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HERMITIAN OPERATORS ON BANACH JORDAN ALGEBRAS

by M. A. YOUNGSON
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1. Introduction

In this note, we examine some of the properties of Hermitian operators on
complex unital Banach Jordan algebras, that is, those operators with real numerical
range. Recall that a unital Banach Jordan algebra /, is a (real or complex) Jordan
algebra with product a ° b, having a unit 1, and a norm || • ||, such that /, with norm || • ||,
is a Banach space, ||1|| = 1, and, for all a and b in /,

\\a°b\\^\\a\\\\b\\.

We shall mainly be concerned with the Jordan analogues of C*-algebras which
were introduced by Wright in (13). These will be defined in Section 2, after which we
shall state some of their properties. In Section 3, we prove a result on numerical
ranges, which we require to complete a Vidav-Palmer theorem for complex unital
Banach Jordan algebras, which was started in (15). Our final section is devoted to
Hermitian operators on the Jordan analogue of C*-algebras. Using a generalisation of
results of Sinclair for C*-algebras (10), we show that an operator on such a Jordan
algebra A is Hermitian if and only if it satisfies an algebraic equation involving only
the elements of A. This characterisation was also obtained by Kaup (8) using deep
results connecting Jordan triple systems and symmetric complex Banach manifolds.
Finally, as an application, we give a large class of Hermitian operators, whose squares
are not Hermitian.

We shall use the following notation:
(a) If X is a normed linear space, we denote by X', the dual of X and by B(X),

the bounded linear operators on X. If -5 is a non-empty subset of X, and r £ R, we let
rS = {rs: S G S} and, co S and co S respectively the convex hull of S and the closed
convex hull of 5.

(b) If / is a Banach Jordan algebra, we let

{a, b, c} = (a ° b) ° c - (c ° a) ° b + (b ° c) ° a

for all a, b and c in /. For a in /, we define La and Ua in B(J) by

La(x) = a o x and Ua(x) = {a, x, a}

for all x in /. Then by (6) p. 36, equation 60, for all a in /,
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If / is special, that is, / is also a subset of an associative algebra, and x ° y =
htxy + yx), where xy is the associative product, then, for all a, b and c in /,

{a, b, c} = \{abc + cba).

(c) If 5 is a non-empty subset of a complex unital Banach Jordan algebra /, let

E(S) = co{exp(»s): s £ 5}.

Note that, for each a £ /, the closure of the Jordan algebra generated by 1 and a is a
complex unital Banach algebra, as multiplication is continuous. In particular, for all a
in /, exp(/a) is well defined.

2. Jlf "-algebras and /Zf-algebras

A JB*-algebra is a complex, unital Banach Jordan algebra A, with an involution *
such that, for all x in A,

\\{x,x*,x}\\ = \\x\\3.

In his definition of Jordan C*-algebras in (13), Wright has the additional hypothesis
that, for all x in A,

\\x\\ = \\x*\\.

However, in (15), we showed that this condition is automatically satisfied in a
/B*-algebra, so that the two classes coincide.

As the name suggests, /B*-algebras are closely linked to the /B-algebras intro-
duced by Alfsen, Shultz and Strirmer in (1). A JB-algebra is a real, unital, Banach
Jordan algebra K, such that, for all a and b in K,

The main result of (13) shows that the self-adjoint elements of a /B*-algebra form a
/B-algebra, while, conversely, a /B-algebra may be embedded as the self-adjoint
elements of a JB*-algebra.

Examples of /B-algebras include any norm-closed real Jordan subalgebra K of
self-adjoint operators on a Hilbert space such that 1 £ K; these are called JC-algebras
in (11), and Mf, the single, formally real, simple, non-special, finite dimensional
Jordan algebra (see (1), (6) and (7)). Hence not all /B-algebras are special, and, in
particular, not all /B-algebras are isometrically isomorphic to /C-algebras. However,
from Corollary 5.7 and Theorems 8.6 and 9.5 of (1), we obtain the following result.

