
CONJUGACY CLASSES IN SYLOW p-SUBGROUPS
OF GL{n,q), IV|

by A. VERA-L6PEZ and J. M. ARREGI

(Received 20 July, 1992)

In this paper we give new information about the conjugacy vector of the group ©„,
the Sylow p-subgroup of GL(n, q) consisting of the upper unitriangular matrices. The first
two components of this vector are given in [4]. Here, we obtain the third component, that
is, the number of conjugacy classes whose centralizer has q"+l elements. Besides, we give
the whole set of numbers which compose this vector:

{|CCSin(fi)| | B 6 &„} = {qu | n - 1 < u < n(n - l)/2}.

We keep the definitions and notations of [2-4]. We recall that an element atJ of a
matrix A e ©„ is a pivot if it is the first nonzero element in its row, out of the main
diagonal, that is aiJc = 0 for k = i + 1 , . . . , ; ' — 1 and ait=£0. In addition we introduce the
following sets of indices;

If A e ©„ is a canonical matrix, we shall use the letters X = X(A) and JR = ?R(A) to
denote the sets of inert and ramification points of A, respectively.

THEOREM 1. Let r and s be positive integers such that 1 < r < « — 2, l < j < n - r - l .
Then the matrices:

5—1 n—r

Ar_s = In + 2^ aii + r+lEij + r+i + 2-d ai.i + rEi,i + r,
1 = 1 1=5+1

if I < i < 5 - 1 , aiJ+ri=0 if s + l < i < n - r ,

are canonical in ©„ and each one has exactly rn — r(r + l)/2 + 5 - 1 ramification points, so
that, \Cmri(ArJ)\ = <lrn~rir+m+s~1- Consequently, for any u with n - 1 <u <n(n - l)/2
there exists a canonical matrix A in ©„ such that |C(S)n(v4)| = q" and for any v with
0< v s (n — l)(n — 2)/2 there exists a conjugacy class in ©„ with qv elements.

Proof. We note, using Lemma 3.9 of [3], that the entries of the matrix Ar<s which are
not placed over pivots are ramification points. This also proves that the matrix is
canonical, since all the non-zero values correspond to ramification points. Moreover,
according to Lemma 3.7 of [3], the points which are over pivots are inert, so the character
of all the entries of the matrix is determined and, consequently, the order of the
centralizer of this matrix is the one given in the statement. The second part of this
Theorem follows immediately, considering the matrices Ars together with the identity
matrix.
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THEOREM 2. Let A be a canonical matrix of&n. Then |Cc«n(i4)| = q"+l if and only if A
is one of the following matrices.
(1)

aUiEUi + a u + , E u + 1 + «,_,,,£,_,,, + a,_u+i£,_,,,+1,

where

Z3 = (F, x {0} x {0} x F,*) U ({0} x F, x ¥* x F,),

X, = (F, x {0} x {0} x F,*) U ({0} x F , x F* x F,*), if 4 < i < n - 3,

JC-2 = (F, x {0} x {0} x F*) U ({0} x F , x F* x F,),

* „ _ , = (F, x {0} x {0} x F,) - {(0,0,0,0)}.
(2)

A = ln+ ZJ au+lEiJ+l + a,-_ ]_,-£,•_,_,• + a,_! ,+i£,_1>/+1 + a,-,„£,-,
/6|l,/I-2]-{l-l,l)

i = 2 , . . . , « - 2,

vv/icre
(a,.l+1 | / 6 [1, n - 2] - {i - 1, i}) e F,*"-4 and (at_u, «,_,,.„ «,,„) e y

yn_3 = ({0} x F* x F,) U (F* x F, x F,),

y«-2 = {0}xF*xF,.
(3)

( i ) / / «^7 ,

2 l> / = 3, . . . , rt - 2,

w/iere
(a/i /+1 | / e [1, n - 1] - {i - 1, i}) e F,*"-3 and (fl/_iA--2j+i) e Z,,

VVIY/I

,- = F,xF*,

(ii) Ifn = 6,

'A=16 + a,,2£i,2 + «4,5^4,5 + fls.6^5,6 + 02.3^2,3
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with

or

with

(ai,2,04.5, «s.6)

A=I6 + au2Ex:i +

(a23, aIA) e

r * 3

,(n2-3n-2)/2 equals
"2,5 e F,.

5b f/ie number of conjugacy classes of (#„ o/ cardinality qx

(i) (9 - \)"-\{3n - I5)q2 - (n - 15)q + 1), if n > 7,
(ii) te-l)-W + &7 + 2),i//i = 6.
The proof of this Theorem is based on the following Lemmas.

LEMMA 1. Let A be a canonical matrix of(&„ and suppose that auu+l=0, «u +i ,u + 2#0
for some 2^u<n — 2. Then (u — 1, u + 1) e M(A).

