
Compositio Mathematica116: 119–132, 1999. 119
c© 1999Kluwer Academic Publishers. Printed in the Netherlands.

Derivation Algebras of Toric Varieties

ANTONIO CAMPILLO1, JANUSZ GRABOWSKI?2 and GERD M̈ULLER3
1Departamento de Algebra, Geometria y Topologia, Universidad de Valladolid,
E 47005 Valladolid, Spain. e-mail: campillo@cpd.uva.es
2Instytut Matematyki, Uniwersytet Warszawski, PL 02-097 Warsaw, Poland
e-mail: jagrab@mimuw.edu.pl
3Fachbereich Mathematik, Universität Mainz, D 55099 Mainz, Germany
e-mail: mueller@mat.mathematik.uni-mainz.de

(Received: 18 March 1997; accepted in final form: 24 October 1997)

Abstract. We study the Lie algebra of derivations of the coordinate ring of affine toric varieties
defined by simplicial affine semigroups and prove the following results:

− Such toric varieties are uniquely determined by their Lie algebra if they are supposed to be
Cohen–Macaulay of dimension> 2 or Gorenstein of dimension= 1.

− In the Cohen–Macaulay case, every automorphism of the Lie algebra is induced from a unique
automorphism of the variety.

− Every derivation of the Lie algebra is inner.
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1. Introduction

Normal affine algebraic varieties in characteristic 0 are uniquely determined (up to
isomorphism) by the Lie algebra of derivations of their coordinate ring. This was
shown by Siebert [Si] and, independently, by Hauser and the third author [HM].
In both papers, the assumption of normality is essential. There are nonisomorphic
nonnormal varieties with isomorphic Lie algebras. The third author [M] treated
certain nonnormal varieties defined in combinatorial terms by showing that closed
simplicial complexes can be reconstructed from the Lie algebra of their Stanley–
Reisner ring. Here we study this problem for (in general, nonnormal) toric varieties
defined by simplicial affine semigroups.

We show that such toric varieties are uniquely determined by their Lie algebra
if they are supposed to be Cohen–Macaulay of dimension> 2. The corresponding
statement is false in dimension 1. For toric curves we need the stronger hypothesis
that they are Gorenstein. In fact, we can reconstruct from the Lie algebra the
semigroup defining the variety. Our result should be compared with a recent one of
Gubeladze [G] saying that an affine semigroup is uniquely determined by the toric
variety it defines (more precisely, by its coordinate ring as an augmented algebra).
? Supported by KBN grant Nr. PO3A 042 10.
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120 ANTONIO CAMPILLO ET AL.

The main tool in our proofs is a root space decomposition of the Lie algebra
of derivations of a Buchsbaum semigroup ring. The set of roots is closely related
to the underlying semigroup. This structural description will be used to prove two
more results. We show, in the Cohen–Macaulay case, that every automorphism of
the Lie algebra is induced from a unique automorphism of the variety. And we
establish an infinitesimal analogue of the last statement: Every derivation of the
Lie algebra is inner, i.e., the first cohomology of the Lie algebra with coefficients
in the adjoint representation vanishes.

2. The Root Space Decomposition

Let S be an affine semigroup, i.e., a finitely generated subsemigroup of someNn.
We stress that, in this paper, semigroup always means semigroup with zero element.
Denote byG = G(S) the subgroup ofZn generated byS and byr = rk S =
rk G(S) its rank. LetCS be the convex polyhedral cone spanned byS in Qn. We
shall suppose throughout thatS is simplicial, i.e., that the convex coneCS can be
spanned byr elements ofS. For an algebraically closed fieldk of characteristic 0
let k[S] ⊆ k[t] = k[t1, . . . , tn] denote the corresponding semigroup ring. We need
to recall how the property ofk[S] being Cohen–Macaulay or Buchsbaum can be
described in terms ofS. For this purpose, letF1, . . . , Fm be the(r−1)-dimensional
faces ofCS . Set

S′i = {λ ∈ G, λ+ s ∈ S for somes ∈ S ∩ Fi}

for i = 1, . . . ,m, andS′ =
⋂
S′i.

PROPOSITION 1.For a simplicial affine semigroupS the semigroup ringk[S] is
Cohen–Macaulay (resp. Buchsbaum) if and only ifS′ = S (resp.S′+ (S \ {0}) ⊆
S).

For the proof see [GSW], [St, Thm. 6.4], [TH, Sect. 4], and [SS, Sect. 6]. The
semigroupS′ is called theCohen–Macaulayficationof S. Let

S̄ = {s ∈ G, ms ∈ S for somem ∈ N,m 6= 0}.

It is known [Ho, Sect. 1] thatk[S̄] is the normalization ofk[S]. An affine semi-
groupS is calledstandardif

(i) S̄ = G(S) ∩ Nn.
(ii) For all i the image ofS under the projectionπi on theith component is a

numerical semigroup, i.e., the complementN \ πi(S) is finite.
(iii) The semigroupsS∩kerπi, i = 1, . . . , n, are distinct of rank equal to rkS−1.

