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ABSTRACT. The behaviour of a snow mass under natura l loadings (gravity forces, boundary conditions) 
can be computed by the finite-element method, in so far as a convenient formulation of the stress-strain 
relationship for snow is available. This paper deals with su ch a formulation given in incremental form. 

Experiments have been performed, which show that deposited snow can be considered as a non-linear 
visco-elastic material with memory effect. The proposed theoretical formula tion takes into account these 
properties. The elastic part of the deformation is assumed to be isotropic and n on-linear; the viscous part is 
expressed in terms of a creep-rate, which results from a superposition of elementary creep-rates according 
to Boltzmann's principle. 

The values of parameters can be obtained from isotropic creep experiments. The experimental data and 
the resulting parameters are reported. 

Since the parameters were determined, the formulation of the rheological law was then tes ted by integra
tion on "stress-strain paths" corresponding to other experiments of a different type, performed on the same 
snow. The experiments are triaxial tests a t constant axia l stra in-rate, with a preliminary stage of isotropic 
compression. Experimental data a re com pared to theoretical curves obtained by integration of the rheological 
law. The calculated behaviour is consistent with the experimental results. 

R EsuME. Une formulation incrementale des equations constitutiueJ pOllr la neige deposle. Le comportement d'un 
massif de neige, soumis aux sollicita tions naturelles (poids propre, conditions aux limites) peut trouver un 
cadre d'etude favora ble dans la methode des elements finis dans la mcsure Oll I'o n dispose d'une formulation 
satisfaisante de la loi rheologique de la neige (caracterisation de son comportement mecanique). Cet article 
presente une teUe formulation, ecr ite sous la forme incrementale. 

Les experiences effectuees montrent que le comportement de la neige peut c': tre caracterise comme visco
elastique non-lineaire avec effet de memoire. Situant leu r etude dans ce cadre, les auteurs presentent la 
formulation theorique qu'ils proposent pour une neige deposee. La partie elast ique de la deform a tion est 
isotrope non-lineaire; la partie visque use est exprimee it partir de la vitesse de Auage, explicitee itl'aide du 
principe de superposi tion de Boltzmann. 

Les parametres mecaniques, intervena nt dans la formula tion, peuvent c': tre calcuJes it partir d'essais de 
fluage isotrope sous un et plusieurs pa liers de contrainte iso trope. Les resul tats de ces essais sont donnes ainsi 
que les valeurs des parametres pour la n eige testee. 

Les parametres ayant ete ainsi determines, la loi rheologique peut alors etre ve rifiee par integra tion sur 
des chemins de soll icitation correspondant it d'autres types d'essais, realises sur la meme neige. L es essais de 
verifi cation realises sont constitues par des ecrasements triax ia ux it vitesse constante, precedes d'une phase de 
fluage isotrope. L es mesures experimenta les sont donnees e t la compara ison avec les courbes theoriques, 
fournies par I'integra tion de la loi rheologique incrementale, est presentee. L 'analyse de cette compa ra ison 
permet de condure it la bonne validite de la loi proposee. 

Z USAMMENFASSUNG. Eine inkrementelle Form der GrlllzdgleichungenJiir abgelagerten Sclmee. Das Verhalten einer 
Schneemasse unter na turli cher Belas tung (Schwerkraft, R a ndbedingungen) kann nach der M ethode der 
Finiten Elemente berechnet werden, sofern eine passende Formulierung der Beziehung zwischen Spa nnung 
und Verformung fur Schnee verfugbar ist. Diese Arbeit behandclt eine solche Formulierung mit Hilfe von 
Inkrementen. 

Aus Versuchen hat sich ergeben, d ass a bgelagerter Schn ee als ein nichtlineares visko-elastisches Material 
mit Erinnerungseffekt betrachtet werden kann. Die vorgeschlagene theoretische Fassung berucksichtigt diese 
Eigenschaften. D er elastische T eil d el' Verformung wird a ls isotrop und nicht-linear angenommen; der 
viskose T eil wird a ls eine Kriechgeschwindigkeit dargestellt, die si ch a us d er Dberlagerung elem entarer 
Kriechvorgange gem ass dem Prinzip von Boltzmann ergibt. 

Die Parameter k6nnen aus isotropen Kriechversuchen gewonnen werden. Die Versuchsdaten und die 
daraus hervorgeh enden Parameter werden mitgeteilt. 

Nach der Bestimmung der Parameter wurde die Formulierung des rheologischen Gesetzes durch Integra
tion uber "Spannungs-Verformungs-Wege" gepruft, ahnlich wie bei anderen Versuchen verschiedenen Typs 
mit demselben Schnee. Es ha ndelt sich um drei-achsiale V ersuche mit kons ta nter Verformungsrate aus 
einem vorhergehenden Zustand der isotropen Kompress ion. Die Versuchsergebnisse werden mit 
theoretischen Kurven verglichen, die sich aus del' Integration des rheologisch en Gesetzes ergaben. Das 
berechnete Verhalten stimmt gut mit den Versuchsergebnissen uberein. 
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I. INTRODUCTION 

When examined on a fine enough scale any medium appears to be discontinuous. How
ever the study of deformable media have shown, on the whole, that it is always possible to 
adopt a sufficiently large scale to be allowed to take into account macroscopic behavioural 
parameters and to reason within the framework of continuum mechanics. Of course, this 
macroscopic behaviour is directly determined by the microscopic structure of the medium: 
frequently, a microscopic study, even a qualitative one, reveals the correct procedure to be 
taken in continuum mechanics. 

