VOL. 6 (1972), 75-81.

Sequences defined as minima of two Fibonacci-type relations

R.S. Booth

If $\left\{L_{n}\right\}$ is a sequence defined by

$$
L_{n}=\min \left\{L_{n-a}+L_{n-b}, L_{n-c}+L_{n-d}\right\},
$$

with a, b, c, d positive integers, then one can ask if necessarily $L_{n}=L_{n-a}+L_{n-b}$ for all sufficiently large n. The answer is yes if a and b are relatively prime, $L_{n}>0$ initially, and $\lambda<\mu$, where $\lambda^{-a}+\lambda^{-b}=1, \mu^{-c}+\mu^{-d}=1$. The answer is no if instead a and b have greatest common divisor $k \geq 2$, with $c \equiv 0(\bmod k), d \neq 0(\bmod k)$.

Introduction. Much is known about the properties of sequences defined by a recurrence of the type $L_{n}=L_{n-a}+L_{n-b}$, where a and b are fixed positive integers. In this note, we produce conditions on a, b, c and d, such that if

$$
\begin{equation*}
L_{n}=\min \left\{L_{n-a}+L_{n-b}, L_{n-c}+L_{n-d}\right\} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
L_{n}=L_{n-a}+L_{n-b} \tag{2}
\end{equation*}
$$

for all sufficiently large n. We concern ourselves only with the case in which all initial values are positive, so that L_{n} is then positive for all n. For a situation in which this problem arises, see [1].

It is well known that $L_{n}=L_{n-a}+L_{n-b}$ implies $L_{n}=O\left(\lambda^{n}\right)$, where λ is the positive root of

$$
\begin{equation*}
\lambda^{-a}+\lambda^{-b}=1 \tag{3}
\end{equation*}
$$

Hence, if (2) holds, we must have $\lambda \leq \mu$ where μ is the positive root of

$$
\begin{equation*}
\mu^{-c}+\mu^{-d}=1 \tag{4}
\end{equation*}
$$

There are examples however, to show that this condition is not sufficient. One such example is

$$
L_{n}=\min \left\{2 L_{n-3}, L_{n-2}+L_{n-4}\right\}, n \geq 5
$$

with the initial conditions $L_{1}=L_{2}=L_{3}=L_{4}=1$,
THEOREM 1. Suppose a, b, c and d are positive integers, and $L_{1}, L_{2}, \ldots, L_{e}$ are given positive real numbers, where $e=\max \{a, b, c, d\}$. Define

$$
\begin{equation*}
L_{n}=\min \left\{L_{n-a}+L_{n-b}, L_{n-c}+L_{n-d}\right\} \tag{1}
\end{equation*}
$$

for $n>e$, and define $\lambda>1$ and $\mu>1$ by (3) and (4). If $\lambda<\mu$, and if a and b are relatively prime, then there exists an integer n_{0} such that

$$
\begin{equation*}
L_{n}=L_{n-a}+L_{n-b} \tag{2}
\end{equation*}
$$

for alt $n \geq n_{0}$.
Proof. Suppose N is an integer, $N \geq e+1$. Define

$$
\begin{equation*}
c_{N}=\max _{1 \leq k \leq e}\left\{L_{N-k} / \lambda^{N-k}\right\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
d_{N}=\min _{1 \leq k \leq e}\left\{L_{N-k} / \lambda^{N-k}\right\} \tag{6}
\end{equation*}
$$

Since

$$
\begin{aligned}
L_{N} & \leq L_{N-a}+L_{N-b} \\
& \leq \lambda^{N-a} c_{N}+\lambda^{N-b} c_{N} \\
& =\lambda^{N} c_{N}\left(\lambda^{-a}+\lambda^{-b}\right) \\
& =\lambda^{N} c_{N}
\end{aligned}
$$

it follows that $c_{N+1} \leq c_{N}$, and hence the sequence $\left\{c_{N}\right\}$ is decreasing. On the other hand

$$
\begin{aligned}
L_{N-a}+L_{N-b} & \geq d_{N} \lambda^{N-a}+d_{N} \lambda^{N-b} \\
& =d_{N} \lambda^{N}
\end{aligned}
$$

and

$$
\begin{aligned}
L_{N-c}+L_{N-d} & \geq d_{N} \lambda^{N-c}+d_{N} \lambda^{N-d} \\
& =d_{N} \lambda^{N}\left(\lambda^{-c}+\lambda^{-d}\right) \\
& >d_{N} \lambda^{N}\left(\mu^{-c}+\mu^{-d}\right) \\
& =d_{N} \lambda^{N} .
\end{aligned}
$$

Hence, by (1), $L_{N} \geq d_{N} \lambda^{N}$, so that $d_{N+1} \geq d_{N}$, and the sequence $\left\{d_{N}\right\}$ is increasing.