Theorem 1. / / A is a JB-algebra, there exists a family G of continuous
homomorphisms <f>: A -* B^ such that

(a) for each non-zero a in A, there is <f> £ G such that <p(a) ^ 0 and
(b) for each <}>E.G, either B* - M% or B* is a JC-algebra.
This was used to prove the following Theorem and Corollary in (13).
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Theorem 2. / / A is a JB-algebra, and a and b are elements of A, then the closure
of the Jordan algebra generated by 1, a and b is a JB-algebra, isometrically isomorphic
to a JC-algebra.

Corollary 3. / / A is a JB*-algebra, and a and b are self-adjoint elements of A,
then the closure of the complex Jordan algebra generated by I, a, and b is a
JB*-algebra, (with involution inherited from A) which is *-isometrically isomorphic to
a self-adjoint norm-closed complex Jordan subalgebra J of operators on a Hilbert
space, such that I E / ; these are called JC*-algebras in (2).

In particular, by choosing a = b in Theorem 2 and Corollary 3, we may obtain the
following Corollary. A proof not depending on Theorem 1 can be found in (1)
Proposition 2.3 and (13), p. 292.

Corollary 4. (a) / / A is a JB-algebra and a G A, then the closure of the algebra
generated by 1 and a is a JB-algebra, isometrically isomorphic to the self-adjoint part
of a commutative C*-algebra with identity.

(b) / / A is a JB*-algebra, and a is a self-adjoint element of A, then the closure of
the complex algebra generated by 1 and a is a JB*-algebra, *-isometrically isomorphic
to a commutative C*-algebra with identity.

We conclude this section with a characterisation of the centre of a /B*-algebra.
Recall that if / is a Banach Jordan algebra, and a, b E.J, then a and b operator
commute if La commutes with Lt in B(J). (See (6) and (7)). The following Theorem
was obtained in the /C*-algebra case by Topping (12).

Theorem 5. Let A be a JB*-algebra and a be a self-adjoint element of A. Then the
following are equivalent:

(i) a operator commutes with all self-adjoint elements of A.
(ii) a2 o b = {a, b, a} for all self-adjoint elements b of A.
(iii) If J is any closed, complex, self-adjoint Jordan subalgebra of A such that

aGJ, and if F:J->B(H) is any continuous Jordan *-homomorphism, then, for all
self-adjoint elements b of J,

F(a)F(b) = F(b)F(a).

Proof, (a) (i) => (ii). Let b be a self-adjoint element of A. Then, for all c in A,

a ° (b ° c) = b o (a ° c).

In particular, putting a = c, we have a ° (a ° b) = a2° b, so

(La)\b) = LXb).

But (La)
2 = kLs + Ua), so LAb) = Ua(b), or

a2° b = {a, b,a).

(b) (ii) ̂ > (iii). Let / be any closed, complex, self-adjoint Jordan subalgebra of A,
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such that a G/ , and let F:J-*B(H) be any continuous Jordan *-homomorphism. Let
b G / be self-adjoint and let c = F(a) and d = F(b). Then c and d are self-adjoint and

c2° d = {c, d, c}.

Hence |(c2d + dc2) = cdc, so

c(cd - dc) = (cd - dc)c.

By the Kleinecke-Shirokov theorem, see for example (3) Proposition 18.13, cd - dc is
quasinilpotent. But c and d are self-adjoint, so i(cd-dc) is a self-adjoint quasinil-
potent, and hence is zero, as required.

(c) (iii) => (ii). Let b G A be self-adjoint. By Corollary 3, the closure of the
complex Jordan algebra generated by 1, a and b is isometrically *-isomorphic to a
/C*-algebra. Denoting this *-isomorphism by v, we have, by hypothesis, n(a)n(b) =
ir(b)v(a), and so

-rr(a2) o nib) = {ir(a), TT(&), 7r(a)}

and ir(b2)°TT{a) = {ir{b), 7r(a),v(b)}.

As TT"1 is a Jordan isomorphism

a2° b = {a, b, a}

and b2 ° a = {b, a, 6}.

(d) (iii) => (i). Let b be a self-adjoint element of A, and suppose that La does not
commute with Lb. Then there exists c in A such that

a ° (b ° c) ^ b ° (a ° c).

