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Abstract. We study the Lie algebra of derivations of the coordinate ring of affine toric varieties
defined by simplicial affine semigroups and prove the following results:

— Such toric varieties are uniquely determined by their Lie algebra if they are supposed to be
Cohen—Macaulay of dimensign 2 or Gorenstein of dimensioa 1.

— Inthe Cohen—Macaulay case, every automorphism of the Lie algebra is induced from a unique
automorphism of the variety.

— Every derivation of the Lie algebra is inner.
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1. Introduction

Normal affine algebraic varieties in characteristic 0 are uniquely determined (up to
isomorphism) by the Lie algebra of derivations of their coordinate ring. This was
shown by Siebert [Si] and, independently, by Hauser and the third author [HM].
In both papers, the assumption of normality is essential. There are nonisomorphic
nonnormal varieties with isomorphic Lie algebras. The third author [M] treated
certain nonnormal varieties defined in combinatorial terms by showing that closed
simplicial complexes can be reconstructed from the Lie algebra of their Stanley—
Reisner ring. Here we study this problem for (in general, nonnormal) toric varieties
defined by simplicial affine semigroups.

We show that such toric varieties are uniquely determined by their Lie algebra
if they are supposed to be Cohen—Macaulay of dimensi@The corresponding
statement is false in dimension 1. For toric curves we need the stronger hypothesis
that they are Gorenstein. In fact, we can reconstruct from the Lie algebra the
semigroup defining the variety. Our result should be compared with a recent one of
Gubeladze [G] saying that an affine semigroup is uniquely determined by the toric
variety it defines (more precisely, by its coordinate ring as an augmented algebra).
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The main tool in our proofs is a root space decomposition of the Lie algebra
of derivations of a Buchsbaum semigroup ring. The set of roots is closely related
to the underlying semigroup. This structural description will be used to prove two
more results. We show, in the Cohen—Macaulay case, that every automorphism of
the Lie algebra is induced from a unique automorphism of the variety. And we
establish an infinitesimal analogue of the last statement: Every derivation of the
Lie algebrais inner, i.e., the first cohomology of the Lie algebra with coefficients
in the adjoint representation vanishes.

2. The Root Space Decomposition

Let .S be an affine semigroup, i.e., a finitely generated subsemigroup of §8me

We stress that, in this paper, semigroup always means semigroup with zero element.
Denote byG = G(S) the subgroup ofZ” generated bys and byr = rk S =

rk G(S) its rank. LetCs be the convex polyhedral cone spannedshinp Q™. We

shall suppose throughout théitis simplicial, i.e., that the convex cor@s can be
spanned by elements ofS. For an algebraically closed fieldof characteristic O

let k[S] C k[t] = klts, ..., t,] denote the corresponding semigroup ring. We need

to recall how the property df[S] being Cohen—Macaulay or Buchsbaum can be
describedinterms &f. For this purpose, léfy, . . ., F,, be the(r — 1)-dimensional

faces ofCy. Set

Si={\€ G, \+s € Sforsomese SNF}
fori=1,...,m,andS" =NS..

PROPOSITION 1For a simplicial affine semigrouf the semigroup ring:[S] is
Cohen—Macaulay (resp. Buchsbaum) if and onl i= S (resp.S’ + (S\ {0}) C
S).

For the proof see [GSW], [St, Thm. 6.4], [TH, Sect. 4], and [SS, Sect. 6]. The
semigroups’ is called theCohen—Macaulayficatioof S. Let

S ={s € G, ms e S forsomem € N,m # 0}.
It is known [Ho, Sect. 1] thak[S] is the normalization ok[S]. An affine semi-

group. is calledstandardif

(i) S =G(S)NN",
(ii) For all 7 the image ofS under the projectionr; on theith component is a
numerical semigroup, i.e., the compleman 7;(.5) is finite.
(iif) The semigroupsSnkerm;,i =1,...,n, are distinct of rank equal to k— 1.