Since a and b are relatively prime, the set S consisting of all integers of the form $s a+t b$, where s and t are positive integers, contains a smallest element with the property that all greater integers also belong to S. Denote this smallest element by f.

Suppose $0<\varepsilon<1$, and r is an integer, $r \geq N-1+f$. We claim that

$$
\begin{equation*}
L_{r} / \lambda^{2} \geq(1-\varepsilon) c_{N} \tag{7}
\end{equation*}
$$

implies

$$
\begin{equation*}
L_{r-q} / \lambda^{r-q} \geq\left(1-\varepsilon \lambda^{q}\right) c_{N} \tag{8}
\end{equation*}
$$

for all q in $S, q<r$.
For, (7) implies that

$$
\begin{aligned}
(1-\varepsilon) c_{N} & \leq\left(L_{r-a}+L_{r-b}\right) / \lambda^{r} \\
& =\lambda^{-a}\left(L_{r-a} / \lambda^{r-a}\right)+\lambda^{-b}\left(L_{r-b} / \lambda^{r-b}\right) \\
& \leq \lambda^{-a}\left(L_{r-a} / \lambda^{r-a}\right)+\lambda^{-b} c_{N}
\end{aligned}
$$

so that $\lambda^{a}\left(1-\varepsilon-\lambda^{-b}\right) c_{N} \leq L_{r_{-}-a} / \lambda^{r-a}$ or $\left(1-\varepsilon \lambda^{a}\right) c_{N} \leq L_{r-\alpha} / \lambda^{r-a}$ by (3).
Similarly

$$
\left(1-\varepsilon \lambda^{b}\right) c_{N} \leq L_{r-b} / \lambda^{r-b}
$$

Successively repeating the argument yields (8).
Since $r \geq N-1+f$, each member of the set $\{N-1, N-2, \ldots, N-e\}$ is of the form $r-q$ for q in S. Thus by (6) and (8), the inequality (7) implies $d_{N} \geq \inf _{q}\left(1-\varepsilon \lambda^{q}\right) c_{N}$, where the infimum is taken over those q for which $N-1 \geq r-q \geq N-e ;$ that is, $r+1-N \leq q \leq r+e-N$. Thus (7) implies

$$
\begin{equation*}
d_{N} \geq\left(1-\varepsilon \lambda^{r+e-N}\right) c_{N} \tag{9}
\end{equation*}
$$

By reversing the argument, if ε is now chosen such that

$$
\left(1-\varepsilon \lambda^{p+e-N}\right)>d_{N} / c_{N}
$$

then

$$
L_{r} / \lambda^{r}<(1-\varepsilon) c_{N}
$$

It follows, since this implication is valid for all r in
$R=\{r: N-1+f \leq r \leq N+f+e-2\}$, that

$$
\begin{equation*}
1-\varepsilon \lambda^{f+2 e-2}>d_{N} / c_{N} \tag{10}
\end{equation*}
$$

implies

$$
\sup _{r \in R} L_{r} / \lambda^{r}<(1-\varepsilon) c_{N},
$$

that is, (10) implies
(11)

$$
c_{N+f+e-2}<(1-\varepsilon) c_{N}
$$

Put $\phi_{N}=c_{N} / d_{N}$, and choose $\varepsilon=\left(1-\phi_{N}^{-1}\right) \lambda^{-f-2 e+2 / 2}$ so that (10) holds. It follows from (11), with this choice of ε, and the fact that d_{N} is increasing, that

$$
\phi_{N+f+e-2}<\left[1-\left(1-\phi_{N}^{-1}\right) \lambda^{-f-2 e+2} / 2\right] \phi_{N}
$$

whence

$$
\phi_{N+f+e-2}-1<\left[1-\lambda^{-f-2 e+2} / 2\right]\left(\phi_{N}-1\right)
$$

Since $\left\{\phi_{N}\right\}$ is decreasing, and the factor in the square brackets is a fixed constant between 0 and I, we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \phi_{N}=1 \tag{12}
\end{equation*}
$$