For example, in soil mechanics, the study of the deformations of a sand mass (an essentially 
discontinuous medium to the human eye), is normally carried out within the framework of 
continuum mechanics. It is thus within this framework that the study of the deformation of a 
snow mass should be situated. 

In order to solve a problem of deformable media, three sorts of equations are required. 
First the fundamental laws of conversation must be stated: the conservation of momentum, 
mass, and energy. These equations are valid, whatever the medium may be. On the other 
hand, the second group of equations, which consists of the constitutive equations or the stress
strain relationship enables the specifity of a given medium to be taken into consideration. 

It should be noted that a constitutive equation is not completely arbitrary and must 
conform to the principle of objectivi ty (which states the invariance of the law in any continuous 
change of referential frame) and also the second law of thermodynamics. Finally the third 
group of equations which are constructed from the boundary conditions depends on the 
problem under consideration. 

Taking account of the boundary conditions in cases where they are complex, requires 
the use of computing codes based, for example, on the finite-element method. This means 
that the constitutive equation used must be tri-dimensional in general cases, or bi-dimensional 
in the case of a plane state of deformation, and, furthermore, they must be written in incre
mental form in order to be able to describe the considerable non-linearity of snow behaviour. 
This article is above all concerned with the formulation of the constitutive equation of a snow 
sample. 

The following points are considered in turn: first the experimental study is described and a 
first elementary rheological formulation of the snow sample under study is arrived at. Then 
the proposed constitutive equations are presented, this being done in an incremental form. 
Finally the parameters are calculated and the validity of the equation is checked on a different 
class of tes ts. 

2. EXPERIMENT AND DISCUSSION 

(i) Experimental study 

The tests took place in the laboratory of the Centre d'Etude de la Neige at la Croix de 
Chamrousse (altitude 2 250 m). 

Snow type 

The test samples were gathered directly within the near vicinity of the laboratory. This 
procedure implies certain scatter in the snow characteristics (temperature, density, structure, 
etc.) since all the material for testing was not gathered simultaneously; however this scatter 
is convenient for our purpose. 

The tests were performed on freshly fallen snow with visible particles, which was dry, or 
very slightly damp, the density range being between 150- 200 kg/m 3 • The temperature ranged 
from -IOoC to _2 °C. 
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Equipment and testing procedures 

The equipment used was a cylindrical triaxial apparatus, with measurement of the 
sample volume change. Isotropic pressure on the cell was exerted by means of an anti-freeze 
circuit linked to a variable height system of pots. A double burette (cf. Bishop) in the circuit 
enabled the volume change of the sample to be determined. The tests were carried out in a 
cold room, regulated to the temperature of the snow being tested. 

The tests were in two parts: 

(i) A creep phase under isotropic compression: one or several load stages of successive 
isotropic stresses being applied to the sample. The deformation of the sample volume 
w'as monitored during the test. 

(ii) After this initial phase the sample was compressed at constant deformation-rates by an 
electromechanical press (6.45, 2.30, 0.9 I mm/min) ; the lateral pressure being 
maintained constant. 

Experimental results. A remarkable feature of snow is its creep behaviour when it is in a 
state of isotropic stress (Salm, 1971; Salm, [1975]). The tests corroborated these findings. 

Creep tests. Figures I and 2 are isotropic creep curves in which AV/Vo (relative volume 
change) is plotted against t (time) for cri = 5 X 103 Pa and cri = 13 X 103 Pa (cri being the 
applied isotropic ~ tress ) . In the initial phase of the test there is a decrease in the creep-rate 
which then becomes stable. Initial creep-rate increases when cri increases. Figure 3 shows the 
evolution of the relative volume change with time in the case of a test in which increasing 
isotropic pressures cri were applied. The sample became markedly denser, with a volume 
decrease at the end of the test of as much as 50 % of the initial volume. It can be seen from 
Figure 3 that despite the preliminary increase in the density caused by the previous loadings, 
an increase in the isotropic stress always has as a result a sharp acceleration in the volume 
change. 

Yriaxial tests. Two types of curves are obtained by these tests. The curve of axial stress 
variation with axial deformation (cr" El) and the curve of relative volume change with this 
deformation (Ev, El ) ' Axial strain El is defined from the experimental data as Al/lo. The 
curves ( crI> El ) are characterized by two features (Fig. 4) : (i) OA is concave downwards; 
(ii) AB shows slight concavity upwards or even linearity. This profile is a lso to be found in 
curves of simple compression. 

