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REMARKS ON THE INTERSECTION OF FINITELY 
GENERATED SUBGROUPS OF A FREE GROUP 

BY 

R. G. BURNS, WILFRIED IMRICH, and BRIGITTE SERVATIUS 

ABSTRACT. The first result gives a (modest) improvement of the best 
general bound known to date for the rank of the intersection U D V of two 
finite-rank subgroups of a free group F in terms of the ranks of U and V. 
In the second result it is deduced from that bound that if A is a finite-rank 
subgroup of F and B < F is non-cyclic, then the index of A C\ B in B, if 
finite, is less than 2(rank(A) - 1), whence in particular if rank (A) = 2, 
then B < A. (This strengthens a lemma of Gersten.) Finally a short proof 
is given of Stallings' result that if U, V (as above) are such that U D V has 
finite index in both U and V, then it has finite index in their join (U, V). 

1. The Howson property. In [5] A. G. Howson showed that the intersection of any 
two finitely generated subgroups U, V of a free group F is again finitely generated, and 
gave a bound for the rank r(U C\ V) of the intersection in terms of the ranks r(U) 
(= m say) r(V) (= n say) of U and V, subsequently improved by Hanna Neumann [8] 
to the following (where it is assumed that m, n > 0): 

r ( ( / n V ) - l < 2(m - 1) (n - 1). 

(Note that in contrast with this one can easily show (essentially as in the second remark 
in [2]) that if either U or V has finite index in F, then we have (assuming m, n > 0, 
r(F) > 1) r(U PI V) - 1 < (m - 1) (n - \)/(r{F) - 1).) 

The best general bound to date is that established in [1] (see also [9], [10]), namely 

(1) r ( [ / n V ) - l < 2(m - 1) (n - 1) - min{m - 1, n - 1} (m, n > 0). 

Our first result represents a modest improvement of the latter bound. 

PROPOSITION 1. Let U, V be (non-trivial) subgroups ofa free froup F of finite ranks 
m, n respectively and suppose that A, B are subgroups of F such that U has index i in 
A, and V has index j in B. Then 

(2) r(U D V) - 1 < 2(m - 1) (n - 1) - min{y(m - 1), i(n - 1)}. 

PROOF. The index of U H V in A H B is at most ij. Denoting the ranks of A and B 
by a and b, we have by the Schreier index formula 
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(m - 1) = i(a - 1), (n - 1) = j(b - 1), r ( [ / n V ) - l < (/(r(A Ci B) - 1). 

The desired bound (2) now follows since by (1) applied to A D B we have 

r(A H £) - 1 < 2(A - 1) (ft - 1) - min{a - 1, ft - 1}. 

EXAMPLES. lfm = n = 3,i=j=2 (whence a = ft = 2 necessarily), then (2) yields 
r(LV Pi V) < 5, while (1) yields only r(U H V) < 7. On the other hand if m = « = 
3, / = 2,7 = 1 (whence a = 2, ft = 3 necessarily), then (2) affords no improvement 
over (1). 

Our second result was prompted by [3, Lemma 5.2]. 

PROPOSITION 2. Let A be a finitely generated subgroup andB a non-cyclic subgroup 
of a free group F.IfADB has finite index in B, then 

(3) [B:A H B]< 2(r(A) - 1), 

where [B :A D B] denotes the index of A C\ B in B. 

PROOF. Clearly A cannot be cyclic. Let Bx be any non-cyclic, finitely generated 
subgroup of B and write 

/ = [Br- A H B{\ (< [B: A n B]). 

By the Schreier index formula 

(4) r(A PI *,) - 1 = /(r(£.) - 1). 

On the other hand since neither A nor Bx is cyclic we have from (1) (with U = A, 
V = BX) 

(5) r(A H Bx) - 1 < 2(r(A) - 1) (/•(£,) - 1). 

Comparing (4) and (5) we deduce that / < 2(r(A) — 1). 
Write j = [B : A fï B], let b{,. . . , ft7 form a (right) transversal for A D 5 in B, and 

now let Z?i be any non-cyclic, finitely generated subgroup of B containing ft,,.. . , ft,. 
Then bx,. . . , b} determine distinct right cosets of A fl Bx in Bu whence by the above 
j < 2(r(A) - 1) as required. 

COROLLARY (cf. Gersten [3, Lemma 5.2]). Let A be a subgroup of rank 2 of a free 
group F, and let B be a non-cyclic subgroup of F such that A 0 B has finite index in 
B. Then B is contained in A. 

PROOF. From (3) with r(A) = 2, we obtain [B:A D B]<2, whence A f) B = B. 

2. The Stallings-Greenberg property. We conclude with a simple proof (i.e. 
simple modulo some more-or-less basic facts) of the following result of Stallings [11], 
based on results of Greenberg [4]. (We note that a sketch of this proof appeared in 
Review 20013, Zentralblatt fur Math., vol. 521 (1984), and also that a proof along 
similar lines has been obtained by Akbar Rhemtulla and David Meier (unpublished).) 
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It would seem likely that, more generally, the property in question is enjoyed by the 
surface groups. 

THEOREM (Stallings [11]). / / U, V are finitely generated subgroups of a free group 
with the property that U H V has finite index in both U and V, then U C\ V has finite 
index in (U, V) (the subgroup generated by U and V). 

PROOF. Write F = (U,V). We may suppose neither U nor V trivial since the contrary 
case is easy. Since every finitely generated subgroup of a free group is a free factor of 
some subgroup of finite index in F (see [2] or [6]), there exist subgroups A and B of 
F such that (U, A) = U * A with [F : U * A] < oo, and (V, B) = V * B with [F : V * B] 
< oo. By the Kurosh subgroup theorem (or more directly from [7, p. 117, Ex. 32]), 
since (U * A) f) V is a subgroup of the free product U * A, it will have as a free factor 
(of itself) its intersection with the free factor U of U * A; thus (U * A) P\ V (~) U = 
U fl V is a free factor of(U*A)C\V. However since the latter group is contained in 
V and since [V: U D V] < ™, it follows that in fact 

(6) (u * A) n v = u n v, 

and, similarly, that 

(7) (v *B) n u = u n v. 

Now let Af be any normal subgroup of finite index in F contained in(U * A) f) (V * B). 
Then by (6) and (7) 

u nv > N n U,N nv, 

whence 

N n u = N nv = N n u nv. 

Hence N\ = N C\ U Pi V is normal in both U and V and therefore in F = (U, V), and 
is moreover easily seen to be non-trivial. Furthermore by Howson's theorem (see 
above), N{ is finitely generated, being the intersection of three finitely generated 
subgroups of F. It follows that N\ must have finite index in F (in view of the result of 
Schreier that a non-trivial normal subgroup of infinite index in a free group must have 
infinite rank (see e.g. [2, Corollary 2])). Since U 0 V > N{ we deduce that U H V has 
finite index in F, as required. 
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