Observe that 9tClt...tCl generalizes both the nilpotent
variety 9tc (take / = 1) and the solvable variety 6j (take ci = • • • = cj = 1). Also
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21.12 in [13] ensures us that if 5J = 9TCli...iCl, then for a group G,

V(G) = T f c + i h c . + i O •' (Tc1 + i(G)) • • • ) )= : T c + L c + i «,+i(G).

We will now derive a formula for [NV*G], where N < G. First we need a lemma.

(6 .13) LEMMA. Let 5J = 9tCl,...,c, and N < G. Then the following are
equivalent.

(a) NCV*(G).
(b) [N, ClG, cilci+i{G),c37ci+i,c2+i(G), • • . ,c,7ci+i,c2+i,...,c,_i+i(<2)] = 1.

PROOF. We employ induction on /, the case / = 1 being well-known. Now
we can write 2J = 9tC( • il, where il = 9tCi,...,ci_i- By a lemma of M. R. R.
Moghaddam (see [12], Lemma 2.5(ii)), we have that

We write bar T for reduction modulo the normal subgroup ?C| {U(G)) of G. Then
we have

N C V* (G) <* N C V* (G) o N C U* (G) (by the induction hypothesis)

«*• (N,ClG,C2 7 C l + 1 ( G ) , . . . , c ^ c + i . . . . , c,_2+i(G)] = T

«• [iV,ClG,C27(;1+i(G),...,c, '7Cl+i,...,c,_1+i(G)] = 1, as desired.

(6 .14) COROLLARY. Le<5J = *ncl,...,c, andN<G. Then

PROOF. Put r = [7V,ClG,C27c1+i(G),...,c,7c1+i,.. . ,c,_1+i(G)]. As TV < G,
it is clear that T C N. Also T < G. From (6.13) it follows that 7V/T C
V*{G/T), This yields [ATV*G] C T (see the remarks made after Definition
(2.1)). Conversely, by definition N/[NVG] C F*(G/[A^V*G]). Hence by (6.13)
again T C [NVG\. We conclude that T = [NVG\.

Note that for 5J = 6 , (6.14) gives for TV < G that [NV*G] = [N,G,G',G^,
. . . , G^-1)] (see also [9], Corollary 2.10).

We have now gathered enough information to prove the following theorem.

( 6 . 1 5 ) THEOREM. Letn>0 and suppose that G ~ H. Let 11 = 9tc. ... C,

and 5J = 9tdl dm and put p + 1 = Il{=i(* + 1) and q + 1 = UT=M + !)•
T/ien t/ie following hold.

(a) Ifp + q> n, then G/U*{G) ~ H/U*(H).

(b) Ifp + pq + q> n, then U{G) ~ U{H).
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PROOF. On invoking the Theorem (5.1) it is sufficient for bo th (a) and (b)

to assume tha t H = G/N with N < G and N n in+i{G) - 1.

(a) P u t U* (G/N) = M/N. An argument similar to the one used in the proof

of Theorem (6.1)(a) teaches us tha t all we have to show is tha t M n V(G) C

U*{G). By (2.3)(c) this is equivalent to showing tha t [(M D V(G))U*G] = 1.

Now by definition [MU*G] C N. Hence, in view of N n 7 n + i ( G ) = 1, we are

left with proving \V(G)U*G) C 7 n + 1 ( G ) . Now at this point we observe tha t by

5.1.11(ii) in [15]

V(G) = 7d1 + i , . . . ,dm+i(G) C

Hence, in view of (6.14),

[V{G)U*G]

where r = q + 1 + d + c2(ci + 1) + c3(ci + l)(c2 + 1) + • • • + c/ n!=l(ci + 1) =
g + p + 1. By hypothesis r > n + 1, whence 7r(G

r) C 7n+i(G). So indeed
[V(G)U*G)Cln+1(G).

(b) Again, a similar reasoning as in the proof of Theorem (6.1)(b) gives us to

show that N n V(U(G)) = 1. Indeed,

V(U{G)) = 7d 1 + i , . . . ,d m +i (7c 1 + i c,+i(G)) C 7 ( g + 1 ) ( p + 1 ) ( G ) ,

and it follows from the hypothesis tha t (p + l)(q + 1) > n + 1. Hence N n

(6.16) COROLLARY. le t n > 0 and suppose that G ~ H. Let it = 9tCl Cl
n

and pwt p + 1 = Pli=i (c« + !)• Assume t/ia< p <n. Then the following hold.
(a) G/U*{G) ~ H/U*{H).
[b)U{G) "~~ U{H).

F(»»-p)/(jH-l)l
Moreover these isoclinisms are the best possible for 23 and n.