LEMMA 2. Let A be a canonical matrix of ($„ suppose that aUM+l = 0, av >u+1 = 0, awd
a«..H.+ i ^ 0 , / o r w = u + l , . . . , u - l . T / i e « , ( M , W + 1 ) e $H(>1).

LEMMA 3. Le/ >4 oc a canonical matrix of ($„ and suppose that there exist two indices i
and r such that 2 s i ' < « - 2 , r s min{7 - 1, n - (i - 1)} satisfying the following conditions:
(i) «„,„ =0, if u<v, i - r < M < i - 2 , i-r + 2<v<i, (ii) au ,u + 1^0 / / / + l < H < i + r,
(iii) au.,+i = 0 , i J i - r + l < « < i . T/ien, (/ - r, i: + 1) e 9t.

LEMMA 4. Le/ A be a canonical matrix of (#„ and u and i two indices such that
u < i < n — 1, and ak fc+, =£ 0 /or A; = / + 1 , . . . ,« . 7Vjen:

(a) If u<2i-n and au+l # 0 / o r « < ! < « + / 1 - 1 - I , /te« («,i + l)e2: .
(b) / / /Ae« îy/5- f, wV/i u<v <i, such that au+x ¥= 0 for u<l<v, avi+) ^ 0 and

au+]=0forv<l<i, then (k, i + 1) e% for u s& <u - 1.

The proofs of these Lemmas are based on the fact that a point (/,;) is an inert or a
ramification point depending on whether the linear form L,v is linearly independent or
dependent on the forms which precede it. As an example, we give in detail the proof of
Lemma 3.

Proof of Lemma 3. The hypotheses imply that the entries (u, u + 1), / •+• 1 ̂  u s ii + r
are pivots, so auu = 0, for / + 2 ^ v ̂ / + r, u ^ u — 2, and we obtain the linear forms:

*-'i~rJ+\ = a/-r./-r+l*i-r+l,/ + l>

. . , r, andLet 2 be the set of these r + 1 linear forms in the unknowns Xj_r+k ,+(t, Ar = 1,
2i the set obtained from 2 by eliminating the form L,_r ,+J.

If we arrange the variables in the order

i~l.l+r— 1 j—2J+r—2,

the matrix defined by the coefficients of the forms in 2, is

+ l,i+2 a

0

0

0

,•_,+ ,,,-_r+2

-«,+2,+3

0

0

0

a,-r+2J-r+3

0

0

0
0

' ' ' ~ai+r-\,i+r

0

0

0

fl._

- a
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All the elements in the main diagonal of this matrix are non-zero, so its rank is r and it
follows that Li-rj+i is a linear combination of the forms in 2,.

Proof of Theorem 2. We study the different possibilities for the configuration of the
matrix A depending on the number of zeroes in the first diagonal.

Apart from the n — 1 entries of the first diagonal, there must be exactly two
additional ramification points, so the Lemma of [4] and Lemmas 1 and 2 yield the
following conditions:

(a) There are at most three zeroes in 2V
(b) If 2), has exactly three zeroes, then one of them is one of the extremes of 2), and

the other two occupy consecutive positions.
(c) If 2), has exactly two zeroes and they are not consecutive, then each one

occupies one of the extremes of 3),.
On the other hand, if the number of additional ramification points is less than two,

we apply Theorem 1.3 of [4] to conclude the following conditions:
(d) If there are exactly two zeroes in ®] and they are consecutive, then they are not

in the extremes of 2)].
(e) If 2)] has exactly one zero which is in the entry (i, i + 1), then 2 < i < n - 2 and

a,_,,,+, = 0.
Indeed, if al2 = 0 or an_ln = 0, it would follow from Theorem 1.2 of [4] that the

centralizer of the matrix has cardinality q"~\ which is impossible.
The equality fl,_i,,+i = 0 follows from the Theorem 1.3 of [4], since, otherwise the

order of the centralizer of A would be q".
(f) There is at least one zero in 2),.
So the proof is finally reduced to the following three mutually exclusive cases:
(C\) ai2 = 0 and there are one or two more zeroes in 2),. In the latter case, these

zeroes are contiguous (the case an = a 2 3 = fl34 = 0 is included).
(C2) #„_!,„ = 0 and there are one or two more zeroes in 2)). In the latter case, these

zeroes are contiguous (the case an_3 n_2 = an_2 „_, = #„_, „ = 0 is included).
(C3) The first diagonal has two contiguous zeroes or a single zero, which are not in

the extremes of 2), and the rest of the entries are non-zero.
(C,) In this case there exists an integer i with 3 < i < n - 1, such that

a,,2 = 0, fl,-,,+,=0, a,,/+1*0 for / e [2, n - 1] - {i - 1, i}.