It was shown by Hochster [Ho, Sect. 2] that every affine semigroup is isomorphic
to a standard one. Hence, we shall assume throughoufttsastandard. In that
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case the con€'s has exactly: faces of dimension — 1, namely the convex cones
spanned by thé& N ker m;. Hence

Si={\eZ" X+ secSforsomes e S with s; = 0}

fori = 1,...,n. A standard affine semigroupis simplicial if and only ifS has
elements on every coordinate axis. In fact, the cone of a simplicial affine semigroup
of rankr has onlyr faces of dimension — 1. Standardness gives= n. Then the
edges of’'g are the intersections dfs with the coordinate axes, see [SS, Sect. 1].
The reversed implication is obvious. L&t € N, a; # 0, be the minimal number
such that’ = (0,...,0,a;,0,...,0) € S, where the nonzero entry is at thif
place.

PROPOSITION 2Everyk-linear derivationD of k[S] extends uniquely to a deriv-
ation of the polynomial ring:[t].

Proof. As S C N" is standard and simplicial it has rank and k£[S] has
dimensiom. Hence, the rational function fieldt) is a separable finite extension
of the quotient field:(.S) of k[S]. Therefore,D extends uniquely to a derivation
D of k(t). Write D = " f;0; with f; € k(t), say fi = g;/h; with coprime
gi, h; € k[t]. With the semigroup elementg introduced above, we have

ait L = D) € k[S] C k[t]

andh; dividestf-”’l. As;(S) is a numerical semigroup theresiss G with theith
componens; = 1. Using simpliciality, we may assume that N", hences € S.

It was shown by Seidenberg [Se] thatmaps the normalizatioh[S] of k[S] into
itself. Then

> st fi/t; = D(t°) € K[S] C k[]

implies [, t?jfltsfi/ti € k[t]. Hence,h; divides[[,; t?flts/ti. Butt¢; does
not divide this product sincg = 1. Thush; € k andf; € k[t]. This means thab
restricts to a derivation of[t]. O

By Proposition 2, the Lie algebi@a(S) = Der k[S] of k-linear derivations of the
semigroup ring may be viewed as a subalgebia of Derk|t]. Let us first describe
the latter Lie algebra. The derivatio = ¢;0; span an Abelian subalgebfa.
For a linear form\ € H* let

Dy={DeD, [h,D]=A(h)-Dforallhe H}.

ThenD admits a root space decomposition= P,y Dy. Given the basis
D, ..., D, of H one may identifyHd* with £™ by identifying the form\ with the
vector(A(D1),...,A(Dy)). Then the set ok € H* with D) # 0 equals

N*"U{X € 2", \; = —1 for exactly one and\; > O for all j # i}.
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In fact, for\ € N the root spac®, is spanned by alD,; = tktjaj,j =1...,n

In particular,Do = H. And if A € Z" with \; = —1 and); > 0 for j # i, thenD,,

is spanned by the single elemdny; = t*t;0;. All these statements follow from
the commutator relatiofD;, D;] = A; - Dy;. We need some more notation in
order to describe the subalgel®&sS). Let

A ={rAeZ" A+seSforallse Swiths; #0}, i=1,...,n
A= AS) = A, S={reN", \+(S\{0}) C S

Remarkl. Letn = 1. Thenk[S] is always Cohen—Macaulay, and the cardinality
of A\'S equals the Cohen—Macaulay typeiob], see [HK]. ForS = N, one has
S = NandA = S U {-1}. Otherwise 1¢ S. Then our assumption that\ S is
finite impliesA C NandA = S.

Remark2. Letn > 2. From\ + of € S for A € S and two indices one sees
S C S’ HenceS = S’ in the Buchsbaum case afd= S in the Cohen—Macaulay
case.

PROPOSITION 3. (i)The Lie algebra®(S) admits a root space decomposition
O(S) = Brch- OA WithO ) = O(S) N Dy,

(ii) Supposethat[S]is Buchsbaum. Thenthe setof H* with©, # Oequals
A(S). If X e S then®, is spanned byD, 1, . .., Dy,. Andif\ € E; = A, \S then
O, is spanned by the single elemdny;. In particular, A(S) = SUUE; is a
disjoint union.

The elements of (resp.E;) will be calledordinary (resp.i-exceptiona) roots

Proof. (i) For Dy = >, bx;Dy; € D) one hasDt® = >, by;s; - t**s. Hence
YaDy e ©O(S)ifandonly if A\ + s € S forall s € S and all occurringh with
> baisi # 0ifand only if Dy € ©(S) for all occurringX.