The rate at which the sample is compressed affects its response as has been frequently 
reported (Kinosita, 1967; Shinojima, 1967) and at high rates the curve does reveal severe 
irregularities (saw tooth) . Salm (1971 ) has shown that when the sample has, prior to testing, 
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Fig. I. Isotropic creep, 01 = 5 kPa. Fig. 2 . Isotropic creep, 01 = 13 kPa. 
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Fig. 3. Isotropic creep, 01 increasing by stages: 5, 13, 33, 60 kPa. 

undergone a preliminary loading, this "saw-tooth" phenomenon does not occur. It is caused 
by local structure collapse, that is to say, to the appearance of heterogeneous features which 
prevent, a priori, this behaviour being interpreted by means of a rheological model essentially 
designed for homogeneous samples. 

In so far as the curves of the volume change are concerned, Figure 5 shows an example 
of the results obtained. Volume change and axial strain are plotted, starting from the applica
tion of the deviatoric loading (not from the preliminary application of the isotropic compression 
0"3) . 

The curves obtained are nearly linear. This stems from the fact that the variations of 
volume evolve proportionally to axial deformation. It should be noted however that the 
volume deformations change less rapidly than axial deformations, which implies a slight 
lateral expansion of the sample. Calculating a value of Poisson's r atio from these data would 
provide a value of v = 0.13; however, this is the ratio of lateral to axial strain-rate, not the 
classical elastic p arameter in H ooke's equations. In other words, this ratio is not necessarily a 
rheological p ara meter, but can be the result of the superposition of several rheological 
behaviours (elasticity, plasticity, viscosity). These findings may be compared to the results 
obtained by Shinojima (1967), who suggests a Poisson's ratio of 0.03 under compression. 
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100 

o 2 345 10 

Fig. 4. Triaxial test, axial compression rate 2.77 mm/min; 0 3 = 13 kPa. 
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Fig, 5, Volumetric strain versus axial strain during a triaxial test. 

(ii) Elementary rheological features 

293 

After certain considerations of a qualitative nature on the fine-grained st~ucture of 
deposited snow, the question of how the behaviour of the latter can be accounted for within 
the framework of continuum mechanics is examined. 

Structure 

Deposited snow has a dispersed structure; it consists of: 

(i) Particles which can be either monocrystals or crystal aggregates . It may. be assumed 
that these particles are not compressible, at least in so far as common snows that have not 
reached a very high degree of compactness are concerned. 

(ii) Gas which is a mixture of air and water vapour. 
(iii) Intergranular bonds. These bonds may evolve considerably during the histoqr of the 

material. We do not intend to deal here with this evolution in the snow cover under the 
influence of factors such as temperature gradient within it. Suffice it to say that under the 
effect of mechanical stress these bonds undergo physico-chemical evolution. This evolution is 
accompanied by the appearance, disappearance, and displacement of bonds. It is doubtless 
the interplay of these different evolutions that makes time the fundamental parameter in the 
response of snow to mechanical stress. 

Snow as a continuous medium 

Isotropy. The way in which snow is naturally deposited necessarily creates a certain degree 
of anisotropy in deposited snow. The tests carried out however demonstrate that this is 
negligible in the case of naturally deposited snow. The triaxial behaviour of core samples, 
one vertical and the other horizonta l within the same layer, were shown to reveal no per
ceptible difference. Thus the hypothesis of isotropic behaviour will be made in 'relation to a 
norm of undeformed naturally d eposited snow. 

Isotropic creep. The tests reveal a considerable degree of creep under isotropic compression. 
This fundamental feature of behaviour has to be taken into consideration in formulating laws 
governing snow. 

Limit suiface. At no stage during our tests was there any plastic rupture of the sample, 
such a phenomenon being assumed to be characterized by an evident rupture surface and/or 
by an asymptotic limit on the stress-strain curve. Different paths were taken in a bisecting 
plane of the space of principal stresses without meeting any limit surface of plasticity. Figure 6 
shows the paths taken within this space. 
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/"hypothetical plasticity 
.... surface 

Fig. 6. Stress paths in stress space. 

Path I IS Isotropic, thus plasticity must be excluded. 
Path 2. 0", increases, 0"3 remains constant. If there is a limit surface of plasticity then this 

path must intersect it. 
Path 3. 0", increasing, 0"3 decreasing. Pot descent during the tests. This path must intersect 

the limit surface of plasticity. 
Path 4. Uniaxial compression, 0"3 = o. This path must intersect the limit surface. It 

must be noted that further continuation of the path to higher-order stresses leads, not to 
rupture, but to the compression of the core sample 15 cm high into an ice galette of 2 cm 
(Kinosi ta, 1967) . 

This does not exclude the possibility of the existence of brittle ruptures at relatively 
higher speeds of loading. 