PROOF. This follows immediately from (6.15). To prove (a), let m = 1
and d = q = n — p, so that p + 9 = n. To prove (b), let m = 1 and d = q =
f(n-p)/(p+1)], so that (g+l)(p+l) > n+1 , that is, p+pg+g > n. We are left
with showing that the isoclinisms are the best possible in the sense of (6.4). Let G
be the group of all (n +1) x (n +1) upper unitriangular matrices with coefficients
in a finite field F. Then G is a Sylow subgroup of GL(n+l, F) and is of nilpotency
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class n. This group has the property that for k, I > 1 [7/t(G),7fc(G)] = 7fc+i(G)
(see [10], III Satz 16.3(b)). This implies that for any r,s > 0

(1)

and

(2)

Now put H = G x G. Clearly G ~ H ~ 1. Hence, if we would have G/f/*(G) ~
H/U*{H), then consequently, as "#/[/"(#) = G/U*(G) x G/U*{G), we would
get 7s+i(G/f/*(G)) = 1. Or, equivalent^, 7a+i(G) C U*(G), whence
[7s+i(G)f/*G] = 1. By virtue of (1) we find 7s+p+i(G) = 1, hence 8 + p + 1 >
n + 1, thus s > n - p. Should we have U(G) ~ t /(#), then, as U{H) =

U{G) x U{G), we would obtain 7r+i(C/(G)) = 1. According to (2) this yields
7(p+i)(r+i)(G) = 1, hence (p+ l)(r + 1) > n + 1, thus r > (n -p) / (p + 1). This
completes the proof.

(6 .17) COROLLARY. Le< n > 0 and suppose that G ~ H. Then for any i
n

with 0 < % < 2 log(n + 1) ffte following hold.
n

(b) G«
r

Moreover these isoclinisms are the best possible for &i and n.

PROOF. This is an application of (6.16) using the fact that &i = 9ti,...,i
(i times the 1).

(6.18) REMARK. There is still another way to derive the results of (6.16).
Let n > 0 and cx,..., c; > 1. Put p + 1 — Yli=i ici + 1) a nd assume that p <n.
For any group G we have that 7 C I + I I . . . I ( ; ) + I (G) C 7p+1(G). Hence it holds that
9tci,...,ci 2 9tp- Multiplying this last inclusion on the left and the right by 9Tn_p

we obtain, on invoking (3.6)(a) (c),

9lB_p*9ICl,...iC| 2 5 ^ and ^......c, **nn_pD9tn.

These inclusions, together with (6.1) and (5.2), yield (6.16) again, albeit that
(6.16)(b) does not appear in it sharpenest form. There are two reasons for not
proving (6.16) in this manner. The first is that we wanted to derive a formula for
[NV*G] in case 53 = 5^1,...,c, (see (6.14)). The second reason is that we could
illustrate (6.1)(b) sometimes allows an amelioration.
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7. Prescribing the marginal quotients

In [8], Theorem 7.7 it has been proved that if G is a group with G/<;n{G) finite,
then, within the n-isoclinism class of G, there exists a group H, which is finite.
Moreover, this group H can be obtained as a section of G. The main object of
this section is to generalize such an assertion to varieties 5J in the sense that
given that the marginal quotient G/V*(G) belongs to a certain class of groups
X, it is possible to indicate a group H € X, inside the QJ-isologism class of G. For
X will be chosen not only the class of all finite groups, but also certain classes of
infinite groups will be dealt with, for example the class of all polycyclic groups.
Of course, if one wants to prove assertions like the ones described above, the
variety QJ and the class X depend on each other. The question, to which variety
5J belongs what class of groups X and vice versa will not be settled in its full
generality. However we prove theorems which to a large extent generalize the
theorem in [8] mentioned just a moment ago.

In this section we were greatly inspired by the work of P. W. Stroud [18]. Let
us first have a look at groups which do not possess a QJ-isologic section at all.

(7.1) DEFINITION. Let 53 be a variety. A group G is called subgroup irre-
ducible with respect to V-isologism if G contains no proper subgroup H satisfying
G = HV*{G). A group G containing no non-trivial normal subgroup TV satisfy-
ing N C\V(G) = 1 is called quotient irreducible with respect to V-isologism.

Then(7.2) PROPOSITION. Let V be a variety and suppose V*(G) C V(G).
G is both subgroup and quotient irreducible with respect to V-isologism.

PROOF. Suppose N < G with NnV{G) = 1. Then (2.3)(f) gives N C V*(G).
Hence N C V(G), so N = 1. Assume now that H < G with G = HV*{G). By
(2.5)(b) we have V(H) = V(G), so that V*(G) C V{H) C H.