It was shown by Hochster [Ho, Sect. 2] that every affine semigroup is isomorphic
to a standard one. Hence, we shall assume throughout thatS is standard. In that
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case the coneCS has exactlyn faces of dimensionr− 1, namely the convex cones
spanned by theS ∩ ker πi. Hence

S′i = {λ ∈ Zn, λ+ s ∈ S for somes ∈ S with si = 0}

for i = 1, . . . , n. A standard affine semigroupS is simplicial if and only ifS has
elements on every coordinate axis. In fact, the cone of a simplicial affine semigroup
of rankr has onlyr faces of dimensionr− 1. Standardness givesr = n. Then the
edges ofCS are the intersections ofCS with the coordinate axes, see [SS, Sect. 1].
The reversed implication is obvious. Letai ∈ N, ai 6= 0, be the minimal number
such thatαi = (0, . . . ,0, ai,0, . . . ,0) ∈ S, where the nonzero entry is at theith
place.

PROPOSITION 2.Everyk-linear derivationD ofk[S] extends uniquely to a deriv-
ation of the polynomial ringk[t].

Proof. As S ⊆ Nn is standard and simplicial it has rankn and k[S] has
dimensionn. Hence, the rational function fieldk(t) is a separable finite extension
of the quotient fieldk(S) of k[S]. Therefore,D extends uniquely to a derivation
D of k(t). Write D =

∑
fi∂i with fi ∈ k(t), say fi = gi/hi with coprime

gi, hi ∈ k[t]. With the semigroup elementsαi introduced above, we have

ait
ai−1
i fi = D(tα

i
) ∈ k[S] ⊆ k[t]

andhi dividestai−1
i . Asπi(S) is a numerical semigroup there iss ∈ Gwith theith

componentsi = 1. Using simpliciality, we may assume thats ∈ Nn, hences ∈ S̄.
It was shown by Seidenberg [Se] thatD maps the normalizationk[S̄] of k[S] into
itself. Then∑

sjt
sfj/tj = D(ts) ∈ k[S̄] ⊆ k[t]

implies
∏
j 6=i t

aj−1
j tsfi/ti ∈ k[t]. Hence,hi divides

∏
j 6=i t

aj−1
j ts/ti. But ti does

not divide this product sincesi = 1. Thushi ∈ k andfi ∈ k[t]. This means thatD
restricts to a derivation ofk[t]. 2
By Proposition 2, the Lie algebraΘ(S) = Der k[S] of k-linear derivations of the
semigroup ring may be viewed as a subalgebra ofD = Derk[t]. Let us first describe
the latter Lie algebra. The derivationsDi = ti∂i span an Abelian subalgebraH.
For a linear formλ ∈ H∗ let

Dλ = {D ∈ D, [h,D] = λ(h) ·D for all h ∈ H}.

ThenD admits a root space decompositionD =
⊕
λ∈H∗ Dλ. Given the basis

D1, . . . ,Dn of H one may identifyH∗ with kn by identifying the formλ with the
vector(λ(D1), . . . , λ(Dn)). Then the set ofλ ∈ H∗ with Dλ 6= 0 equals

Nn ∪ {λ ∈ Zn, λi = −1 for exactly onei andλj > 0 for all j 6= i}.
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In fact, forλ ∈ Nn the root spaceDλ is spanned by allDλj = tλtj∂j , j = 1, . . . , n.
In particular,D0 = H. And if λ ∈ Zn with λi = −1 andλj > 0 for j 6= i, thenDλ
is spanned by the single elementDλi = tλti∂i. All these statements follow from
the commutator relation[Di,Dλj ] = λi · Dλj . We need some more notation in
order to describe the subalgebraΘ(S). Let

Λi = {λ ∈ Zn, λ+ s ∈ S for all s ∈ S with si 6= 0}, i = 1, . . . , n

Λ = Λ(S) =
⋃

Λi, S̃ = {λ ∈ Nn, λ+ (S \ {0}) ⊆ S}.

Remark1. Letn = 1. Thenk[S] is always Cohen–Macaulay, and the cardinality
of Λ\S equals the Cohen–Macaulay type ofk[S], see [HK]. ForS = N, one has
S̃ = N andΛ = S̃ ∪ {−1}. Otherwise 1/∈ S. Then our assumption thatN\S is
finite impliesΛ ⊆ N andΛ = S̃.

Remark2. Letn > 2. Fromλ + αi ∈ S for λ ∈ S̃ and two indicesi one sees
S̃ ⊆ S′. Hence,̃S = S′ in the Buchsbaum case andS̃ = S in the Cohen–Macaulay
case.

PROPOSITION 3. (i)The Lie algebraΘ(S) admits a root space decomposition
Θ(S) =

⊕
λ∈H∗ Θλ with Θλ = Θ(S) ∩ Dλ.