(i) ConsiderA € S. ThenDy,..., D), are defined and contained (S).
Next consider\ € A;. From\ + ot € S we see\; > O for all j # 7. Moreover,
Ai € A(m;(S)) and Remark 1 yields; > —1. Hence D, is defined and contained
in ©(S). Conversely, ifD); € ©(S) then\ € A;. The proof is completed by the
following claim: If ©, contains a linear combination of thg,; with at least two
nonvanishing coefficients thene S. In fact, if>; 0;Dy; € O(S) with by, b2 # 0
then ) 4+ ot and X 4 o2 are contained ir5. This gives\ € S’ C S ask[S] is
Buchsbaum. O

EXAMPLE 1 (IMT, Remark 1.3]). LetS C N? be generated by (0,10), (3,7), (7,3),
(8,2), (10,0) and let = (9,11). ThenX + (3,7) ¢ S but X\ + s € S for the

remaining generators Hence\ € '\ S andk[S] is not Buchsbaum. Moreover,
A ¢ A(S) but®, # 0. Infact, 7Dy; — 3Dy, € ©,.
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EXAMPLE 2. LetS C N?correspond to the affine cone over thaple embedding
of PtinP?,d > 2,i.e.,Sisgenerated bg0, d), (1,d—1),...,(d—1,1),(d, 0). Then
k[S] is normal and Cohen—Macaulay. The exceptional rootg-alel) + m(0, d)
and(1, —1) + m(d, 0) with m € N.

EXAMPLE 3. LetS C N? correspond to the product of a cusp with a line, i.e.,
S is generated by2,0), (3,0) and (0,1). Thenk[S] is Cohen—Macaulay. The
1-exceptional roots argl, 0) + m(0, 1) with m € N. The 2-exceptional roots are
(0, -1) + m(2,0) and(3, —1) + m(2, 0) with m € N.

Examples 2 and 3 illustrate the second part of the next result.

PROPOSITION 4. (i) is a finitely generated subsemigrouphef.

(i) Suppose thak[S] is Buchsbaum and > 2. For fixedi let A; be the
semigroup generated by alf with j # i. Then the sek; of i-exceptional roots is
a finitely generated!;-module.

Proof. (i) Clearly S is a subsemigroup af”. Let A be the semigroup gener-
ated bya?, ..., o™ We show more generally that every subsemigréug N"
containingA is finitely generated. Leat; be the nonzero entry ef’. For3 € N
with 3; < a; for all i let Tg = (3 + A) N T. By Dickson’s Lemma eacli; is
a finitely generatedi-module (or empty). Sinc& = (J 7T} is a finite union,T" is
finitely generated as ad-module and hence as a semigroup.

(i) We may assumé = 1. If A € By = A;1\S then clearly\ + a2 € A;.
Moreover,\ + o' € S sothath € S fori > 2. If A + o2 € Sthen\ + 202 € S,
henceX € S5 and\ € S’ = S, contradiction. Thus\ + o? € Ej. This proves
that £7 is an A;-module. It remains to show that it is finitely generated. For
v € Nx {0} C N*andB € {0} x N*~1 C N" with 3; < a; for all i let
E.3 = (v + B+ A1) N E1. As above this is a finitely generateti-module (or
empty). If E,5 # 0 andy’ = v + ma? for somem € N, m # 0 thenE, /5 = 0.
Otherwise, there is\ € A; with v + 8 4+ A\,9' + 8 + A € E1, contradicting
Y +B84+X=~+F+A+mat €S C S. Since there are only finitely many
congruence classes §fmoduloa?! the Proposition is proven. O

3. Reconstruction of the Semigroup

Before we explain how to reconstruct the semigréufpom its Lie algebrao(.S)

we make a remark concerning the reconstructior dfom its semigroup ring

k[S] discussed by Gubeladze [G]. Consider the augmentaii®n— k defined by

t* — Oforalls € S\ {0}. Gubeladze [G, Thm. 2.1] proved that affine semigroups

S1 andS; are isomorphic ik[S1] andk[S2] are isomorphic as augmented algebras.
Moreover [G, Lem. 2.8], ifk[S1] and k[S2] are normal and isomorphic just as
algebras then they are isomorphic as augmented algebras. We shall extend this
result (for simplicial semigroups) to the Buchsbaum case.
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For any A\ € Z™ we denote by\| the sum of its components. Let us say
that.S corresponds to product along a lingf, after permutation of coordinates,
S = N@ M for some semigroug/ C N"~1. We shall see that this property
only depends on the algebkaS] and even on the Lie algebfa(S). Let L =
[O(S5),0(S5)] be the derived algebra.

