VOL. 6 (1972), 75-81.

Sequences defined as minima of two Fibonacci-type relations

R.S. Booth

If $\{L_n\}$ is a sequence defined by

 $L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\},\$

with a, b, c, d positive integers, then one can ask if necessarily $L_n = L_{n-a} + L_{n-b}$ for all sufficiently large n. The answer is yes if a and b are relatively prime, $L_n > 0$ initially, and $\lambda < \mu$, where $\lambda^{-a} + \lambda^{-b} = 1$, $\mu^{-c} + \mu^{-d} = 1$. The answer is no if instead a and b have greatest common divisor $k \ge 2$, with $c \equiv 0 \pmod{k}$, $d \ddagger 0 \pmod{k}$.

Introduction. Much is known about the properties of sequences defined by a recurrence of the type $L_n = L_{n-a} + L_{n-b}$, where a and b are fixed positive integers. In this note, we produce conditions on a, b, c and d, such that if

(1)
$$L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\}$$

then

$$L_n = L_{n-a} + L_{n-b}$$

for all sufficiently large n. We concern ourselves only with the case in which all initial values are positive, so that L_n is then positive for all n. For a situation in which this problem arises, see [1].

Received 7 September 1971.

75

It is well known that $L_n = L_{n-a} + L_{n-b}$ implies $L_n = O(\lambda^n)$, where λ is the positive root of

$$\lambda^{-a} + \lambda^{-b} = 1$$

Hence, if (2) holds, we must have $\lambda \leq \mu$ where μ is the positive root of

(4)
$$\mu^{-c} + \mu^{-d} = 1$$
.

There are examples however, to show that this condition is not sufficient. One such example is

$$L_n = \min\{2L_{n-3}, L_{n-2}+L_{n-4}\}, n \ge 5$$
,

with the initial conditions $L_1 = L_2 = L_3 = L_4 = 1$.

THEOREM 1. Suppose a, b, c and d are positive integers, and L_1, L_2, \ldots, L_e are given positive real numbers, where $e = \max\{a, b, c, d\}$. Define

(1)
$$L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\}$$

for n > e, and define $\lambda > 1$ and $\mu > 1$ by (3) and (4). If $\lambda < \mu$, and if a and b are relatively prime, then there exists an integer n_0 such that

$$L_n = L_{n-a} + L_{n-b}$$

for all $n \ge n_0$.

Proof. Suppose N is an integer, $N \ge e + 1$. Define

(5)
$$c_N = \max_{1 \le k \le e} \left\{ L_{N-k} / \lambda^{N-k} \right\} ,$$

(6)
$$d_N = \min_{1 \le k \le e} \left\{ L_{N-k} / \lambda^{N-k} \right\} .$$

Since

Fibonacci-type relations

$$\begin{split} L_N &\leq L_{N-\alpha} + L_{N-b} \\ &\leq \lambda^{N-a} c_N + \lambda^{N-b} c_N \\ &= \lambda^N c_N (\lambda^{-a} + \lambda^{-b}) \\ &= \lambda^N c_N \ , \end{split}$$

it follows that $c_{N+1} \leq c_N$, and hence the sequence $\{c_N\}$ is decreasing.

On the other hand

$$L_{N-\alpha} + L_{N-b} \ge d_N \lambda^{N-\alpha} + d_N \lambda^{N-b}$$
$$= d_N \lambda^N$$

and

$$\begin{split} {}^{L}{}_{N-\mathcal{C}} &+ {}^{L}{}_{N-d} &\geq {}^{d}{}_{N} \lambda^{N-\mathcal{C}} &+ {}^{d}{}_{N} \lambda^{N-d} \\ &= {}^{d}{}_{N} \lambda^{N} \big(\lambda^{-\mathcal{C}} + \lambda^{-d} \big) \\ &> {}^{d}{}_{N} \lambda^{N} \big(\mu^{-\mathcal{C}} + \mu^{-d} \big) \\ &= {}^{d}{}_{N} \lambda^{N} \ . \end{split}$$

Hence, by (1), $L_N \ge d_N \lambda^N$, so that $d_{N+1} \ge d_N$, and the sequence $\{d_N\}$ is increasing.