(ii) Suppose thatk[S] is Buchsbaum. Then the set ofλ ∈ H∗ withΘλ 6= 0equals
Λ(S). If λ ∈ S̃ thenΘλ is spanned byDλ1, . . . ,Dλn. And ifλ ∈ Ei = Λi\S̃, then
Θλ is spanned by the single elementDλi. In particular, Λ(S) = S̃ ∪ ⋃Ei is a
disjoint union.

The elements of̃S (resp.Ei) will be calledordinary (resp.i-exceptional) roots.

Proof. (i) ForDλ =
∑
i bλiDλi ∈ Dλ one hasDλt

s =
∑
i bλisi · tλ+s. Hence∑

λDλ ∈ Θ(S) if and only if λ + s ∈ S for all s ∈ S and all occurringλ with∑
i bλisi 6= 0 if and only ifDλ ∈ Θ(S) for all occurringλ.
(ii) Considerλ ∈ S̃. ThenDλ1, . . . ,Dλn are defined and contained inΘ(S).

Next considerλ ∈ Λi. Fromλ + αi ∈ S we seeλj > 0 for all j 6= i. Moreover,
λi ∈ Λ(πi(S)) and Remark 1 yieldsλi > −1. Hence,Dλi is defined and contained
in Θ(S). Conversely, ifDλi ∈ Θ(S) thenλ ∈ Λi. The proof is completed by the
following claim: If Θλ contains a linear combination of theDλi with at least two
nonvanishing coefficients thenλ ∈ S̃. In fact, if

∑
i biDλi ∈ Θ(S) with b1, b2 6= 0

thenλ + α1 andλ + α2 are contained inS. This givesλ ∈ S′ ⊆ S̃ ask[S] is
Buchsbaum. 2
EXAMPLE 1 ([MT, Remark 1.3]). LetS ⊆ N2 be generated by (0,10), (3,7), (7,3),
(8,2), (10,0) and letλ = (9,11). Thenλ + (3,7) /∈ S but λ + s ∈ S for the
remaining generatorss. Hence,λ ∈ S′\S̃ andk[S] is not Buchsbaum. Moreover,
λ /∈ Λ(S) butΘλ 6= 0. In fact, 7Dλ1− 3Dλ2 ∈ Θλ.
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EXAMPLE 2. LetS ⊆ N2 correspond to the affine cone over thed-uple embedding
ofP1 inPd,d > 2, i.e.,S is generated by(0, d), (1, d−1), . . . , (d−1,1), (d,0). Then
k[S] is normal and Cohen–Macaulay. The exceptional roots are(−1,1) +m(0, d)
and(1,−1) +m(d,0) with m ∈ N.

EXAMPLE 3. LetS ⊆ N2 correspond to the product of a cusp with a line, i.e.,
S is generated by(2,0), (3,0) and (0,1). Thenk[S] is Cohen–Macaulay. The
1-exceptional roots are(1,0) + m(0,1) with m ∈ N. The 2-exceptional roots are
(0,−1) +m(2,0) and(3,−1) +m(2,0) with m ∈ N.

Examples 2 and 3 illustrate the second part of the next result.

PROPOSITION 4. (i)S̃ is a finitely generated subsemigroup ofNn.
(ii) Suppose thatk[S] is Buchsbaum andn > 2. For fixed i let Ai be the

semigroup generated by allαj with j 6= i. Then the setEi of i-exceptional roots is
a finitely generatedAi-module.

Proof. (i) Clearly S̃ is a subsemigroup ofNn. LetA be the semigroup gener-
ated byα1, . . . , αn. We show more generally that every subsemigroupT ⊆ Nn

containingA is finitely generated. Letai be the nonzero entry ofαi. Forβ ∈ Nn
with βi < ai for all i let Tβ = (β + A) ∩ T . By Dickson’s Lemma eachTβ is
a finitely generatedA-module (or empty). SinceT =

⋃
Tβ is a finite union,T is

finitely generated as anA-module and hence as a semigroup.
(ii) We may assumei = 1. If λ ∈ E1 = Λ1\S̃ then clearlyλ + α2 ∈ Λ1.