By replacing c with j(c + c*) or j / ( c * - c ) if necessary, we may assume that c is
self-adjoint.

By Theorem 1, there is a continuous Jordan homomorphism <£, from the self-adjoint
elements of A to B4,, such that

and either Bj, is a /C-algebra, or B# is Aff.
If Bj, is a /C-algebra, then <f>(a)<(>(b) = (f>(b)<f>(a) by hypothesis, and so

which is a contradiction.
If B4 is M3, let p be any idempotent in B^ and rf be any self-adjoint element of A

such that <(>(d) = p. From part (c),

so
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and hence

Lp(4>(a)) = Up(<f>(a)).

By (1), Lemma 2.11, 4>(a) operator commutes with p, so in particular,

(4>{a)°<i>{c))°p = (p ° <£(c)) ° <£(a).

Now, as M\ is a finite dimensional JB-algebra, every element of M% is a finite linear
combination of idempotents, by (1) Proposition 4.3. Thus

This is also a contradiction, and hence a must operator commute with b.

Remark. The last part of the above proof works in any /B-algebra with
"sufficiently many" idempotents.

If A is a /B*-algebra, let C(A) denote the self-adjoint elements of A which
operator commute with all self-adjoint elements of A. The centre of A is C(A) +
iC(A), and it can be shown to be a B*-algebra. In the case that A is a B*-algebra, it
follows from Theorem 5 that this definition of centre agrees with the usual one.

3. The Numerical Range

If A is a complex unital Banach Jordan algebra, let D(A, 1) denote the normalised
states on A, that is

= {fEA':f(l) = ||/||=1

Given a G A, the numerical range V(A, a) is defined by

) = {f{a):f<=D(A,\)}.

The Hermitian elements of A, denoted by Her A, are those elements of A with real
numerical range.

Since, for each a in A, the closure of the Jordan algebra generated by 1 and a is a
commutative unital Banach algebra, many of the well known results on the numerical
range of elements of Banach algebras go through without change to Banach Jordan
algebras, see (15). Here, we wish to show that V(A, a) = V(B(A), La) (where
V(B{A), La) is the numerical range of the operator La in the Banach algebra B(A)).
First, we recall that the spatial numerical range W(La) is defined by

W(La) = {/(a - x): f E A', x e A and f(x) = ||x|| = ||/|| = 1},

and that from normed linear space theory (see (4) Theorem 9.4), for all a in A,

co W(L.)=V(BiA),L.).

Theorem 6. / / A is a complex unital Banach Jordan algebra, and a G A, then

V{A, a) = V(B(A), La) = W(La).

Hence a G Her A if and only if La G Her B(A).
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Proof. If / G D(A, 1), then \\f\\ = /(I) = ||l|| = 1, and so, for a G A, f(a) = f(a ° 1) e
W{La). Hence for all a in A, V(A,a)C W(La).

Conversely, if x G A and / G A' are such that ||/|| = ||*|| = f(x) = 1, define a linear
functional F on A by F(b) = f(b »i) for b in A. Clearly F(l) = 1, while for all b in A,
\F{b) =£ \\f\\b ° JC||6||. Hence FGD(/1,1), and so for all a in A, W(La)C V(A,a).

Thus V(A, a) = W(La). By (15) Theorem 2(0, V(A, a) is closed and convex. So

W(La) = V(A, a) = co V(A, a) = co W(La) = V(B(A), La).

Remark. Theorem 6 also holds if A is only a (non-associative) algebra, with unit,
which is a Banach space under a norm, which is submultiplicative with respect to the
product, and such that the norm of the unit is one.

4. The Vidav-Palmer Theorem for Banach Jordan algebras

In (15), we showed that if A is a /B*-algebra, then A = Her A © i Her A, and
Her A is the real Jordan algebra of self-adjoint elements of A. Conversely, we showed
that if A is a complex unital Banach Jordan algebra such that Her A is a real Jordan
algebra and A = Her A © i Her A, then there is a continuous involution * on A, called
the natural involution on A, defined by

(h + ik)* = h-ik

for h and k in A, and an equivalent norm on A, such that A, with the natural
involution is a /f?*-algebra in the new norm. In Theorem 8, we shall prove that the
new norm is in fact equal to the original norm. First, we require a Lemma.