A simple application of Zorn's Lemma shows that, given a group and a vari-
ety 9J one can always find a suitable quotient of G which is 5J-isologic to G and
moreover is quotient irreducible with respect to QJ-isologism (see also [8], Theo-
rem 7.6). This suggest the following problem: given a group G and a variety QJ,
does there always exist a subgroup of G which is 9J-isologic to G and subgroup
irreducible with respect to 93-isologism? In general, we do not know whether the
answer to this question is in the affirmative.

In the next two theorems partial characterizations are proved.

(7.3) THEOREM. LetV be a variety. If G is subgroup irreducible with respect
to V-isologism, thenV*{G) C $(G). The converse holds ifV*(G)/V(G)nV*{G)
is finitely generated.
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PROOF. Suppose first that G is subgroup irreducible with respect to 53-
isologism. We may assume that G has maximal subgroups, otherwise G — $(G)
and the assertions become trivial. Let M be a maximal subgroup of G. Then
clearly MV*{G) § G. Thus V*{G) C M, by the maximality of M. We conclude
that V*(G) C $(G). Conversely, let V(G)/V{G)nV*{G) be finitely generated
and V*(G) C $(G). Let # < G with G = #V*(G) . Now there exist gu..., gt 6
V*(G)(« > 1), such that V ( G ) = {gu..., fft) • (V(G) D V ( G ) ) . By (2.5)(c) we
have V(tf) n V*{H) = V{G) D V*(G). As ff!,..., gt € $(G), these elements are
non-generators (see [15], 5.2.12), whence

G = HV*{G) = H • (gu ..., gt) • (V(G) n V ( G ) )

= H • (V(H) n V*(/f)) • {gu ...,gt) = H- (9l, ...,gt) = H.

So G is subgroup irreducible with respect to 5J-isologism.

(7.4) THEOREM. Let 5J be a variety. If G is quotient irreducible with respect
to W-isologism, then soc(G) C V(G) and f(G)/^(G) D V(G) is a torsion group.
The converse holds ifV is nilpotent.

PROOF. Assume that G has minimal normal subgroups, else soc(G) = 1 and
the first assertion in the statement of the theorem becomes trivially true. Let M
be a minimal normal subgroup of G, where G is quotient irreducible with respect
to 5J-isologism. Here M D V(G) ^ 1, whence M C V(G) by the minimality of
M. We conclude that soc(G) C V{G).

Next let g e f(G)/f(G) D V(G) with g ^ T. Put AT = (ff). Then AT C f(G)
and hence N < G. Also A7^ / 1, so that AT n V(G) ^ 1. Thus for some positive
integer k we must have gk e V(G). It follows that g is a torsion element.

Conversely, suppose soc(G) C F(G) , ?(G)/f (G) D V(G) is a torsion group
and 53 is nilpotent. Hence there is a natural number n, such that V*(G) C
fn(G). Now let AT < G with N D V(G) = 1. We have to show that AT = 1.
Put M = N n f (G). We have M = AT n f (G) =; (TV n f(G))V(G)/V(G) <
${G)V(G)/V{G) ~ f (G)/f (G) D V(G), so that M is a torsion group. If M £ 1,
choose j G M - {1} of minimal order. Then (g) is a minimal normal subgroup
of G, whence (g) C V(G) by assumption. And this violates N n V(G) = 1. We
conclude that N n f(G) = 1, so N n ft(G) = 1, for all i > 0 (see for example
[8], Theorem 2.3(b)). However, by virtue of (2.3)(f) we have N C V*(G). Hence
•/V C fn(G) and we get Â  = 1, as required.

We now turn to the issue mentioned in the introduction of this section. For
the rest of this section the following assumptions will be valid.

(7 .5) HYPOTHESES. X will denote a class of finite groups satisfying the
following conditions.
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(a) (Subgroups) G€X and H <G=> HeX.
(b) (Quotients) GeX and N < G => G/N G X.
(c) (Extensions) N < G, N G X and G/N eX^GeX.
(d) (Cyclic groups) For every prime number p, Cp G X.

Observe that (7.5) (c) implies that X is closed with respect to taking finite
direct products. Hence by virtue of (7.5) (d) X contains all elementary abelian
p-groups. In fact, it is easy to see that X contains all finite solvable groups.
Examples of X are of course the class of all finite solvable groups, the class of all
finite groups, or, between these two, the class of all finite ^-separable groups.

(7.6) LEMMA. Let G be o residually X-group and H < G with H finite.
Then there exists an N <G such that N n H = 1 and G/N G X.

PROOF. Let if be a finite subgroup of G. For every h G H — {1} there
exists wNh<G with G/Nh G X and h <£ Nh. Put iV = C\heH-{i} Nh- Then
N < G and N D H =• 1. Further G/N can be embedded in the direct product
I l fcet f -O}^/^)- By *^e remarks made after (7.5), and (7.5)(a) it follows that
G/N e X.