Moreover,λ+ α1 ∈ S so thatλ ∈ S′i for i > 2. If λ+ α2 ∈ S̃ thenλ+ 2α2 ∈ S,
henceλ ∈ S′1 andλ ∈ S′ = S̃, contradiction. Thusλ + α2 ∈ E1. This proves
that E1 is anA1-module. It remains to show that it is finitely generated. For
γ ∈ N × {0} ⊆ Nn and β ∈ {0} × Nn−1 ⊆ Nn with βi < ai for all i let
Eγβ = (γ + β + A1) ∩ E1. As above this is a finitely generatedA1-module (or
empty). IfEγβ 6= ∅ andγ′ = γ + mα1 for somem ∈ N, m 6= 0 thenEγ′β = ∅.
Otherwise, there isλ ∈ A1 with γ + β + λ, γ′ + β + λ ∈ E1, contradicting
γ′ + β + λ = γ + β + λ + mα1 ∈ S ⊆ S̃. Since there are only finitely many
congruence classes ofN moduloα1 the Proposition is proven. 2

3. Reconstruction of the Semigroup

Before we explain how to reconstruct the semigroupS from its Lie algebraΘ(S)
we make a remark concerning the reconstruction ofS from its semigroup ring
k[S] discussed by Gubeladze [G]. Consider the augmentationk[S]→ k defined by
ts 7→ 0 for all s ∈ S \{0}. Gubeladze [G, Thm. 2.1] proved that affine semigroups
S1 andS2 are isomorphic ifk[S1] andk[S2] are isomorphic as augmented algebras.
Moreover [G, Lem. 2.8], ifk[S1] andk[S2] are normal and isomorphic just as
algebras then they are isomorphic as augmented algebras. We shall extend this
result (for simplicial semigroups) to the Buchsbaum case.
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For anyλ ∈ Zn we denote by|λ| the sum of its components. Let us say
thatS corresponds to aproduct along a lineif, after permutation of coordinates,
S = N⊕M for some semigroupM ⊆ Nn−1. We shall see that this property
only depends on the algebrak[S] and even on the Lie algebraΘ(S). Let L =
[Θ(S),Θ(S)] be the derived algebra.

PROPOSITION 5.Suppose thatk[S] is Buchsbaum. Then the following are equiv-
alent:

(a)The semigroupS corresponds to a product along a line.
(b) There isλ ∈ Λ(S) with |λ| < 0.
(c)L = Θ(S).

Proof. (a)⇔ (b) If (−1,0, . . . ,0) is a root then(1,0, . . . ,0) ∈ S andS =
N⊕M with M = S ∩ ker π1. The converse is clear.

(b)⇒ (c) Here and later we use the commutator relation[Dλi,Dµj ] = µiDλ+µ,j−
λjDλ+µ,i. It shows

⊕
λ6=0 Θλ ⊆ L. Let λ = (−1,0, . . . ,0) ∈ Λ so thatµ =

(1,0, . . . ,0) ∈ S ⊆ S̃. ThenL contains 2D1 = [Dλ1,Dµ1] andDj = [Dλ1,Dµj ]
for j > 2. ThusΘ0 = H ⊆ L.

(c)⇒ (b) Assume that|λ| > 0 for all rootsλ. Thenη1+η2 = 0 for rootsη1, η2 6=
0 is possible only if (after permutation of coordinates)η1 = (−1,1,0, . . . ,0),
η2 = (1,−1,0, . . . ,0). In this case[Dη1,1,Dη2,2] = D2−D1. SinceΘ0 is Abelian
we obtainL ⊆⊕λ6=0 Θλ ⊕ 〈Dn −D1, . . . ,D2−D1〉 andΘ0 6⊆ L. 2
PROPOSITION 6.Suppose thatk[S1] andk[S2] are Buchsbaum.

(i) If k[S1] andk[S2] are isomorphic as algebras then they are isomorphic as
augmented algebras.

(ii) If S1 andS2 do not correspond to products along a line then every algebra
isomorphismφ: k[S1]→ k[S2] is augmented.

Proof. Let I ⊆ k[S2] be a proper differential ideal, i.e.,D(I) ⊆ I for every
D ∈ Θ(S2). We claim thatI is generated by some monomialsts, s ∈ S2. In
particular,I is contained in the augmentation ideal generated by allts, s ∈ S2\{0}.
Givenf =

∑
bst

s ∈ I fix anyswith bs 6= 0. Take any of the remainingλ ∈ S2 with
bλ 6= 0 and choosej with λj 6= sj. Then

∑
µ(λj − µj)bµtµ = λjf −Dj(f) ∈ I

contains less monomials thanf but still the monomialts. Repeated application
yieldsts ∈ I, proving the claim.

Now assumeS1 = Nm⊕M for someM ⊆ Nn−m which does not correspond to
a product along a line. LetJ be the ideal ofk[S1] generated by alltµ, µ ∈M \{0}.
We claim thatJ is differential. Consider anyλ ∈ Λi, i = 1, . . . , n. In order to show
Dλi(tµ) = µit