PROPOSITION 5Suppose that[S] is Buchsbaum. Then the following are equiv-
alent:

(a) The semigrouy corresponds to a product along a line.
(b) There ish € A(S) with |A\| < O.
(c) L = 06(S).

Proof. (a) < (b) If (—1,0,...,0) is a root then(1,0,...,0) € S andS =
N @® M with M = S N ker 71. The converse is clear.

(b)=(c) Here and later we use the commutator relaftioxy, D,,;| = piDxyp;—
AjDxipi- It shows@, 0O\ C L. Let A = (-1,0,...,0) € A so thaty =
(1,0,...,0) € S C S. ThenL contains Dy = [Dy1, D,1] andD; = [Dyg, D]
forj > 2. Thus®g=H C L.

(c)= (b) Assume thalt\| > 0 for all roots\. Thenn!+n? = 0for rootsnt, n? #
0 is possible only if (after permutation of coordinated) = (—1,1,0,...,0),
n? = (1,-1,0,...,0). Inthis caséD,: 1, D, 5] = Do — Ds. SinceOy is Abelian
we obtainL C D002 @ (D, — D1,...,Dy— Dj1) and©q Z L. a

PROPOSITION 6 Suppose that[S;] andk[.Sz] are Buchsbaum.

(i) If k[S1] and k[.S2] are isomorphic as algebras then they are isomorphic as
augmented algebras.

(i) If S1 andS, do not correspond to products along a line then every algebra
isomorphismyp: k[S1] — k[S2] is augmented.

Proof. Let I C k[S»] be a proper differential ideal, i.e)(I) C I for every
D € ©(S2). We claim that! is generated by some monomidfs s € Sz. In
particular,/ is contained in the augmentation ideal generated ky alle S, \ {0}.
Givenf = > b,t* € I fixanyswith b, # 0. Take any of the remaining € .S, with
by # 0 and choosg with \; # s;. Theny_ , (A; — )bttt = \jf — D;(f) € I
contains less monomials thahbut still the monomiak®. Repeated application
yieldst® € I, proving the claim.

Now assume; = N @ M for someM C N~ which does not correspond to
aproduct along aline. Let be the ideal of[S1] generated by at*, i € M \ {0}.
We claim that/ is differential. Considerany € A;,7i = 1,...,n.In order to show
Dy (t") = it € J we may assumg; # 0. Then\ + . € S1. As M does not
correspond to a product along a line we hagvie> 2 and conclude + u = v+ i/
with v € N™ andy/ € M \ {0}. HencetA# = tv+1' ¢ J.

Let ¢: k[S1] — k[S2] be an algebra isomorphism. It induces a Lie algebra
isomorphismp?: ©(S1) — ©(S2) by D + ¢ o D o ¢~ L. SinceJ is differential its
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image ink|[S-] is differential and, hence, contained in the augmentation ideal of
E[S2]. We havek[S1] = k[M][t1,...,tn]. Fori =1,...,m let¢; be the constant
term of ¢(¢;). Define thek[M]-automorphismy of k[S1] by ¥(t;) = t; — ¢,

i =1,...,m. Then thep o ¢(¢;) have no constant term. Since the augmentation
ideal ofk[S;] is generated by, . . . , t,, and.J this means thap o ¢ is augmented.
Assertion (i) now also is clear because in that cdsequals the augmentation
ideal. O

THEOREM 1. Let S3, S2 be simplicial affine semigroups such thdSs], k[S2]
are Buchsbhaum. Suppose that the Lie algel¥6S; ), ©(S>) are isomorphic. Then
S1, S» have the same rank and the semigrodpsS» are isomorphic.

Proof. If ©(S1) equalsits derived algebra thepandsS, correspond to products
along a line. By a result of Skryabin [Sk, Thm. 2] the semigroup riig5], k[.S2]
are isomorphic. Then [G, Thm. 2.1] and Proposition 6 imply that the semigroups
S1,.S> themselves are isomorphic. Now suppose that the derived algebra is strictly
smaller than©(S1). Then|A| > 0 for all A € A(S1). As [0,,0,] C Oy,
for all roots A, uu the subspacek; = @),-, O are ideals 0©(S1) with finite-
dimensional quotientd(S1) /1, and ey 14 = 0. Given anisomorphisi® (.S1) ~
©(S2) we obtain an Abelian subalgebid, of ©(S1) and another root space
decompositior®(S1) = Dcn; ©,,. Every finite-dimensional subspace®(S:)
is mapped isomorphically onto its image @(S1)/1; if d is sufficiently large.
Thus, ford > 0, H, embeds intd) = ©(51)/14. Foru € H3 consider the root
spaces

Q,={D € Q, [h,D] = pu(h)- D forall h € Hp}.