Since a and b are relatively prime, the set S consisting of all integers of the form sa + tb, where s and t are positive integers, contains a smallest element with the property that all greater integers also belong to S. Denote this smallest element by f.

Suppose $0 < \varepsilon < 1$, and r is an integer, $r \ge N - 1 + f$. We claim that

$$(7) L_{p} / \lambda^{r} \geq (1-\varepsilon) c_{N}$$

implies

(8)
$$L_{r-q}/\lambda^{r-q} \ge (1-\epsilon\lambda^q)c_N$$

https://doi.org/10.1017/S0004972700044282 Published online by Cambridge University Press

for all q in S, q < r.

For, (7) implies that

$$(1-\varepsilon)c_{N} \leq (L_{r-a}+L_{r-b})/\lambda^{r}$$
$$= \lambda^{-a} \left(L_{r-a}/\lambda^{r-a} \right) + \lambda^{-b} \left(L_{r-b}/\lambda^{r-b} \right)$$
$$\leq \lambda^{-a} \left(L_{r-a}/\lambda^{r-a} \right) + \lambda^{-b} c_{N}$$

so that $\lambda^{a}(1-\epsilon-\lambda^{-b})c_{N} \leq L_{r-a}/\lambda^{r-a}$ or $(1-\epsilon\lambda^{a})c_{N} \leq L_{r-a}/\lambda^{r-a}$ by (3). Similarly

$$(1-\epsilon\lambda^b)c_N \leq L_{r-b}/\lambda^{r-b}$$

Successively repeating the argument yields (8).

Since $r \ge N - 1 + f$, each member of the set $\{N-1, N-2, \ldots, N-e\}$ is of the form r - q for q in S. Thus by (6) and (8), the inequality (7) implies $d_N \ge \inf (1-\epsilon \lambda^q) c_N$, where the infimum is taken over those qfor which $N-1 \ge r - q \ge N - e$; that is, $r+1 - N \le q \le r + e - N$. Thus (7) implies

(9)
$$d_N \geq (1-\epsilon\lambda^{r+e-N})c_N$$

By reversing the argument, if ε is now chosen such that

$$(1-\epsilon\lambda^{r+e-N}) > d_N/c_N$$
,

then

$$L_r/\lambda^r < (1-\epsilon)c_N$$
.

It follows, since this implication is valid for all r in $R = \{r : N-1+f \le r \le N+f+e-2\}$, that

(10)
$$1 - \epsilon \lambda^{f+2e-2} > d_N/c_N$$

implies

$$\sup_{r \in \mathbb{R}} L_r / \lambda^r < (1-\varepsilon)c_N,$$

https://doi.org/10.1017/S0004972700044282 Published online by Cambridge University Press

78

that is, (10) implies

(11)
$$c_{N+f+e-2} < (1-\varepsilon)c_N$$

Put $\phi_N = c_N/d_N$, and choose $\varepsilon = \left(1 - \phi_N^{-1}\right)\lambda^{-f-2e+2}/2$ so that (10) holds. It follows from (11), with this choice of ε , and the fact that d_N is increasing, that

$$\phi_{N+f+e-2} < \left[1 - \left(1 - \phi_N^{-1} \right) \lambda^{-f-2e+2} / 2 \right] \phi_N$$
,

whence

$$\phi_{N+f+e-2} - 1 < [1-\lambda^{-f-2e+2}/2](\phi_N^{-1})$$

Since $\{\phi_N\}$ is decreasing, and the factor in the square brackets is a fixed constant between 0 and 1, we have (12) $\lim_{N \to \infty} \phi_N = 1$.

To complete the proof, suppose

$$L_{n-a} + L_{n-b} > L_{n-c} + L_{n-d}$$

for some $n > \max\{N+a, N+b\}$. Then, since

$$\lambda^n d_N \leq L_n \leq \lambda^n c_N ,$$

we have

$$c_N \lambda^{n-a} + c_N \lambda^{n-b} > d_N \lambda^{n-c} + d_N \lambda^{n-d}$$

or

$$\phi_N(\lambda^{-a}+\lambda^{-b}) > \lambda^{-c} + \lambda^{-d}$$

or

$$\phi_N > \lambda^{-c} + \lambda^{-d} > 1 .$$

This contradicts (12) if N is big enough.