λ+µ ∈ J we may assumeµi 6= 0. Thenλ+ µ ∈ S1. AsM does not
correspond to a product along a line we have|µ| > 2 and concludeλ+µ = ν+µ′

with ν ∈ Nm andµ′ ∈M \ {0}. Hencetλ+µ = tν+µ′ ∈ J .
Let φ: k[S1] → k[S2] be an algebra isomorphism. It induces a Lie algebra

isomorphismφ]: Θ(S1)→ Θ(S2) byD 7→ φ ◦D ◦ φ−1. SinceJ is differential its
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image ink[S2] is differential and, hence, contained in the augmentation ideal of
k[S2]. We havek[S1] = k[M ][t1, . . . , tm]. For i = 1, . . . ,m let ci be the constant
term of φ(ti). Define thek[M ]-automorphismψ of k[S1] by ψ(ti) = ti − ci,
i = 1, . . . ,m. Then theφ ◦ ψ(ti) have no constant term. Since the augmentation
ideal ofk[S1] is generated byt1, . . . , tm andJ this means thatφ ◦ψ is augmented.
Assertion (ii) now also is clear because in that caseJ equals the augmentation
ideal. 2
THEOREM 1.Let S1, S2 be simplicial affine semigroups such thatk[S1], k[S2]
are Buchsbaum. Suppose that the Lie algebrasΘ(S1), Θ(S2) are isomorphic. Then
S1, S2 have the same rank and the semigroupsS̃1, S̃2 are isomorphic.

Proof. If Θ(S1) equals its derived algebra thenS1andS2 correspond to products
along a line. By a result of Skryabin [Sk, Thm. 2] the semigroup ringsk[S1], k[S2]
are isomorphic. Then [G, Thm. 2.1] and Proposition 6 imply that the semigroups
S1, S2 themselves are isomorphic. Now suppose that the derived algebra is strictly
smaller thanΘ(S1). Then |λ| > 0 for all λ ∈ Λ(S1). As [Θλ,Θµ] ⊆ Θλ+µ

for all rootsλ, µ the subspacesId =
⊕
|λ|>d Θλ are ideals ofΘ(S1) with finite-

dimensional quotientsΘ(S1)/Id and
⋂
d∈N Id = 0. Given an isomorphismΘ(S1) '

Θ(S2) we obtain an Abelian subalgebraH2 of Θ(S1) and another root space
decompositionΘ(S1) =

⊕
µ∈H∗2 Θ′µ. Every finite-dimensional subspace ofΘ(S1)

is mapped isomorphically onto its image inΘ(S1)/Id if d is sufficiently large.
Thus, ford � 0,H2 embeds intoQ = Θ(S1)/Id. Forµ ∈ H∗2 consider the root
spaces

Q′µ = {D ∈ Q, [h,D] = µ(h) ·D for all h ∈ H2}.

Their sum is direct. Since eachΘ′µ is mapped intoQ′µ and the images of theΘ′µ
spanQwe seeQ =

⊕
µ∈H∗2 Q

′
µ and that eachΘ′µ is mapped ontoQ′µ. In particular,

Q′0 = H2. It follows thatH2 equals its normalizer inQ and, hence, is a Cartan
subalgebra ofQ. Using Proposition 3, Remark 1, and Proposition 4 we may assume
that the subsemigroup ofH∗2 generated by allµ with dim Q′µ = dim H2 = rk S2

equalsS̃2. Analogous statements hold true forH1 andd � 0. SinceQ is finite
dimensional there is an automorphism ofQmapping the Cartan subalgebraH1 onto
the second Cartan subalgebraH2, [Hu, Sect. 16]. Its dual induces an isomorphism
between the semigroups̃S1 andS̃2. 2
Using Remark 2 we conclude

COROLLARY 1. Simplicial affine semigroupsS of rank> 2 with k[S] Cohen–
Macaulay are uniquely determined by their Lie algebraΘ(S).

Look again at Gubeladze’s Theorem thatS is uniquely determined by the augmen-
ted algebrak[S]. In the above proof we applied this only in caseS does correspond
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to a product along a line. Therefore, using the Lie algebraΘ(S) as an intermediate
step, we have reproved Gubeladze’s Theorem in the special case thatS is simpli-
cial, does not correspond to a product along a line, andk[S] is Cohen–Macaulay of
dimension> 2. But Θ(S) cannot distinguish between semigroups with the same
Cohen–Macaulayfication:

EXAMPLE 4. Fix d, l ∈ N, both> 2. LetS consist of alls ∈ N2 with |s| = md,
m > l. Thenk[S] is Buchsbaum and the Cohen–MacaulayficationS′ is generated
by (0, d), (1, d−1), . . . , (d−1,1), (d,0). BothS andS′ have the same exceptional
roots, see Example 2. Hence,Θ(S) = Θ(S′), independently ofl.

EXAMPLE 5. LetS1 (resp.S2) be generated by allλ ∈ N2 with |λ| = 6 except
λ = (3,3) (resp.λ = (2,4)). They have a Buchsbaum semigroup ring and the
same Cohen–Macaulayfication generated by allλ ∈ N2 with |λ| = 6. In both cases
the exceptional roots are(−1,7) + m(0,6) and(7,−1) + m(6,0) with m ∈ N.
HenceΘ(S1) = Θ(S2). But S1, S2 are not isomorphic. In fact, any isomorphism
would map the set of extremal elements{(6,0), (0,6)} onto itself, hence(6,6)
onto(6,6). This contradicts(6,6) = 2(3,3) in S2 but (6,6) 6= 2s for all s ∈ S1.
Observe that both semigroups correspond to affine cones over smooth projective
curves inP5.