Viscous and elastic behaviour. A typical experimental curve of the triaxial test is shown on 
Figure 4. The beginning of the curve, a field of very small deformation, can be interpreted 
as an elasticity stage. The second part of the curve corresponds to a viscous (irreversible) flow 
of the material. 
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Fig. 7. Stress histories and corresponding strain responses. 
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The memory iffect. Examination of the experimental results of creep under successive 
loadings shows that the history of the stresses has an important influence. The examples 
shown below, which are extreme examples, illustrate this influence. Two stress histories 
leading to the same total stress at time tl are shown in Figures 7a and b. The responses in 
viscous deformation (non-instantaneous) are shown respectively in Figures 7c and d. It is 
clear that the creep rates at tl are quite different, depending on whether the major stress 
stage was applied before or after the minor one. The fact that if the later stress history is 
a = ct for a time t great in comparison to t l , one has a coincidence in the creep curves, in no 
way alters the importance of the factor of the "history" when the behaviour of materials 
during the phases of stress evolution is to be studied. 

Lateral deformation. During the tests lateral deformation of the sample was truly negligible. 
Thus, from these test results it is possible to give a rheological description of deposited snow 
as a visco-elastic material with memory, being predominantly viscous. It is upon this basis 
that the following incremental formulation of the constitutive equations was elaborated. 

3. CONSTITUTIVE EQUATIONS FOR DEPOSITED SNOW 

(i) The incremental formulation of constitutive equations 

Under a given mechanical loading applied during a given time (this is termed a "stress 
path") a homogeneous sample has a defined unique response, which depends on the material, 
the response covering a certain time span. (This is termed the "response path".) The 
constitutive equations, or rheologicallaw governing the material, supplies a determined and 
unique response path corresponding to a stress path graduated in time. 

In the case of simple constitutive equations this relationship between stress path and 
response path degenerates. For elastic materials (loaded in isotherrnically) stresses and defor
mations are linked by a simple function: f (a, E) = o. If the approximation is made of a 
perfectly plastic rigid solid, then the constitutive equations are reduced to a plasticity criterion 
and a flow rule. And for pure viscosity without any memory effect, the existence of a function 
linking the stress to the pure deformation-rate is assumed. 

For deposited snow these different approximations are very crude. Snow, as has been 
shown above can be considered as a visco-elastic material. Moreover, experience shows that 
snow belongs to that class of viscous materials having a significant memory effect: that is to say 
that the deformation rate depends not only on the stress which is being applied at the time, 
but also on the history of stresses that has already been applied to the material. As a reason
able approximation, deposited snow can be said to follow Boltzmann's superposition principle. 
This states that the response to the sum of multiple loading histories is equal to the sum of the 
response of each loading history. 

The rheological law of deposited snow must therefore be studied within the general 
framework of a functional relationship between states of stress and deformation: knowledge of 
the totality of the stress path is necessary to determine the response path. Accounting for this 
function, that is to say the global formulation of the soil law, is therefore highly complex. 

Let us take a homogeneous sample with a defined loading history. If a small load is 
applied to it (for example the small pure deformation dE) for the time increment dt, the small 
response of the sample (da, being the variation in the state of the stress which is being applied 
in co-rotational axes) will be found to be unique. This statement, which is no more than the 
principle of determinism applied at an incremental level, implies the existence of a function f, 
depending on the total history of the sample, thus: 

f (dE, da, dt) = o. 

This is the general incremental formulation of rheological laws. 
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This function f applies to infinitely small quantities. If it is assumed to be regular at the 
origin it will be possible to get a limited development to the first order which will be valid 
within a given region around the origin. 

Thus 

(i,j, k, l = 1,3)· 

Taking into the account the symmetry of the tensors dE and dcr we get dEa = MaP dcrp+ Ca dt 
which allows us to represent them as six-component vectors. In this relation MaP dap stands 
for the elasto-plastic part of the small deformation while the vector C is the creep-rate. It will 
thus be feasible to describe a visco-elastic behaviour (Darve and others, 1978). 

The mathematical description used henceforth is the Hencky strain tensor, defined as 

E = 1nL, 

L being the pure strain after rotation *. This description is convenient with large strains and 
displacements. 

The incremental formulation is particularly well adapted for incorporation within 
numerical calculus programmes based on the finite-element method, for the behaviour of the 
material does have a high degree of non-linearity and is moreover influenced by memory 
effects. These mechanical properties, thus, vary profoundly during loading. If this evolution 
is to be described, it will be necessary to monitor step by step (increment by increment), at 
each point of the field under consideration, the loading brought to bear by the boundary 
conditions. The necessity of decomposing the exterior load into successive increments is thus 
reflected, at a rheologicallevel, by an incremental formulation of the equation. 

(ii) Elasticity 

As a first approximation snow may be considered to be isotropic. It can then be shown 
that the matrix, M, may be expressed in terms of only two quantities: Young's modulus and 
Poisson's ratio. 

The value of this modulus is, in the adopted formulation, linked to the average stress: 

crm = HcrII +cr22 +0"33]' 

and the proposed relation between E and O"m can be written: 

E = Eo+K(crm)n. 

Poisson's ratio is considered as constant. 