(7.7) LEMMA. Let N < G such that G/N G X. Then N is a residually
X-group if and only if G is a residually X-group.

PROOF. [=>•] Suppose N is a residually 3t-group. Let g G G — {1}. Assume
first that geN. Then there exists an M < N with g £ M and N/M € X. Now
let ^7" be a transversal to M in G. Then 3~ is a finite set and K = f]t€^ Mt =
coreG(M). Clearly iV'/M* = N/M* s N/M for any t € 9~. Hence N/M* e X
for all* € &~. Now N/K can be embedded in the direct product Yl^^-iN/M1).
As X is closed for taking finite direct products and subgroups, we get N/K e X.
Now K < G, thus we have G/N ~ (G/K)/{N/K). It follows by (7.5)(c) that
G/K € X. In summary, if g e N, then there exists a X < G with G/K € 3E and
g $ K. Together with G/N 6 X it follows that G is a residually X-group.

[<=} Let n e N - {1}. There exists an M < G with G/M G 3t and n £ M.
Put K = M(1N. Then if < N and n £ K. Moreover N/K ~ 7VM/M < G/M.
Hence by (7.5)(a) N/K G X.

(7.8) THEOREM. Let V be a finitely based and locally residually finite va-
riety. IfG/V*{G) G £*, then V{G) G Xn.

PROOF. Assume G/V*{G) G X*. In particular G/V*(G) G &r and then
a theorem of P. W. Stroud ([18], Theorem 2) asserts that V{G) G 3*. Next
V{G/V'(G)) m V{G)/V(G) D V*(G) by (2.3)(d), so in view of (7.5)(a)
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V{G)/V(G) n V*{G) G X*. Hence we may assume that V{G) n V*{G) / 1. We
employ induction on the order of V(G). If V(G) = 1, there is nothing to prove.
So let V(G) ^ 1. There exists a characteristic subgroup TV ̂  1 of the abelian
group V(G) n V*(G), with N an elementary abelian p-group for some prime
number p. Since V(G) € 3v, P G TT. Hence by earlier remarks made after (7.5),
iV G atjr. Now {G/N)/V*(G/N) is isomorphic to a quotient of G/V*{G), whence
{G/N)/V*{G/N) G £„ . Moreover, V(G//V) = F(G)/AT, so \V{G/N)\ < \V{G)\.
The induction hypothesis implies that V(G/N) €Xn. We saw that N G Xn, so
by utilizing (7.5)(c) we get V(G) G £„•, as desired.

(7 .9) DEFINITION. Let 93 be a variety. A class 2J of groups is called 93-closed
if for any group G with G/V*{G) € 2) it follows that V(G) G 2).

To give an example, it is well known that # is 2t-closed. More general, if 93 is
a finitely based variety such that 3* is 93-closed, then 3w is (93* 9lc)-closed for
all c > 0. This follows with induction on c from (3.6) (c) and Theorem 1 of [18].

If a finite group possesses a normal subgroup, which after dividing out, pro-
duces a 7r-group, then this normal subgroup can be supplemented by a 7r-group.
This assertion is attributed to H. Zassenhaus. Here a generalization is needed.

(7 .10) LEMMA. Let G be a finite group and N <G with G/N G Xn. Then
there exists a subgroup H of G with G = HN and H € Xn.

PROOF. The proof runs along the same lines as the proof of Lemma 7 in
[18]. The ingredients are induction on the order of G, the well-known Schur-
Zassenhaus Theorem and the Frattini argument.

If G is a finite group and 93 an arbitrary variety such that G/V*{G) € X*,
then there exists a subgroup H of G with H £ X* and G = HV*(G), in other
words G is 93-isologic to a Xw-group contained in G. This follows from a simple
application of (7.10) and (4.4)(a). We now come to the main theorems of this
section, which cover similar situations where G is infinite.

(7.11) THEOREM. Let 93 be a locally residually finite variety. Assume that
5 is VO-closed. Then the following properties are equivalent.

(a) G is V-isologic to a group in Xn.
(b)G/V*(G)eX«.
(c) G is V-isologic to a section of itself lying in Xn.

PROOF. The implications (c)=>(b), (c)=>-(a) and (a)=s»(b) are obvious. So
let us prove (b)=>(c). Assume G/V*{G) G Xn. In particular G/V*{G) is finite
and there exists a finitely generated subgroup H of G with G = HV*(G). By
(4.4)(a) G ~ H. It follows that H/V*{H) G X*. Hence V*(H), having finite
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index in H, is finitely generated. According to (2.3) (a)(b) V*(H) e 5J. Thus
V*(H) is a residually finite group. Then we are assured by (7.7) that H is also
a residually finite group. Now the class 5 is 23-closed. So V(H) is a finite group,
because H/V* (H) is. Hence (7.6) guarantees the existence of an N < H with
N n V(H) = 1 and H/N finite. By virtue of (4.4)(b) we have G ~ H ~ H/N.