Their sum is direct. Since ead, is mapped intay, and the images of th®),
spani) we se€Q = @, ;; @/, and that eack, is mapped ont@)’,.. In particular,

Qo = Ho. It follows that H, equals its normalizer i) and, hence, is a Cartan
subalgebra of). Using Proposition 3, Remark 1, and Proposition 4 we may assume
that the subsemigroup @f5 generated by aljl. with dim Q;A =dim Hy, =1k S

equalsS,. Analogous statements hold true f8; andd > 0. SinceQ is finite
dimensional there is an automorphisntpmapping the Cartan subalgelifaonto
the second Cartan subalgel#fa, [Hu, Sect. 16]. Its dual induces an isomorphism
between the semigroupg andSs. O

Using Remark 2 we conclude

COROLLARY 1. Simplicial affine semigroupS of rank > 2 with k[S] Cohen-
Macaulay are uniquely determined by their Lie algelréS).

Look again at Gubeladze’s Theorem ti¥ais uniquely determined by the augmen-
ted algebr&[S]. In the above proof we applied this only in ca&sdoes correspond
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to a product along a line. Therefore, using the Lie algéh8) as an intermediate
step, we have reproved Gubeladze’s Theorem in the special caseithaimpli-

cial, does not correspond to a product along a line /d68dis Cohen—Macaulay of
dimension> 2. But©®(S) cannot distinguish between semigroups with the same
Cohen—Macaulayfication:

EXAMPLE 4. Fixd,! € N, both> 2. Let S consist of alls € N2 with |s| = md,

m > [. Thenk[S] is Buchsbaum and the Cohen—Macaulayficatibis generated
by (0,d),(1,d-1),...,(d—1,1),(d,0). BothS andS” have the same exceptional
roots, see Example 2. Hend®(S) = ©(5’), independently of.

EXAMPLE 5. Let S; (resp.S,) be generated by al € N? with |\| = 6 except

A = (3,3) (resp.A = (2,4)). They have a Buchsbaum semigroup ring and the
same Cohen—-Macaulayfication generated by alN? with |A\| = 6. In both cases

the exceptional roots are-1,7) + m(0,6) and(7, —1) + m(6,0) with m € N.
HenceB®(S1) = O(S52). But S1, 52 are not isomorphic. In fact, any isomorphism
would map the set of extremal elemer{$, 0), (0,6)} onto itself, hence€6, 6)

onto (6, 6). This contradict$6,6) = 2(3,3) in Sz but (6,6) # 2s for all s € S1.
Observe that both semigroups correspond to affine cones over smooth projective
curves inp®.

In the rank 1 case the situation is different. Although the semigroup ring always is
Cohen—Macaulay the semigroup is, in general, not determined by the Lie algebra:

EXAMPLE 6. The numerical semigroups generated by 2 and 3 (resp. 3, 4 and 5)
have the samé& = N, hence the same Lie algebra. Observe that the semigroup

ring is Gorenstein in the first case whereas it has Cohen—Macaulay type 2 in the
second, see Remark 1.

EXAMPLE 7. The numerical semigroups generated by 3, 7 and 8 (resp. 4, 5 and
7) have the sam# generated by 3, 4 and 5, hence the same Lie algebra. Observe
that the Cohen—Macaulay type is 2 in both cases.