* The linear tangent transformation is classically stated as follows: 

T= RL'= LR, 

where L, L' are pure strains and R is the rotation. 
The matrix T is the deformation gradient, T = oxl oX (x refers to the current state, and X to the reference 

state). 
In principal axes, • is expressed easily from experimental data as 

• = In (/0 /1). 

Another interest of this description is the ready interpretation of the deformation increment d. (in principal 
axes) 

d. = dil l, 

as the infinitesimal strain defined from current state. 
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The matrix M finally has the form: 

v JI 

E E E 
0 0 0 

JI JI 

E E E 
0 0 0 

JI V 

E E E 
0 0 0 

M= 
I+v 

0 0 0 
E 

0 0 

I+JI 
0 0 0 0 

E 
0 

I+JI 
0 0 0 0 0 

E 

Within the framework of the problem under consideration (the study of snow cover) i t is 
natural to make the hypothesis of plane deformation; in this case the formulation is restricted 
to four components for the vectors dE and da as in plane deformation we have 

dEl3 = 0, 

dan = 0, 

dEZ3 = 0, 

da23 = o. 

The non-linear elastic part of the deformation increment is formulated thus: 

JI JI 
dEII 

E E E 
0 daII 

dEz2 
v JI 

da22 E E E 
0 

X 

dE33 
V JI 

da33 E E E 
0 

dEl2 
I+V 

da I2 0 0 0 
E 

(iii) Viscosiry 

a. General discussion 

The viscous part of the equations is represented in the formulation by the vector C, which 
is the creep-rate vector. This is viewed from the principal axes of deformation increments 

{C} = { g~ } . 
Cm 

o 
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If {C} is expressed in axes related to the principal axes by a rotation of angle 4> 

{C} = Cl sin' 4>+Cu cos' 4> . 

{

Cl cos' 4>+Cu sin' 4>} 

CUI 
(CI-CU) sin' <P 

The values Cr, Cu, CUI are the principal creep-rates. When the material is put in a state 
of stress consisting of several non-zero elements crI i= 0, cru i= 0, crUI i= 0 the problem of the 
coupling of creep mechanisms in these different directions is posed: independence between 
Cl, Cu, and CUI, although kinematically possible, is not physically apparent. To assume it 
would be restrictive. -

Cl represents the creep deformation-rate in the direction I at moment t in a state of ongoing 
stress and deformation, at the end of the material's history. 

A further notion is now introduced; that of uniaxial creep-rate. This would be the 
deformation rate CI*, should coupling not occur: that is to say that only Er, crr, and their 
respective histories are taken into account in the calculation of Cr*. The same applies for 
Cu* and CUI*. 

b. Detailed formulation 

Coupling. Taking into account the interdirectional coupling of the proposed incremental 
formulation requires the introduction of a "pseudo Poisson's ratio of viscosity" referred to as X 
and defined by 

Cl 
X = Cu ' 

within the framework of a test under the following conditions: 

crI = Ct, 
cru = crur = o. 

The values of the principal creep-rates are expressed therefore as a function of the "uni
axial creep-rates" defined in paragraph (iii)a as follows: 

Formulation of uniaxial creep rates 

-Guiding principles 

Cl = CI*+X(Cn*+Crrr*), 
Cn = Cu *+ x (Cr* + Crrr*), 

Cm = Cm*+X(CI*+Cn *). 

In the adopted formulation the fictitious creep-rate as defined above and symbolized CI * 
is made to depend on: 

I. The present level of the total stress in the principal direction under consideration. 
2. The stress history, that is to say the manner in which the present level if stress has been 

obtained. 
3. The present level of total viscous deformation. 

The influence of factors ( I) and (2) has been examined in the preceding paragraphs on the 
analysis of the experimental results. 

In so far as the third factor is concerned, the introduction of the current value of total 
viscous deformation as a parameter enables the following experimental data to be accounted 
for in the formulation: if a sample is made to undergo a stress history consisting of equal 
increments applied at constant time intervals (cf. Fig. 8) the answer in viscous deformation 
is not one of identical, juxtaposed truncated curves, but, on the contrary, of non-identical ones, 
each differing from the previous one by having a decreased creep-rate. 
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£ 

L----_t L-----t 
Fig. 8. Incremental stress history and corresponding strain response. 

Such tests were performed; an example is given in Figure 3. It should be underlined that 
here the stress increments, far from being equal, are increasing, and ~his helps to make the 
phenomenon less obvious. 

It is thus necessary to introduce a parameter which takes into account the fact that creep 
depends on the state of total deformation. 

- Analytic formulation of uniaxial creep under constant stress. 
The following formulation is proposed for uniaxial creep under constant stress: it is 

assumed that it is possible to approach the experimental curve with a sufficient degree of 
approximation by an analytic curve obtained as the sum of two terms: 

a hyperbolic term (short term) 

t 
€(t) = At+ B' 

and 
a linear term (long term) 

€(t) = Ct. 