Next, apply (7.10) to the finite group H/N and its normal subgroup V*(H)/N
(notice that by (2.3)(f) N C V*(H)). Apparently there exists a subgroup K of
H, which contains N and such that H = KV*(H) and K/N € Xn. Now by
(2.5)(b) we have V(H) = V(K), whence N n V{H) = N n V(ff) = 1. Finally
(4.4) yields J//tf ~H~K ~ X/JV. So JiT/A" is the desired section of G.

Note that on invoking Theorem (7.8), the assumption that J has to be 2J-
closed in the statement of (7.11) can be dropped, if 2J is finitely based. We
provide some examples to Theorem (7.11).

(7.12) EXAMPLES, (a) Let V be any nilpotent variety. By a theorem of R.
C. Lyndon (see [13], 34.14) 5J is finitely based. Moreover it is well known that a
finitely generated nilpotent group is residually finite. See also Theorem 7.7 and
Corollary 7.9 in [8] for a special case.

(b) Let 2J be any metabelian variety. By virtue of a theorem of D. E. Co-
hen (see [13], 36.11) 5J is finitely based. It is known that a finitely generated
metabelian group is residually finite (see [14], page 155 or the next example (c)).

(c) Let 5J be any locally abelian-by-nilpotent variety. A celebrated theorem of
Philip Hall (see for example [14], Theorem 9.51) states that a finitely generated
abelian-by-nilpotent group is residually finite. Moreover 5 is 2J-closed (see [11],
Theorem 1.16). Consequently, we can restate (7.11) in this case as follows: If
9J is a locally abelian-by-nilpotent variety, and G is a finite group of order m,
then every QJ-isologism class with marginal quotient isomorphic to G has a finite
representative or order dividing a power of m. This strenghtens Theorem 2.4 of
[11].

(d) The following observation provides an abundance of examples.

THEOREM. Let V be a finitely based locally finite variety and i l o nilpotent
variety. Then WO is a finitely based locally residually finite variety. In particular
5 is WO-closed.

PROOF. WO is again finitely based by a theorem of G. Higman (see [13],
34.24). So we have to show that WO is locally residually finite. Therefore let
G e WO be finitely generated. LetN<G with N 6 i l and G/N e V. Now G/N
is finitely generated, whence by the locally finiteness of 5J, we have that G/N is
finite. It follows that TV is a finitely generated nilpotent group. In particular N
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is residually finite. By (7.7) we obtain that G is residually finite. Finally (7.8)
shows that £ is iHJ-closed.

We will now prove two fashions of Theorem (7.11) in which we allow the
class X to contain infinite groups. The question is what infinite groups should
be considered. The smallest class of finite groups X which satisfies Hypotheses
(7.5) is the class of finite solvable groups. Therefore it is in line to consider
infinite solvable groups, more precisely finitely generated solvable groups, like
polycylic groups. Indeed, notice that the class of polycyclic groups satisfies the
Hypotheses (7.5). We have the following.

(7 .13) THEOREM. Let V be a finitely baaed locally finite variety. Let 2)
be either the class of polycyclic, the class of finite-by-polycyclic or the class of
polycyclic-by-finite groups. Then the following are equivalent.

(a) G is %3-isologic to a group in 2).
(b)G/V"(G)€2J.
(c) G is VO-isologic to a 2)-</roup contained in G.

(7 .14) THEOREM. Let%3 be a nilpotent variety. Let%) be either the class
of polycyclic, the class of finite-by-polycyclic or the class of polycyclic-by-finite
groups. Then the following are equivalent.

(a) G is V-isologic to a group in 2J.

(c) G is V-isologic to a SQ-group contained in G.

The proofs of the above two theorems depend on the following observations.

(7 .15) LEMMA. LetG be a finitely generated group. Let%) be a variety.

(a) 7/53 is nilpotent, then G/V*(G) is polycyclic implies G is polycyclic.
(b) 7/23 is either finitely based locally finite or nilpotent, then G/V*(G) is

finite-by-polycyclic implies G is finite-by-polycyclic and G/V*(G) is polycyclic-
by-finite implies G is polycyclic-by-finite.

PROOF, (a) It is proved in [18], Theorem 3, part (b) that the class of polycyclic
groups is 23-closed if 53 is nilpotent. However, a close inspection of the proof of
that theorem reveals that in fact G is polycyclic, whenever G is finitely generated
with G/V*{G) polycyclic.