We note that a(-_i,,- may have any possible value since there can be one or
two contiguous zeroes in 2),. In these conditions, the elements all+x =£0, I e [2, n — 1] —
{/ - 1, /} are pivots and so:

<S,+ 1 -®,s2: , / e [2, n - 1] - {« - 1, i>-

From this and the fact that aiJ+l = 0 it follows that all elements in the ith row are
zero (except for the entry in this row which lies in the main diagonal) and so, according to
Lemma 1.1 of [4], the entries of the ith column which are preceded by pivots are inert
points, that is:

Besides,
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This follows from Lemma 1 if / < n — 1, since aiJ+l = 0, a,+, ,+2 ¥= 0, and from Lemma 3.9
of [4] if i = n - 1, since, in this case an_2 „_, = 0 by (c).

We set /(> = / or i + 1 according to a,_,, = 0 or a,_,,=#=0 respectively. Then we have
from Lemma 2 that (1, i0) e JR. Thus, we have proved that:

®, u {(i, <„), (i - 1 , i +1)} c j u c s . u {(i, o, (i, i +1), (i - 1 , i +1)} u e/+1. (i)

So, the equality |JR| = n + 1 holds if and only if the first inclusion in (1) is an equality. In
any case, a necessary condition is that S,+1 - S ) | - S 2 ~ S i c S .

We consider the following four cases according to the value of i:
/ = 3. In this case we have a, 2 = 0 = a3A. If fl23 = 0, then a2A=t0, since, otherwise

arguing as in bl) we would have the contradiction (1, 4) e JR. So (2, 4) is a pivot and (1, 4)
is an inert point. Now it follows from (1) that JH = S), U {(1, 3), (2, 4)} and thus the
canonical matrices corresponding to the subset Fg x {0} X {0} X F* of X, have centralizers
of order qn+\ If a 2 3 # 0 , then (1,3) is an inert point because it is over a pivot and so
JR = ®, U {(1,4), (2,4)}, for any value of a2A. The canonical matrices obtained in this
way are considered in the subset {0} x F, x FJ x F, of A^.

4 < / < n - 3 . As we have pointed out before, (i - 1, i + 1) e JR. We note that
fl,_i,,+i#0. Indeed, if a,_,,+i = 0, then Lemma 3 (with / = /, r = 2) implies that
( / - 2 , / + l)eJR and \CG{A)\>qn+2, which is impossible. So a,_u+1¥=0. If a,_,,, = 0,
then fl,_i,,+i # 0 is a pivot and (£, — 2), — ® 2 c X so that:

9t = ®, U {(1, i), (i - 1, i + 1)}, \CG(A)\ = q"+l.

This justifies the subset F, x {0} x {0} x F* which is contained in Xh If a,_,,, ^ 0 , then
(i — 1, /) is a pivot and Lemma 4(b) (with u = 2, v = i — 1) yields (k, i + 1) e X for any
2 < ) t < / - 2 , so

JR = S ,U {(1, i + 1), (i - 1 , / + 1)}, |CC(>1)| = qn+l,

and this completes the set X(.
i = n—2. Suppose that an_3,n_2 = 0. Then an_3n_l^0, since otherwise the linear

form Ln_4n_, = an_4n_3xn_3n_i would be linearly dependent on the form Ln_3n =
-«„_, njcn_3n_, (note that an_Un ^0 ) and consequently, (n - 4 , n - 1) e JR and |CG(/1)| >
^"+2, which is impossible. So we have:

and we obtain the first subset of Xn_2. Suppose now that an_3,n_2^:0. Then it follows
from Lemma 4(a) (with 2 < u ^ 2(n — 2) - n = n — 4) that (u, i + 1) e SE and for any value
of an_3 „_,, we have that:

JR = S , U {(1, n - 1), (n - 3, n - 1)}, |CC(>4)| = qn+\

which completes the set Xn_2.
i = n — 1. The case an_2,,,_i ^ 0 is ruled out by (c). We have from the Lemma given

in [4] that the points (u, n), 2 =s u < n - 3 are inert.
If a, „_, = 0 = an_2jJ, then (1, n) e JR and |CC(/4)| > ^"+2 and we obtain a contradic-

tion. If a, „_,=£(), then ( l , « ) e £ (since it is preceded by the pivot of its row). If
on-2,n^d, (l,n)eX because it is over the pivot of its column. So we have
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(*,.„-„ fl.,-2.-) e FJ-{(0,0)}, and

JK = S), U {(1, n - 1), (n - 2, «)}, \CG(A)\ = 9 " + I .

This defines the set Xn-t.
The discussion of the cases (C2) and (C3) is analogous.
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