To complete the proof, suppose

$$
L_{n-a}+L_{n-b}>L_{n-c}+L_{n-d}
$$

for some $n>\max \{N+a, N+b\}$. Then, since

$$
\lambda^{n} d_{N} \leq L_{n} \leq \lambda^{n} c_{N}
$$

we have

$$
c_{N} \lambda^{n-a}+c_{N} \lambda^{n-b}>a_{N} \lambda^{n-c}+d_{N} \lambda^{n-d}
$$

or

$$
\phi_{N}\left(\lambda^{-a}+\lambda^{-b}\right)>\lambda^{-c}+\lambda^{-d}
$$

or

$$
\phi_{N}>\lambda^{-c}+\lambda^{-d}>1
$$

This contradicts (12) if N is big enough.
We consider briefly what can happen if a and b are not relatively
prime. Let k be the highest common factor of a and b. It is immediate, by considering the subsequences of the form $L_{n_{0}+m k}$, that the result of Theorem 1 still holds if $c \equiv 0(\bmod k)$ and $d \equiv 0(\bmod k)$.

THEOREM 2. If $\lambda<\mu$, if k is the greatest common divisor of a and b, with $k \geq 2$, if $c \equiv 0(\bmod k)$, and $d \neq 0(\bmod k)$, then there is a set of positive values for $L_{n}, 1 \leq n \leq e$, such that (1) holds for $n>e$, and $L_{n}<L_{n-a}+L_{n-b}$ for an infinite set of, integers n.

Proof. Define (for convenience) $L_{\gamma k}=1$ for integer γ,
$0 \leq \gamma k<\max (a, b)$. This determines L_{n} for all $n \equiv 0(\bmod k)$ by $L_{n}=L_{n-a}+L_{n-b}$. Next define L_{n} for $n \equiv-d(\bmod k)$ by the equation $L_{n}=L_{n-c}+L_{n-d}$ for $n \equiv 0$ (mod k), that is, $L_{n} \equiv L_{n+d}-L_{n+d-c}$ for $n \equiv-d(\bmod k)$. It is easy to check that one then has $L_{n}=L_{n-a}+L_{n-b}$ for $n \equiv-d$ (mod k), at least for $n \geq c-d+\max (a, b)$. In a similar manner define L_{n} successively for $n \equiv-2 d, n \equiv-3 d, n \equiv-4 d, \ldots, n \equiv-(k-2) d . \quad L_{n}$ is then determined for all n larger than some fixed integer $n_{0}, n \neq d(\bmod k)$, and, for such $n, L_{n}=L_{n-a}+L_{n-b}=L_{n-c}+L_{n-d}$.

Now define $L_{n}=L_{n-c}+L_{n-d}$ for $n \equiv d$. Since then $n-d \equiv 0$, $L_{n-d}=L_{n-\alpha-d}+L_{n-b-d}$, so the equation
$\left(L_{n}-L_{n-a^{-L}}{ }_{n-b}\right)=\left(L_{n-c^{-L}}^{n-a-c^{-L}} n-b-c\right)$ holds for all $n \equiv d$. Thus, suitable initial conditions can ensure that if this value is initially a negative constant, then by induction,

$$
L_{n}=L_{n-c}+L_{n-d}<L_{n-a}+L_{n-b}
$$

for all $n \equiv d(\bmod k)$.
The author has been unable to obtain similar general results for the case when $k \geq 2$ and both $c \neq 0$ and $d \neq 0(\bmod k)$. We cite two examples to show what may or may not occur.

If $a=b=k=3, c=1$, and $d=4$, then $L_{n}=2 L_{n-3}$ for all sufficiently large n. It is worth noting that this result cannot be established by the method of proof of Theorem 1 , since the quotient c_{N} / d_{N} need not converge. The proof however is straightforward after observing that
(a) one cannot have $L_{n}=L_{n-1}+L_{n-4}$ for three consecutive values of n;
(b) if $L_{n}=2 L_{n-3}$ for four consecutive values of n, then $L_{n}=2 L_{n-3}$ for all larger n.

On the other hand, if $a=b, k=3, c=1$ and $d=5$, and if $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ respectively equal $16,16,11,6,1$; then

$$
\begin{aligned}
& L_{n}=2 L_{n-3} \text { if } n \equiv 0,1,2 \text { or } 5(\bmod 6) \\
& L_{n}=L_{n-1}+L_{n-5}<2 L_{n-3} \text { if } n \equiv 3 \text { or } 4(\bmod 6) .
\end{aligned}
$$

Theorems 1 and 2 generalize immediately to sequences of the form

$$
L_{n}=\min _{1 \leq i \leq m}\left\{L_{n-a_{i}}+L_{n-b_{i}}\right\}
$$

Clearly too, one can establish analogous results for maxima.

Reference

[1] R.S. Booth, "Location of zeros of derivatives. II", SIAM J. Appl. Math. 17 (1969), 409-415.

School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park, South Australia.