(b) Let G be a finitely generated group. Suppose first that 93 is a finitely based
locally finite variety. Assume that G/V*{G) is polycyclic-by-finite, say N < G,
N 2 V*{G), \G : N\ < oo and N/V*{G) polycyclic. Of course V{N) D V{G),
so N/V*(N) is polycyclic. As \G : N\ < oo, N is finitely generated. By Theorem
3 part (a) of [18], V(N) is polycyclic (there we need the fact that 53 is finitely
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based). But N/V{N) is finitely generated and N/V{N) € 5J. By the locally
finiteness of 23 we conclude that \N/V(N)\ < oo. Further V(N) char N < G,
so V(N) < G. And \G : V(N)\ = \G : N\ • \N : V{N)\ < oo, so that G
is polycyclic-by-finite. Next assume that G/V*(G) is finite-by-polycyclic, say
N <G, N D V*{G), G/N polycyclic and \N : V*(G)\ < oo. Now any finite-
by-polycyclic group is polycyclic-by-finite (see [18], Lemma 6). So by the former
paragraph G is polycyclic-by-finite. In particular every subgroup of G is finitely
generated, hence, as V*(G) € 2J, we have that V*(G) is finite, whence N is
finite. So after all G is finite-by-polycyclic. This proves (b) in case 5J is finitely
based and locally finite.

From now on we take 5J to be a nilpotent variety. Let G/V* (G) be polycyclic-
by-finite, say N < G, N D V*{G), \G/N\ < oo and N/V*{G) polycyclic. Now
V*{N) D V*(G), so N/V*(N) is a polycyclic group. Moreover N is of finite
index in G, so N is finitely generated. By virtue of (a) N is now polycyclic. We
conclude that G is polycyclic-by-finite. Finally assume G/V * (G) to be finite-by-
polycyclic, say N < G, N D V*(G), G/N polycyclic and \N: V*{G)\ < oo. As
V*(N) D V*{G), we have \N/V(N)\ < oo. Now 5J is locally residually finite,
so 5 is 5J-closed by (7.8). Hence |V(iV)| < oo. Now N is finitely generated. In
order to see this, observe that G/V*(G) is polycyclic-by-finite, so that by the
previous paragraph G is polycyclic-by-finite. Therefore N is polycyclic-by-finite,
so clearly N is finitely generated. It follows that N/V(N) is a finitely generated
nilpotent group. This implies that N/V(N) is polycyclic (see [16], Chapter 1,
Section B, Corollary 8). Also G/N is polycyclic and we get that G/V(N) is
polycyclic. We conclude that G is finite-by-polycyclic, as desired.

One may ask oneself whether it is true or not that, if QJ is a finitely based
locally finite variety and G is a finitely generated group with G/V* (G) polycyclic,
G itself must be polycyclic. The following answers this question.

(7.16) THEOREM. Let G be a finitely generated group. Let 5J be a finitely
based locally finite variety. Suppose that G/V*(G) is polycyclic. Then the fol-
lowing hold.

(a) V* (G) is finite. So in particular G is finite-by-polycyclic. In general G
does not have to be polycyclic.

(b) G is fO-isologic to a polycyclic subgroup.

PROOF, (a) By hypothesis G/V(G) is polycyclic, so in particular G/V*{G)
is finite-by-polycyclic. Hence by virtue of (7.15)(b), G is finite-by-polycyclic.
And this means that every subgroup of G is finitely generated. Thus V*{G) is
finitely generated and moreover (2.3) (a)(b) ensure V*{G) € 9J. It follows that
V*(G) is finite, as 9J is locally finite.
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Next we present an example showing that G is not polycyclic in general. Let
G be a non-solvable finite group. Let 93 be the variety generated by G. Of
course 93 is locally finite. A celebrated theorem of S. Oates and M. B. Powell
(see [13], 52.12) states that 93 is finitely based. Certainly G € 53, or equivalently,
G = V(G), according to (2.3)(b). Trivially G/V*{G) = T is polycyclic. However
G is not polycyclic (notice that for finite groups, being solvable is the same as
being polycyclic).