In the rank 1 case the situation is different. Although the semigroup ring always is
Cohen–Macaulay the semigroup is, in general, not determined by the Lie algebra:

EXAMPLE 6. The numerical semigroups generated by 2 and 3 (resp. 3, 4 and 5)
have the samẽS = N, hence the same Lie algebra. Observe that the semigroup
ring is Gorenstein in the first case whereas it has Cohen–Macaulay type 2 in the
second, see Remark 1.

EXAMPLE 7. The numerical semigroups generated by 3, 7 and 8 (resp. 4, 5 and
7) have the samẽS generated by 3, 4 and 5, hence the same Lie algebra. Observe
that the Cohen–Macaulay type is 2 in both cases.

COROLLARY 2. Numerical semigroupsS with k[S] Gorenstein are uniquely
determined byΘ(S) and even by the finite-dimensional Lie algebraΘ(S)/[L,L].

Proof. If L = Θ(S) thenS = N. So supposeL 6= Θ(S). ThenS̃ is the set
of roots andL =

⊕
λ6=0 Θλ. This impliesΘλ ∩ [L,L] = 0 for λ in the minimal

generator system of̃S andΘλ ⊆ [L,L] for everyλ which can be decomposed
asλ = µ + ν with two differentµ, ν ∈ S̃. We see thatΘ(S)/[L,L] is finite
dimensional and that we can use the intrinsically defined ideal[L,L] instead ofId
in the proof of Theorem 1. It remains to show thatS is uniquely determined bỹS in
the Gorenstein case. By [HK, Satz 1.9, Prop. 2.21] we knowS̃ = S ∪{c− 1}with
the conductorc of S. Consider first the casẽS = N. ThenS must be the semigroup
N \ {1}, generated by 2 and 3. Now let̃S 6= N. Let a be the smallest element of
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S different from 0. AsS is a symmetric semigroup we seec − 2, . . . , c − a ∈ S
but c − a − 1 /∈ S. Thus,S̃ has conductorc − a. Thenc − a ∈ S \ {0} implies
c−1> c−a > a. Hence,a is the smallest element of̃S different from 0. Therefore,
S = S̃ \ {c− 1} is determined viac− a anda by S̃. 2

4. Automorphisms of the Lie Algebra

Every automorphismφ of k[S] induces a Lie algebra automorphism

φ]: Θ(S)→ Θ(S):D 7→ φ ◦D ◦ φ−1.

The purpose of this section is to show

THEOREM 2.Let S be a simplicial affine semigroup such thatk[S] is Cohen–
Macaulay. For every automorphismΦ of Θ(S) there is a unique automorphismφ
of k[S] such thatΦ = φ].

Proof. If Φ = φ] then Φ(f · Φ−1(D)) = φ(f) · D for all f ∈ k[S] and
D ∈ Θ(S). This shows uniqueness. Now take an arbitrary automorphismΦ of
Θ(S). If S corresponds to a product along a line the assertion follows from [Sk,
Thm. 2]. Hence we may assume thatS does not correspond to a product along a
line. LetYi = Φ(Di) andYλi = Φ(Dλi). We haveΘ(S) =

⊕
λ∈Λ Θ′λ with

Θ′λ = Φ(Θλ) = {Y ∈ Θ(S), [Yi, Y ] = λi · Y for all i}.

The mapf 7→ fY1 is an embedding ofΦ(H)-modulesk[S] → Θ(S). Hence
R = k[S] admits an eigenspace decompositionR =

⊕
λ∈ΛRλ with Rλ =

{f ∈ R, Yi(f) = λi · f for all i}. For any nonzeroxµ ∈ Rµ the elements
xµY1, . . . , xµYn of Θ′µ are linearly independent. HenceM = {µ ∈ Λ, Rµ 6= 0} is
a subsemigroup of̃S and, forµ ∈M , the root spaceΘ′µ is spanned by the elements
above. It follows easily that the corresponding eigenspaceRµ is one-dimensional.
By [GW, Chapter III.1] theM -graded ringsR andk[M ] are isomorphic. LetK be
the localization ofR with respect to the multiplicative subset

⋃
µ∈M (Rµ \ {0}). It

is isomorphic to the group ringk[G] whereG ⊆ Zn is the subgroup generated by
M . We have a decompositionK =

⊕
ν∈GKν with

Kν = {f ∈ K, Yi(f) = νi · f for all i}

and eachKν is one-dimensional, say spanned byxν , ν ∈ G. SinceG is free Abelian
of rankn there is a root space decomposition DerK =