The corresponding creep-rate is then: 

B 
E(t) = (At + B)2 + C. 

The choice of the value C requires some comment. This is the long-term element of the 
creep-rate. The element B I(At+ B)2 represents the short term. When t approaches zero (the 
onset of loading) this hyperbolic element tends towards I lB. In so far as C is concerned, we 
have not at our disposition sufficient experimental results covering a large enough range of 
long-term creep tests. From results obtained at Chamrousse by J. P. Navarre and P. Blaix 
of the Centre d'Etude de la Neige of Grenoble, during the winter 1975- 76 it has seemed to us 
possible to take a long-term rate (oblique incline of the asymptote) equal to one-hundredth 
of the initial rate. 

Doubtless this approximation could be improved upon: however in order to determine 
satisfactorily parameters which account for actual behaviour, access would be required to a 
wide experimental basis in the area of long-term creep. In the absence of such a basis, the 
hypothesis of one-hundredth seem to be acceptable. 

produces 

E( t) 

0.01 
C=

B 

B 0.01 

(At+B)2 + B' 
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The influence of the level of stress (uniaxial in the principal direction under study) is 
introduced in the following way: coefficients A and B of the above-mentioned relationship are 
expressed as functions of principal stress (J ((J = (Jr, (JII, (Jm) : 

A' 
A=-, (J 

B' 
B=-. (J 

The result of this option is that the uniaxial creep-rate, all other things being equal, has a 
linear variation with the applied stress: 

E(t) = (J X LA't~B')2+ 0;1] . 
This relation gives the proposed formulation for uniaxial creep under constant stress. In 

cases where there is an evolution in stress this relation must be applicable, not to the total 
stress but to the stress increments. This is the problem that will now be considered in the 
following paragraph. 

-Formulation of monoaxial creep under successive stages of stress. 
The problem is that of determining the current creep-rate at the end of the stress history 

represented by the values of (J as a function of time. 
We have seen the necessity of taking into account the history if errors are to be avoided. 
The Boltzmann principle which applies to visco-elastic materials assumes that the response 

to a complex history is equal to the sum of the separate responses. This means that if to a 
history (JI ( T) [ - DC < T :( t] there is a response El (t ) and if to (J2 ( T) there is Ez (t ) then to a 
history (JI (T)+ (JZ (T) the corresponding response will be EI(t)+E2(t). 

By reasoning on incremental lines we can determine the stress history by a finite number 
of data which are: ~(Ji the stress increments, and Ti the loading time of the stress increments 
[Ti -Ti_l] being the time increments. 

Applying the superposition principle to creep-rates, the suggested formulation expresses 
the current uniaxial creep-rate as a sum of the current elementary uniaxial rates, each being 
relative to a part of the stress history; that is to say to a pair ( ~(Ji' Ti) which summarizes the 
history of stress increments in two terms: ~(Ji being the amplitude of increment and Ti the 
moment at which the increment is applied. 

We thus have: 

E(t) = L Ek(~(Jk' Tk, t). 
k 

The partial rates, symbolized Ek being given by 

Ek (d(Jk, Tk, t) = ~(Jk [[A k' X ( t~:k) + Bk'J' + ~:,I] 
One further aspect of the problem remains to be taken into account. It is that of the 

influence of the current value of the total viscous deformation, the importance of which, has 
been outlined above. 

-Influence of the total current viscosity deformation. 
This value is introduced in the terms B' and A', the formulation coefficients. The notation 

being Eok (value of the total viscosity deformation at Tk ), tl(Jk being the moment of application 
of the stress increment. 

Calculated on such experimental basis as we at the moment have at our disposition, the 
expressions A' and B' can be formulated in the following way: 

Ak' = aEok2+cx, 
Bk' = hEok+f3. 
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The current uniaxial creep-rate may therefore be obtained by the sum of the terms Ek: 

Ek = f(€(Tk)' (cr(Tk)-cr(Tk_r)), t-Tk), 

that is to say that at step l the real uniaxial creep-rate is expressed by the relation: 
I 

E(t) = .L f(€(Tk)' (cr(Tk)-a(Tk_r)), t-Tk) . 

k = 1 

In non-discrete form, this would be: 
I 

E(t) = J F[€(T), &(T), (t-T)] dT. 
- co 

The uniaxial creep-rate at time t is then expressed as a function of strain, stress-rate, and 
time from a very remote time ( - co) to the instant t. * 

Now if this is seen from the standpoint of the general framework of the study of the vector C, 
the value E(t) which is obtained corresponds to the rates Cr*, Cn*, Cnr* and thus the combina
tion of these rates gives us the current creep-rate in each direction. 

After this detailed account of the non-linear elastic elements and viscous elements of the 
proposed formulation, we shall now describe its implementation. 

4. ApPLICATION 

(i) Parameters of the equation 

The proposed equation, in its incremental form described in the first part of this paper, 
has a certain number of parameters which are features of the type of snow studied. 

These parameters (their manner of appearance has been discussed above), total nine 
altogether. 