We consider briefly what can happen if a and b are not relatively

prime. Let k be the highest common factor of a and b. It is immediate, by considering the subsequences of the form L_{n_0+mk} , that the result of Theorem 1 still holds if $c \equiv 0 \pmod{k}$ and $d \equiv 0 \pmod{k}$.

THEOREM 2. If $\lambda < \mu$, if k is the greatest common divisor of a and b, with $k \ge 2$, if $c \equiv 0 \pmod{k}$, and $d \ddagger 0 \pmod{k}$, then there is a set of positive values for L_n , $1 \le n \le e$, such that (1) holds for n > e, and $L_n < L_{n-a} + L_{n-b}$ for an infinite set of integers n.

Proof. Define (for convenience) $L_{\gamma k} = 1$ for integer γ , $0 \leq \gamma k < \max(a, b)$. This determines L_n for all $n \equiv 0 \pmod{k}$ by $L_n = L_{n-a} + L_{n-b}$. Next define L_n for $n \equiv -d \pmod{k}$ by the equation $L_n = L_{n-c} + L_{n-d}$ for $n \equiv 0 \pmod{k}$, that is, $L_n \equiv L_{n+d} - L_{n+d-c}$ for $n \equiv -d \pmod{k}$. It is easy to check that one then has $L_n = L_{n-a} + L_{n-b}$ for $n \equiv -d \pmod{k}$, at least for $n \geq c - d + \max(a, b)$. In a similar manner define L_n successively for $n \equiv -2d$, $n \equiv -3d$, $n \equiv -4d$, ..., $n \equiv -(k-2)d$. L_n is then determined for all n larger than some fixed integer n_0 , $n \ddagger d \pmod{k}$, and, for such n, $L_n = L_{n-a} + L_{n-b} = L_{n-c} + L_{n-d}$.

Now define $L_n = L_{n-c} + L_{n-d}$ for $n \equiv d$. Since then $n - d \equiv 0$, $L_{n-d} = L_{n-a-d} + L_{n-b-d}$, so the equation $(L_n - L_{n-a} - L_{n-b}) = (L_{n-c} - L_{n-a-c} - L_{n-b-c})$ holds for all $n \equiv d$. Thus, suitable initial conditions can ensure that if this value is initially a negative constant, then by induction,

$$L_n = L_{n-c} + L_{n-d} < L_{n-a} + L_{n-b}$$

for all $n \equiv d \pmod{k}$.

The author has been unable to obtain similar general results for the case when $k \ge 2$ and both $c \ddagger 0$ and $d \ddagger 0 \pmod{k}$. We cite two examples to show what may or may not occur.

If a = b = k = 3, c = 1, and d = 4, then $L_n = 2L_{n-3}$ for all sufficiently large n. It is worth noting that this result cannot be established by the method of proof of Theorem 1, since the quotient c_N/d_N need not converge. The proof however is straightforward after observing that

- (a) one cannot have $L_n = L_{n-1} + L_{n-4}$ for three consecutive values of n;
- (b) if $L_n = 2L_{n-3}$ for four consecutive values of n, then $L_n = 2L_{n-3}$ for all larger n.

On the other hand, if a = b, k = 3, c = 1 and d = 5, and if L_1, L_2, L_3, L_4, L_5 respectively equal 16, 16, 11, 6, 1; then

$$\begin{split} & L_n = 2L_{n-3} \quad \text{if} \quad n \equiv 0, \ 1, \ 2 \quad \text{or} \quad 5 \pmod{6} \\ & L_n = L_{n-1} + L_{n-5} < 2L_{n-3} \quad \text{if} \quad n \equiv 3 \quad \text{or} \quad 4 \pmod{6} \ . \end{split}$$

Theorems 1 and 2 generalize immediately to sequences of the form

$$L_n = \min_{1 \le i \le m} \left\{ L_{n-a_i} + L_{n-b_i} \right\} .$$

Clearly too, one can establish analogous results for maxima.

Reference

 [1] R.S. Booth, "Location of zeros of derivatives. II", SIAM J. Appl. Math. 17 (1969), 409-415.

School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park, South Australia.