⊕
ν∈G Θ′′ν with

Θ′′ν = {Y ∈ DerK, [Yi, Y ] = νi · Y for all i}
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and eachΘ′′ν is spanned byxνY1, . . . , xνYn, ν ∈ G. Now there is an embedding
Θ(S) = DerR ⊆ DerK. This impliesS̃ ⊆ G andΘ′ν = Θ′′ν for ν ∈ S̃. Next we
claim

Yµi = bµixµYi for all µ ∈M and alli

with suitable constantsbµi 6= 0. To prove this, note that[Dµi,Dνj ] = −µjDµ+ν,i

if νi = 0 and thusY = Yµi has the following property: For allν ∈ S̃ with νi = 0
the image of adY : Θ′ν → Θ′µ+ν has dimension6 1. Hence, it is enough to show
that, up to multiplication with a constant,xµYi is the unique element ofΘ′µ with
this property. In fact, forY =

∑
k ckxµYk the matrix of coefficients of([Y, xνYj])j

with respect to the basis(xµxνYk)k has determinant equal to the value at
∑
ckνk of

the characteristic polynomial of the matrix(µjck)j,k. The semigroup of elements
ν ∈ S̃ with νi = 0 has rankn − 1. Thus, ifck 6= 0 for somek 6= i it is possible
to chooseν ∈ S̃ with νi = 0 such that

∑
ckνk is not a zero of the characteristic

polynomial mentioned above. This proves the claim.
For fixedµ ∈ M chooseν ∈ M with ν1 6= µ1 andνi 6= 0 for all i 6= 1. Then

the usual commutator relation impliesbµibν1 = bµ+ν,1 for all i. Hence, thebµi are
independent ofi. By a suitable choice of thexµ we obtain

Yµi = xµYi for all µ ∈M and alli.

Forλ ∈ Λi andµ ∈M one calculates

Yλi(xµ) · Yj − λjxµYλi = µiYλ+µ,j − λjYλ+µ,i.

Let us use this equation to show̃S + (M \ {0}) ⊆ M. In fact, for λ ∈ S̃ and
µ ∈ M \ {0} one hasYλi(xµ) ∈ Rλ+µ. If λ+ µ /∈ M thenYλi(xµ) = 0 for all i.
This clearly is impossible forn = 1. Otherwise, look at

λjxµYλi = λjYλ+µ,i − µiYλ+µ,j.

After choosingi such thatµi 6= 0 one seesλj 6= 0 for all j. Division byλj leads
to n equations which are contradictory in casen > 2. Our next claim is

xλxµ = xλ+µ for all λ, µ ∈M.

For suchλ, µ we have

µixλxµYj − λjxλxµYi = µixλ+µYj − λjxλ+µYi.

In casen > 2, this immediately implies the claim whereas forn = 1 one needs
µ 6= λ. To showx2

λ = x2λ one may proceed similarly as in the last step of the proof
of Theorem 3 below.
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Suppose thatn > 2. AsR = k[S] ' k[M ] is Cohen–Macaulay we havẽS = S
andM ′ = M with M ′ as defined at the beginning of Section 2, see [TH, Cor. 2.2].
But thenS̃ + (M \ {0}) ⊆M yieldsM = S. Therefore,Yλi(xµ) = µi · xλ+µ for
all λ, µ ∈ S. We want to show the same equation forλ ∈ Ei andµ ∈ S. This is
clear ifλ+µ /∈ S because thenYλi(xµ) = 0 andµi = 0. Otherwise, givenλ ∈ Ei
we may chooses ∈ S \ {0} with si = 0, λ+ s /∈ S and thenj with sj 6= 0. The
claim follows by applying

Yλi(xµ) · Yj − λjxµYλi = µixλ+µYj − λjxλ+µYi

to xs. We can define an automorphismφ of k[S] by φ(ts) = xs and obtain
Φ(D) = φ ◦D ◦ φ−1 for all D ∈ Θ(S).

Finally, consider the casen = 1. ThenS̃ + (M \ {0}) ⊆M implies thatM is
a numerical semigroup. Letc be the conductor ofM andx = xc+1/xc ∈ k(t). For
µ ∈M one calculatesxµcx

µ = xµcxµ andxµ = xµ. In particular,x is integral over
k[t] and hence contained ink[t]. Write for shortY = Φ(t∂t) andYλ = Φ(tλt∂t).
From Y (xµ) = µ · xµ one deducesY (x) = x. This impliesY = f∂t with a
polynomialf of degree 1. BecauseS 6= N, the constant term off vanishes. Thenx
must be a monomial, say of degreer. Nowk[S] =

⊕
µ∈M Rµ with Rµ spanned by

trµ. SinceS is a numerical semigroup we obtainr = 1 andM = S. Forλ ∈ S̃ one
hasxλY ∈ Θ′λ andxλY is a scalar multiple ofYλ. UsingYs = xsY for s ∈ S and
[Yλ, Ys] = (s−λ)Yλ+s one can deduceYλ = xλY . ThenYλ(xs) = s ·xλ+s for all
λ ∈ S̃ ands ∈ S. Therefore, the automorphismφ of k[S] defined byφ(ts) = xs

satisfiesΦ = φ]. 2

5. Derivations of the Lie Algebra

In this section we show

THEOREM 3.Let S ⊆ Nn be a simplicial affine semigroup such thatk[S] is
Buchsbaum. Then every derivation∆ of Θ(S) is inner: ∆ = adD for some
D ∈ Θ(S).