Eo, K, n, v for the elastic element; 
a, IX, b, (3, X for the viscous element. 
It is by means of laboratory tests that these parameters are determined . 

The determination of Eo, K, and n requires triaxial tests at different rates each one carried 
out at a constant compression rate. The initial gradient for a curve E* for a single, average 
stress am (equal to a3 as this is the beginning of the test) varies with the compression rate but 
tends to a terminal value E when this rate has increasing values. It is from the curve of the 
variations of E with the stress that E, K, and N may be determined. The Poisson's ratio, which 
has little influence, is assigned a small value (v = o. I). 

In order to determine the viscosity parameters, creep tests (uniaxial and isotropic) are 
required. Creep tests of a single stress value enable IX and f3 to be determined. To determine 
the parameters a and b it is necessary to have creep tests with several stress stages successively 
applied. The parameter X which is the pseudo-viscous Poisson's ratio can be measured as the 
ratio of lateral deformation to axial deformation of a cylindrical sample during a test in uni
axial creep. 

Table I shows the parameters which have been determined experimentally and introduced 
into the formulation. The values were determined on the "parameter-determining paths" 
(p.d. paths). 

* Indifference to the material frame can be taken into account by the summation in the fixed frame of the 
terms &( T), each defined in suitable co-rotational axes. For loading paths without rotation of co-rotational 
axes, the equations given here are sufficient. 
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TABLE I. PARAMETERS USED IN THE FORMULATION 

Parameter Eo K n v a ex b ~ X 
Units Pa Pa none none Pa- I S-2 P a - I S- 2 Pa- I S- I Pa- I S- 2 none 
Value 15 X 105 I 340 x 105 2.0 0.1 18g X 10- 5 1.05 X 10- 5 252 0 X 10- 5 180 X 10- 5 -0·3 

In the following paragraphs ((ii) and (iii)) the integration of the constitutive equations 
along particular stress paths is described. The first paragraph deals with "parameter
determining paths" . These are the paths monitored in the stress area during the laboratory 
tests from the results of which the numerical values of the parameters were determined. The 
second paragraphs show the results obtained on verification paths. These paths are, by 
definition, stress paths which are not in the vicinity of the "p.d. paths" and for which there are 
experimental results which allow the validity of the proposed formulation to be estimated. 

(ii) Parameter-determining paths 

These are of two types. 

(a) 
(b) 

with 

crI = O'n = crIlI = constant, 
crI = O'n = crIII = S ( t) . 

{

S(t) = SI ifo ~ t < t» 

~ (~~ ••• S.2 • • • • • • i~ ~I. ~ .t. ~ ~2.' 
s(t) = St if tt-I ~ t < tt. 

There is a perfect correspondence here to loading paths that were applied experimentally 
in the laboratory of the Centre d'Etude de la Neige at la Croix de Chamrousse. It is on the 
basis of these tests that the parameters were calculated. The comparison of the experimental 
findings and the response curves derived from the equations substantiates the choice tha t was 
made in establishing the formulation. 

Type (a) paths. The tests that were carried out supply experimental data for two cases of 
applied stress. 

O'iso = 5 X ra3 Pa for the first four. 
O'iso = 13 X ra3 Pa for the last two. 

0·05 t---+--- --f----

0·04 t--- f--

0·03 

0·02 

()'01 

0·0 

• + + 
~ x + + 

---1----1--

5 

200 400 600 800 1000 time 

Fig. 9. Experimental points and calculated curves for type (a ) parameter-determining path shown in inset. 
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0·10 t---+--

0·08 

0·06 

0·04 

0·02 

" 

5 0.0 L-----I--_--I--_--+---_-'-_-'-_ _ 

200 400 600 800 1000 time 

Fig. [0. E xperimental points and calculated curves for type (a) parameter-determining path shown in inset. 

The calculated curves and the experimental points may be compared on Figures 9 and 10. 

The history of the applied stress is shown in the inset. The extreme dispersion of the experi
mental results, in particular in Figure 9, should be noted. This is a reminder, should such a 
thing be necessary, that the problem is one of correctly taking qualitative phenomena into 
account within the framework of a suitable formulation. 

Type (b) paths. Figure I I shows the comparison between results obtained using the 
constitutive equations and the figures for creep deformation obtained during an isotropic test 
with several stress stages. 

The successive stresses are as follows: 

O'is o = (5, 13, 33, 60) X 103 Pa. 

I t is the parameters of current total deformation which bring into play coefficients a and b 
which are tested along this path. 

(iii) Verification paths 

The verification paths chosen are of particular complexity, and are a rigorous test of the 
applicability of the constitutive equations. 

They are paths which were monitored experimentally during the constant-rate triaxial 
tests preceded by a phase of isotropic creep. 

£ 

0-20 t--- -t---t---t----t-

0·16 

0·12 

0·08 /---_+_-

0·04 

0·0 
400 800 1200 1600 2000 time 

Fig. [[. Experimental points and calculated curve for type (b) parameter-determining path shown in inset. 
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IT, 

~ct 
/---- time time 

h t1 

Fig. 12. Stress historyfor a verification path. Fig. 13. Deformation pathfor a verification path. 