(b) Among all the counterexamples G to the assertion, choose one with
|F*(G)| minimal (in view of (a) this is possible). So G is a finitely gener-
ated group with G/V*(G) polycyclic, but G is not 93-isologic to any poly-
cyclic subgroup. In particular G is not polycyclic, since always G ~ G. Now

suppose there exists a proper subgroup H of G with G = HV*(G). Ow-
ing to (2.5)(a) V*(H) = H(1V*{G). Hence V*{G) = V*{H) would imply
H D V*{G), whence G = H,& contradiction. Thus \V*{H)\ < \V{G)\. Further
G/V*(G) ~ H/V*{H), so H/V*(H) is polycyclic. Also H is finitely generated,
since H is a subgroup of the finite-by-polycyclic group G. Apparently H is
not a counterexample, so there exists a polycyclic subgroup K of H, such that
H ~ K. However (4.4) (a) guarantees that G ~ H. It follows that G ~ K,
violating the choice of G. We conclude that G is subgroup irreducible with re-
spect to 53-isologism. By employing (7.3) we have V*(G) C $(G). This implies
that G/$(G) is polycyclic. Now G is polycyclic-by-finite by Lemma 6 of [18]. It
is known that the Frattini subgroup of a polycyclic-by-finite group is nilpotent
(see [16], Chapter 1, Section C, Theorem 3). Hence $(G) is a finitely generated
nilpotent group and therefore polycyclic (see [16], Chapter 1, Section B, Corol-
lary 8). We now have that both G/&(G) and $(G) are polycyclic, whence G
itself is polycyclic, a contradiction.

PROOFS OF (7 .13) AND (7 .14) . In both cases the implications (a) =^(b)
and (c)=»(a) are obvious. So let us prove the implication (b)=>(c). Let G be an
arbitrary group. Let the variety 93 and the class 2J be either as in the statement
of (7.13) or as in the statement of (7.14). Suppose that G/V*(G) € 2J. Since the
class 2) consists in all cases of finitely generated groups, we can find a finitely
generated subgroup of H of G with the property that G = HV*(G). By virtue
of (4.4) (a) we have G ~ H. Now the theorems follow immediately from (7.15)

and (7.16)(b).

We end this section with the following six consequences of the above Theorems
(7.13) and (7.14) (see also [18], Lemma 5, Lemma 6 and Theorem 3).

(7 .17) COROLLARY. Let 93 be either a finitely based locally finite variety or
nilpotent variety. Let 2J be either the class of polycyclic, the class of finite-by-
polycyclic or the class of polycyclic-by-finite groups. Then 2) is SU-closed.
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PROOF. Clear from (7.13) and (7.14).

8. Stemgroups

It was Philip Hall who discovered towards the end of the thirties that for any
group G there exists a group 5 with the property that G ~ S and 72 (S) 2 ?(S).
He coined the name stemgroup for these group 5. The stemgroups S are finite as
long as G is finitely generated and G/$(G) is finite. The question arises whether
such stemgroups also can be constructed in case of a general variety 93. More
precisely: given a variety 93 and a group G, does there exist a group S, such
that G ~ S and V*(S) C V(S)? In general, the answer to this question is in the

negative, as the following examples show.

(8.1) EXAMPLES, (a) (see also [1], Chapter IV, 7.25) Let 53 = %2, where p
is a prime number. For a group G it then holds that

V(G) = 72(G)Gp2 and V{G) = {g € f(G): f* = 1}.

Hence, if we take G = Cp3, then V(G) ~ Cp and V*{G) ~ Cpi. Suppose
now that there exists a group S with G ~ S and V*(S) C V(S). Apparently

\S/V*(S)\ = \G/V*(G)\ = p and | V (^"divides \V(S)\ = \V(G)\ = p. Hence
\S\ divides p2 thus we can conclude that 5 € 9J. Now (2.3)(b) yields |V(S)| = 1,
which is clearly absurd.

(b) Let 93 = 91,,, where n > 2. Let G be a group of nilpotency class n + 1
(for instance take G to be the dihedral group of order 2 n + 2 , or see the proof of
Corollary (6.16)). Hence G/<;n{G) is a non-trivial abelian group. Suppose now
that there exists a group S with G ~ 5 and fn(S) C ^n+i(S). Hence 5/fn(S)

n
is non-trivial and abelian, so S = fn+1(5). Moreover we have 72(5) C <;n(S) C
ln+i(S) C 12{S), whence 72(S) = 7n+i(5). This yields that 7 2(5) = 7n+2(5).
However 7n+2(S) = 1. We conclude that 5 is abelian, a contradiction to S/$n(S)
being non-trivial.

It is not a surprise that the variety 2tp2 features in the above Example (8.1)(a).
Namely the proof of the result of Hall mentioned above depends on the following
two requirements a variety 93 should come up to:

(8.2) Subgroups of 93-free groups are 93-splitting.
(8.3) Subgroups of 93-marginal subgroups are normal.
However we have the following (see also [11] at the top of page 115).

(8.4) PROPOSITION. Let 93 be a variety. Then 93 satisfies (8.2) and (8.3)
if and only i/93 = <£, QLm or 2t {with m a squarefree positive integer).
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PROOF. [•<=] This is clear as subgroups of free abelian groups are again free
abelian, and because any quotient of a finite cyclic group C is isomorphic to a
subgroup of C.