Lemma 7. / / K is a complex Banach algebra with a unit, and J a closed complex
Jordan subalgebra of K, containing the unit, then, for all a and b in J,

{exp(/a), b, exp(ia)} = (exp 2iLa)(b).

Proof. Let a E.J. By writing down the power series expansion for exp 2iLa, it is
clear that for b in /, (exp 2iLa)(b) does not depend on whether we regard La as an
element of B{J) or B(K). Thus, for the remainder of the proof, we regard La as an
element of B(K).

Put h = ia, and define lh and rh G B(K), by

lh(x) = hx and rh(x) = xh,

for x in K. Then as 2iLa = lh + rh, and lh commutes with rh we have, for all b in K,

(exp 2iLa)(b) = (exp(/, + rh))(b)

= exp lh exp rh(b)

= (exp h)(b)(exp h)

= {exp(/a), b, exp(/a)}.

In particular, the required result holds for all b in /.
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Theorem 8. Let A be a complex unital Banach Jordan algebra such that Her A is
a real Jordan algebra and A = Her A © / Her A. Then A with its natural involution is
a JB*-algebra.

Proof. Fix y G A. By Corollary 3, and (15) Theorem 11, there is a homeomorphic
•-isomorphism ir from Q, the closure of the complex Jordan algebra generated by 1,
i(y + y*) and b(y - y*) to a /C*-algebra. Further by (15), Lemma 12

IMMktoll (i)

for all x in Q.
Let h G Her Q. As TT is a homeomorphic *-isomorphism, for all x in Q, by Lemma

7, {exp(iVi), x, exp(/li)} = (exp(2iL,,))(jc). A s / i G Her Q, Lh £ Her B(Q) by Theorem 6,
so that by (4) Lemma 5.2,

Hexp(2iL*X*)ll = 11*11
for all x in Q. Thus, for all JC in Q,

|Kexp(i*),x,exp(ifc)}|| = ||jc||. (2)

The identity {v, {w, v2, w}, v} = {v, w, v}2 is valid in any special Jordan algebra and
hence, by Macdonald's Theorem (see (6), Section 1.9) in every Jordan algebra. Thus
for h G Her Q and x G Q, we have

x:, exp ih, x}\\ = ||{exp(| ih), [x, exp ih, x}, exp(^ ih)}\\

= \\{exp(Uh),x,exp(Uh)}2\\

= \\xf, (3)
using (2) twice. Now let K, TJ >0. Pick a E Q such that ||a||= 1 and ||ir(a)||>||7r||-ij.
Then |k(a*)|| = ||ir(fl))*|| = ||ir(a)||, so that,

TT(a*)<=\\7r(a)\\E(7r(HerQ))

using (15) Theorem 8. As ir is a homeomorphic *-isomorphism, this implies

Hence let z G||7r(a)||co{exp ih :h GHer Q} be such that \\a*-z\\<K. So z =
S;=, b, exp(i/i,) where h, G Her Q, bj G R, with fe, 3= 0 for all j and 2?=, bt «||77(a)||. Then

(by(3))
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As| |{ f l , a*, f l}H| |{a,2,a} | | + ||C/a|k

||TK<0||3 = \W({a, a*, a})\\^\\ir\\ \\{a, a*, a}\\

*lklP + lklll|l/.ll'c
As this holds for all K > 0 , \\ir(a)\\3^ ||ir||2. Thus

(lkll-7,)3^|k||2.

As this holds for all T J > 0 , ||TT||3 =S ||7r|p, SO | |TT| |«1. Combining this with (1), we
conclude that IT is an isometry. Hence

Illy, y*. y}\\ = lk({y, y*. y})|| = lk(y)||3 = IMP-
Thus A is a /£*-algebra.