Proof. The cochain complex of the Lie algebraΘ(S) with coefficients in the
adjoint representation has aZn-grading given by the root space decomposition. By
[F, Thm. 1.5.2b] it is acyclic in degrees different from zero. Hence, we may assume
that the given∆ has degree 0, i.e.∆(Θλ) ⊆ Θλ for all λ. For each rootλ denote
byM(λ) the set ofi such thatDλi ∈ Θ(S). ThusM(λ) = {1, . . . , n} for ordinary
roots andM(λ) = {i} for i-exceptional roots. We have

∆(Dλi) =
∑

m∈M(λ)

bλimDλm for i ∈M(λ) (1)

with suitable constantsbλim ∈ k. The brackets of the generators are given by

[Dλi,Dµj ] = µiDλ+µ,j − λjDλ+µ,i (2)
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Inserting (1) and (2) into the cocycle condition

∆([Dλi,Dµj ]) = [∆(Dλi),Dµj ] + [Dλi,∆(Dµj)]

gives∑
m

(µi · bλ+µ,j,m − λj · bλ+µ,i,m)Dλ+µ,m

=
∑
m

(µi · bµjm − λj · bλim)Dλ+µ,m+

+

(∑
m

µm · bλim
)
Dλ+µ,j −

(∑
m

λm · bµjm
)
Dλ+µ,i.

By comparing the coefficients one obtains

µi · bλ+µ,j,m − λj · bλ+µ,i,m

= µi · bµjm − λj · bλim for m 6= i, j, (3)

µi · bλ+µ,j,j − λj · bλ+µ,i,j

= µi · bµjj − λj · bλij +
∑
m

µm · bλim for j 6= i, (4)

(µi − λi)bλ+µ,i,i

= µi · bµii − λi · bλii +
∑
m

µm · bλim −
∑
m

λm · bµim. (5)

Equation (4) withλ = µ = αj yields

b2αj ,i,j = 0 for i 6= j. (6)

Let us show thatbλij = 0 for all λ ∈ S̃ and all i, j ∈ M(λ) with i 6= j. Set
µ = 2αj. In caseλi = 0 the claim follows from (5) and (6). Ifλi 6= 0 use (3) with
j = i andm replaced byj to showbλ+µ,i,j = bλij . Then (4) gives the claim.

Now we have∆(Dλi) = bλiDλi for i ∈M(λ),with suitablebλi ∈ k. Equations
(4) and (5) reduce to

µi · bλ+µ,j = µi · bµj + µi · bλi for j 6= i, (7)

(µj − λj)bλ+µ,j = (µj − λj)(bλj + bµj). (8)

For fixedλ ∈ S̃ the coefficientsbλi are independent ofi ∈M(λ). In fact, forj 6= i
apply (7) and (8) whereµ is any element of̃S with µi 6= 0 andµj 6= λj . Thus we
may writebλ instead ofbλi.
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Consider first the casen > 2. Then (7) impliesbλ+µ = bλ + bµ for λ, µ ∈ S̃.
Let ci = bαi/ai whereai denotes the nonzero entry ofαi. Using the fact that̃S
is torsion modulo the semigroup generated by theαi one showsbλ =

∑
i ciλi for

all λ ∈ S̃. The same is seen to hold forλ ∈ Λi by applying (7) with someµ ∈ S,
µi 6= 0. We have proven

[∑
i

ciDi,Dλj

]
=
∑
i

ciλiDλj = bλDλj = ∆(Dλj)

for all λ ∈ Λ andj ∈M(λ). This means∆ = adD for D =
∑
i ciDi.

In the casen = 1 only Equation (8) is available. Thenb5λ = b3λ + b2λ =
2b2λ + bλ andb5λ = b4λ + bλ = b3λ + 2bλ = b2λ + 3bλ, henceb2λ = 2bλ and then
bmλ = mbλ for all m ∈ N, λ ∈ S̃ with m,λ > 0. This shows that the ratiobλ/λ
is independent ofλ, saybλ/λ = c. Hencebλ = cλ for all positive roots. Since the
same clearly holds forλ = 0 (andλ = −1 in the special caseS = N) we have
again shown that∆ is inner. 2

Remark3. In the special caseS = Nn Theorem 3 was proven by Heinze [He,
Kap. II, Satz 2.8]. More generally, for semigroups corresponding to a product along
a line it follows from work of Skryabin [Sk, Thm. 3].
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