[=>] Let G € 93, so that in view of (2.3)(b) G = V*(G). According to (8.3)
every subgroup of G is normal in G. Hence G is a Dedekind group. It follows
(see [15] 5.3.7) that G is either abelian or G ~ Q x T, where Q is the quaternion
group of order 8 and T is an abelian torsion group. In the latter case we would
have Q € 93, as 93 is closed with respect to taking subgroups. This would imply
that Q x Q G 93, as 93 is closed with respect to taking subcartesian products.
However, Q x Q possesses subgroups which are not normal, for instance the
diagonal will do. We conclude that G is abelian after all. Hence 93 is an abelian
variety. Consequently 93 is one of the varieties <£, 21™ or 21, where m is a positive
integer. Next assume that m is not squarefree, say p is a prime number with
P2\m. Put 93 = %n. Then 1/V{Z) ~ Z/mZ, whence I/ml is 93-free (of rank 1).
In view of (8.2) Z/pZ should be a 93-splitting group. However the exact sequence
0 —• (m/p)Z —> Z —> Z/mZ —> Z/pZ —* 0 does not split as p = gcd(m/p,p). This
is a contradiction.

(8 .5) COROLLARY. Let m be a squarefree positive integer. For every group
G there exists a group S, such that

(a) G ~ S.

The above considerations show that for a variety 93 it is not always possible to
find a group inside a 93-isologism class having its marginal subgroup contained
in its verbal subgroup. On the other hand it was proved in [8], Section 6, that
for a given group G and n > 0 there exists a group S satisfying G ~ S and

n
?(S) C ifn + 1(S). Groups with the latter property are called n-stemgroups and
for n = 1 they are exactly the stemgroups in the sense of Hall. Indeed a lot
of properties shared by Hall's stemgroups can be generalized to n-stemgroups.
To mention one, if G is finitely generated and G/fn(G) is finite, then a finite
n-stemgroup S can be constructed within the n-isoclinism class of G (see [8],
Theorem 6.3). Moreover the n-stemgroups are of importance in cohomology
theory of groups, notably with respect to induced central extensions (see [17],
pages 129 and 130, and also [19]). This leads us to the following definition.

(8 .6) DEFINITION. Let 93 be a variety. A group 5 is called a VQ-stemgroup
if it satisfies f(S) C V{S).

The proof of the existence of 93-stemgroups in case 93 = 9tn rests among others
on the fact that for an (absolutely) free group F, the group V(F)/[F,V(F)]
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is free again. This seems to be a very special si tuation and it is not known

which varieties 23 satisfy this property. Fairly recently C. K. Gup ta showed tha t

23 = S 2 can be left out of account, for it holds tha t ${F/[F,F"}) = F"/[F,F"}

and this group is not even torsion-free (see [4]). A proof of the existence of 23-

stemgroups within a 23-isologism class along the lines the proof of the existence

of n-stemgroups within an n-isoclinism class seems to be hopeless. Nevertheless,

in case of polynilpotent varieties we are in favorable circumstances.

( 8 . 7 ) THEOREM. Let 23 = 9tCl>...iCj. For any finitely generated group G

there exists a finitely generated group S such that G ~ S and f(S') C V{S).

PROOF. For I = 1, see [8], Theorem 6.3. Assume in the sequel that / > 1. If
G is cyclic, 5 = 1 will do, as G £ 23 in this case. Hence we can choose a free
presentation of G, say G ~ F/R with F free of finite rank at least two. Set T —
7c1+i,...,c,.1+i(ir), so V{F) = 7c,+i(T). Now put S = F/RnV{F). Regarding
(4.4)(b) 5 ~ G. Certainly S is finitely generated. Now $(S)V{S)/V{S) C

${S/V(S)) and S/V{S) ~ F/V(F) = F/lci+1{T). At this point observe that
F/T is infinite, since Ci > 1, so that T C F'. By virtue of a theorem of N. D.
Gupta and C. K. Gupta and the fact that cj > 1, it follows that f {F/qc,+i(T)) =
T (see [5]). We draw the conclusion that f (S) C V(S), as wanted.

As already mentioned before, the n-stemgroups S (= ^-stemgroups) in (8.7)
can be chosen to be finite if one assumes for example that 7 n + 1 (G) is finite. One
of that facts that underlies this is # being 91,,-closed for all n > 1. Now Theorem
B in [18] asserts that $ is 9tCl c,-closed. The question remains whether, by
imposing some extra conditions on G in (8.7) like 7Cl+i c,+i(Gr) being finite,
a finite S can be constructed.
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