5. Hermitian Operators on J£? "-algebras

In this section, we extend results of Sinclair (10) concerning Hermitian operators
on a C*-algebra with identity. First we recall that a derivation 8 on a /B*-algebra A is
a linear map 8:A-+ A such that, for all x and y in A,

8(x o y ) = 8{x) °y+x° 8(y)

and a *-derivation on A is a derivation 8 on A such that, for all x in A,

8(x*) = - ( « « ) * .

It is routine to check that if 8 is any derivation on a JB*-algebra, then 8(1) = 0, and
that 5 may be decomposed as a sum of two *-derivations. Also, by modifying the
usual argument for C*-algebras, see for example (9) Lemma 4.1.3, it can be shown
that every derivation on a /B*-algebra is continuous.

We have shown that, if A is a /B*-algebra, and a G Her A, then La G Her B(A). In
this section we shall show that every ""-derivation on A is a Hermitian operator on A,
and conversely that every Hermitian operator on A is of the form La + 8 where
a G Her A and S is a ""-derivation.

We start with some routine properties of derivations. Parts (i), (ii) and (iii) of the
following Theorem are analogues of the Banach algebra case, and (ii) and (iii) are
shown for finite dimensional Jordan algebras in (5). For this reason, we shall only
prove (iv).

Theorem 9. Let A be a JB*-algebra and 8 a *-derivation on A.

(i) 8m(u°v)

for all u, v in A, and all positive integers m.
(ii) exp(ifS) is a *-automorphism for all t G R.

(iii) Conversely, if T G B(A) is such that exp(itT) is a ^-automorphism for all
( 6 R , then Tis a *-derivation.

(iv) 8{b, c*,d} = {8b,c*, d} - {b, (8c)*, d} + {b, c*, 8d} for all b, c and d in A.
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Proof of (iv).

8{b, c*, d} = 8((b °c*)°d-(b°d)°c* + (c* °d)°b)

= (b o c*)o Sd + (8b °c*)°d-(b°(5c)*)° d

+ (b°d)° (5c)* - (8b °d)°c*-(b° 8d) ° c*

+ (c* o d) ° 5b - ((5c)* °d)°b + (c*°8d)°b

= {8b, c*,d}- {b, (8c)*, d} + {b, c*, 8d}.

Corollary 10. / / 5 is a *-derivation on a JB*'-algebra A, then 8 £ Her B(A).

Proof. exp(itS) is a *-automorphism for all ( e R , and hence is an isometry by (13)
Corollary 1.4. Thus ||exp it8\\ = 1 for all / G R, and so 5 G Her B(A) by (4) Lemma 5.2.

We now come to the analogue of Sinclair's results on Hermitian operators on
C*-algebras.

Theorem 11. // A is a JB*-algebra, and A £ Her B(A), then X=La + 8 where
a G Her(/4) and 8 is a *-derivation on A. Moreover, this decomposition is unique.

Proof. Let a = A(l). Given / G D(A, 1), define F G (B(A))' by

for aEB(A). As F(l) = 1 and |F(o-)|=s||o-(l)||«||cr||, we have F G D(B(A), 1). Hence
{(a) = /(A(l)) = F(A) G R, and so a G Her A. By Theorem 6, La G Her B(A), and so by
(4) Lemma 5.4, 5 = A - La G Her B(A). As 5(1) = 0, (exp(/fS))(l) = 1 for all t G R, and
by (4) Lemma 5.2, as 5GHerB(y4), exp(/75) is an isometry of A onto itself, for all
t G R. By (14) Theorem 6, exp(/75) is thus a *-automorphism of A for all (GR, and so
by Theorem 9(iii), 5 is a *-derivation.

Finally, as every derivation maps the unit of A to zero, it follows that the
decomposition of A is unique.

We use Theorem 11 to derive an algebraic characterisation of Hermitian operators
on /B*-algebras, which was also obtained by Kaup (8).