These paths are complex (stresses and deformations both being applied); furthermore 
they have two stages: 

stage I, t < t1) isotropic compression: 0'1 = 0'11 = O'IlI = constant, 
stage H, t ;;;: t1) axial crushing: E, = constant; 0'11 = 0'111 = constant. 

Figures 12 and 13 shows the paths monitored for stress and deformation. These figures 
show: 

The applied path (a continuous line) (unvarying stress or deformation rate). 
The response path (dotted line) . 
The test results supply a great deal of data. In Table H a selection of the results can be 

found for comparison. 

TABLE n. SELECTION OF RESULTS FROM VERIFICATION PATHS 

Test Figure 
reference Stress Compression-rate Initial space weight number 

bar mm/min kg/m' 

29·03·77·E, 0·°5 6·45 135 '4 
29·03· 77 .E2 0·°5 2·7 '50 '5 
29·03· 77 .E3 0·°5 o.gl '50 16 
24·03·77·E, ° o.gl 125 17 
24.°3.77 .E2 } 
24·03· 77 .E3 

0 6·45 145 18 

24·03· 77 .E2 0.13 o .gl '35 Ig 

The evolution of stress in the experimental results and the calculated results can be 
compared by referring to the figures corresponding to each test (the figure numbers are 
indicated on the table). 

Figures 14, 15, 16, which relate to tests performed under the same confining stress 0'3' show 
that despite a considerable variation in the compression rates (O.gl, 2.7, and 6,45 mm/min), 
the proposed formulation makes it possible to obtain very satisfactory results. 

The disparity to be seen on Figure IS between the crush starting point of the experimental 
and calculated crush curves is due to the fact that for this test isotropic creep was relatively 
less than for the average of the tests at 0'3 = 5 X 103 Pa. Figure 10 clearly shows the consider
able scatter of the results. Thus the calculated curve can, at best, only show a mean of the 
cluster of the experimental curves. The same reasoning applies, but to a lesser degree, for 
Figures 14 and 16. 

The test results of simple compression ( 0'3 = 0) are shown on Figures 17 and 18. In 
Figure 18 which compares the calculated curve to two curves obtained in the same test 
conditions on two different samples, a high level of agreement can be seen. On the other hand 
this level of agreement is not so high in Figure 17. 

Finally, Figure 19 shows a test under lateral stress of 13 X 103 Pa with a relatively long 
isotropic compression phase (23 min). The level of agreement is satisfactory. 
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These results, obtained as they were, on verification paths at a considerable distance from 
the parameter-determining paths would seem to be very encouraging as, it should not be 
forgotten, the conditions for testing the constitutive equations are, in so far as they bring into 
play high rates of deformation, very exacting. 

(J1 

70 

56 

42 

28 

14 

0·0 

kPa 

rx~ xx

l 
0 ·06 

xX 
x? 

~/ xx' 
xxx 

xxx 
x)(XX 

0·12 0·18 0-24 0-30 

Fig. 11. Results of a verification path test. The solid curve shows the prediction from the formulation and the points show actual 
test results. 

a 0'1 kR 

60 

48 

36 

24 

12 l=f= 
0·0 0·08 

/Z 
0·16 0·24 0·32 0·40 £1 

Fig. 15. R esults of a verification path test. The solid curve shows the predictionfrom the formulation and the points show actual 
test results. 
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""1 
0·0 0·024 0·048 0·072 0·096 0·120 £1 

Fig. 16. Results of a verification path test. The solid curve shows the prediction from the formulation and the points show actual 
tcs t results. 

SA 

https://doi.org/10.3189/S0022143000010509 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000010509


JOURNAL OF GLAC I OLOGY 

01 

10 

kPa 

08 t-----+--t-

06 +-----1---
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Fig. 17. Results of a verification path test. The solid curve shows the predictionfrom the formulation and the points show actual 
test resuits. 

0, kPa 
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Fig. 18. Results of a verification path test. The solid curve shows the prediction/rom the formulation and the points show actual 
test resuits. 
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Fig. 19. Results of a verificatiolz path test. The solid curve shows the prediction/TOm theformulatioll and the points show actual 
test results. 
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CONCLUSION 

The constitutive equations whose features have been described above make it possible to 
describe non-linear visco-elastic behaviour incorporating memory effects of the snow sample 
under consideration. The tests required for calculating the parameters have been stated and 
the validity of the equation has been verified against other tests. 

The full scope of these constitutive equations however, will only be fully revealed once it is 
introduced into numerical calculation programmes based on the finite-element method 
(Boulon and others, 1977). The calculation of the stabili ty of the snow cover on a slope and 
of the stresses imposed on snow fences will then be feasible. Soil- snow slip or slip between 
different layers of snow could be accounted for by an algorithm which has already been tested 
for problems of soil mechanics (Boulon and others, 1978). 
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