Theorem 12. Let A be a JB*-algebra, and A G B(A). Then A G Her B(A) if and
only if, for all b, c and d in A,

\{b, c*, d} = {Kb, c*, d} - {b, (Ac)*, d} + {b, c*, kd}. (4)

Proof. If A G Her B(A), then by Theorem 11, A = La + 8 where a G Her A and 5
is a *-derivation. It is sufficient to show that (4) holds for La and for 5. From (6) page
37, for all b, c and d in A,

La{b, c*, d} = {Lab, c*,d}- {b, La{c*), d} + {b, c*, Lad}

= {Lab, c*,d}- {b, (La(c))*, d} + {b, c*, Lad}

as a is self-adjoint. So La satisfies (4), while 5 satisfies (4) by Theorem 9(iv).
Conversely suppose A G B(A) satisfies (4), and let a = A(l). Choosing b = c = d =

1, we have
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so a = A(l) is self-adjoint. By Theorem 6, LaEHerB(A). Let \fi = A - L a . Then
I/>(1) = 0 and, by the first part of the proof, i{/ also satisfies (4). Taking d = 1, for all b
and c in A, it follows that

c*) = ip(b) oC*-b

Choosing fc = 1, for all c in ,4, </»(c*) = -(«/f(c))*, and so, for all b and c in A,

°c + b° i

Thus i/f is a *-derivation, and so A = La + i^e Her B(A) by Theorem 11.
By linearisation, we may replace (4) by apparently weaker hypothesis: we shall

only prove part of the following Corollary as an example of the technique.

Corollary 13. Let A be a JB*-algebra, and A G B(A). Then the following are
equivalent:

(i) AGHerB(A),
(ii) A {a, b*, a} = 2{Xa, b*, a} - {a, (Xb)*, a} for all a and b in A,
(iii) X{a, a*, a} = 2{Xa, a*, a}-{a, (Xa)*, a} for all a in A.

Proof. From Theorem 12, (i) implies (ii). (ii) implies (iii) is trivial. We shall prove
(ii) implies (i), the remaining implication being similar.

Hence, suppose (ii) holds. As for all a, b and c in A,

2{a, b*,c} = {a + c,b*,a + c}-{a, b*, a}-{c, b*, c},

2X{a, b*, c} = 2{X(a + c), b*, a + c}-{a + c, (Xb)*, a + c}- 2{Xa, b*, a}

+ {a, (Xb)*, a}- 2{Xc, b*, c} + {c, (Xb)*, c}

= 2{Ac, b*, a} + 2{Xa, b*, c}-2{a, (Xb)*, c}

= 2({a, b*, Ac} + {Xa, b*,c} + {a, (Xb)*, c}),

for all a, b and c in A. Hence by Theorem 12, A G Her B(A).
As an application of Theorem 12, we characterise those a £ Her /I such that

(La)
2EHerB(A).

Theorem 14. Let A be a JB*-algebra, and a G Her A. Then (Laf G Her B(A) if
and only if a is in the centre of A.

Proof. As (Laf = {(Ua + La2), we have (La)
2GHer B(A) if and only if Ua G

Her B(A). Suppose first that Ua G Her B(A). Let h G Her A. By Corollary 4, h =
k2- I2 where it and / are positive elements of the B*-algebra which is the closure of
the complex Jordan algebra generated by / and h. Then putting c = b = k and d = 1 in (4),
we have

Ua{k,k, \} = {Ua(k),k, \}-{k,(Ua(k))*, \} + {k,k,

As (Ua(k))* = Ua(k), since a, k are self-adjoint, this means
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Similarly {a, I7, a} = l2°a2, so that

{a, h,a}= h °a7.

Thus by Theorem 5, a is in the centre of A.
Conversely suppose a is in the centre of A. Let b G Her A. As in part (a) of the

proof of Theorem 5, a1 ° b = a ° (a ° b) or

LAb) = (La)\b).

Hence, (La)
2 G Her B{A), as La2 G Her B(A).

Acknowledgement. I wish to thank Professor F. F. Bonsall for his help and
encouragement, and the Carnegie Trust for a Carnegie Scholarship.

Note added in proof. Since the submission of this manuscript, an alternative proof
of Theorem 11 has been obtained using (16), Proposition 5.4 and (17) Theorem 3.3.
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