COROLLARY 2. Numerical semigroups$ with k[S] Gorenstein are uniquely
determined byd(.S) and even by the finite-dimensional Lie algel¥éS)/[L, L].
Proof. If L = ©(S) thenS = N. So supposd. # O(S). ThenS is the set
of roots andL = @, »o ©.. This implies©, N [L, L] = 0 for A in the minimal
generator system of and®, C [L, L] for every A which can be decomposed
as\ = pu + v with two differenty,v € S. We see tha®(S)/[L, L] is finite
dimensional and that we can use the intrinsically defined idedl] instead ofl,
in the proof of Theorem 1. It remains to show ti$sis uniquely determined by in
the Gorenstein case. By [HK, Satz 1.9, Prop. 2.21] we kfow S U {¢ — 1} with
the conductoe of S. Consider first the cas® = N. ThenS must be the semigroup
N\ {1}, generated by 2 and 3. Now I6t+# N. Leta be the smallest element of
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S different from 0. AsS is a symmetric semigroup we see-2,...,c—a € S
butc —a — 1 ¢ S. Thus,S has conductot — a. Thenc — a € S\ {0} implies
c—1> c—a > a. Henceg is the smallest element 8fdifferent from 0. Therefore,
S =S5\ {c— 1} is determined via — a anda by S. O

4. Automorphisms of the Lie Algebra

Every automorphism of k[S] induces a Lie algebra automorphism
$*:0(S) = O(S):D— poDogp L.
The purpose of this section is to show

THEOREM 2.Let S be a simplicial affine semigroup such thdtS] is Cohen—
Macaulay. For every automorphisfinof ©(.S) there is a unique automorphisn
of k[S] such thatb = ¢.

Proof. If ® = ¢f then®(f - ®~X(D)) = &(f) - D for all f € k[S] and
D € ©(S). This shows uniqueness. Now take an arbitrary automorpKisof
©(S). If S corresponds to a product along a line the assertion follows from [Sk,
Thm. 2]. Hence we may assume thatloes not correspond to a product along a
line. LetY; = ®(D;) andY); = ®(D);). We haved(S) = P, ©) with

O\ = ®(0,) ={Y € 0(9), [Y;,Y] = \; - Y forall i}.

The mapf — fY1 is an embedding of(H)-modulesk[S] — ©(S). Hence
R = k[S] admits an eigenspace decompositiBn= P, Ry With Ry =
{f € R, Yi(f) = \i - f forall i}. For any nonzera:,, € R, the elements
x,Y1,...,x,Y, of ©, are linearly independent. Hendé = {1 € A, R, # O} is

a subsemigroup of and, fory € M, the root spac@il is spanned by the elements
above. It follows easily that the corresponding eigensggces one-dimensional.
By [GW, Chapter I11.1] thelM -graded ringsk andk|[M ] are isomorphic. LeK be
the localization of? with respect to the multiplicative subsgf,c (R, \ {0}). It

is isomorphic to the group ring[G] whereG C Z™ is the subgroup generated by
M. We have a decompositidi = @, ., K, with

K,={feK, Y(f)=v; - fforalli}

and eaclk, is one-dimensional, say spannediyr € G. SinceG is free Abelian
of rankn there is a root space decomposition Ber= @, . O/ with

0! ={Y € DerK, [Y;,Y] =v; - Y forall i}
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and eacl®y is spanned by, Y1,...,2,Y,, v € G. Now there is an embedding
©(S) = DerR C Der K. This impliesS C G and®!, = ©/ for v € S. Next we
claim

Y, = byx,Y; foral  pe Mandalli

with suitable constants,; # 0. To prove this, note thaD,;, D, ;] = —p; Dy
if v, = 0 and thus” = Y),; has the following property: For all € Swithy; =0
the image of ad”: ©,, — ©;,,, has dimensior< 1. Hence, it is enough to show
that, up to multiplication with a constant,,Y; is the unique element (@L with
this property. In fact, fot” = 3, c,x, Y}, the matrix of coefficients of[Y, ,Y}])
with respect to the basis =, Y},), has determinant equal to the valug at;, v, of
the characteristic polynomial of the matiix;c;); . The semigroup of elements
v e S with = 0 has rank: — 1. Thus, ifc, # 0 for somek # i it is possible
to chooser € S with 1; = 0 such thafy_ ¢, is not a zero of the characteristic
polynomial mentioned above. This proves the claim.

For fixedu € M chooser € M with 11 # pp andy; # 0 for all i # 1. Then
the usual commutator relation impliés;b,1 = b,,4,,1 for all i. Hence, thé,; are
independent of. By a suitable choice of the, we obtain

Y, =z,Y; forallpe M andalli.
For\ € A; andu € M one calculates
Yai(xy) Y5 — Njep Y = wiYogny — Ao
Let us use this equation to shosv+ (M \ {0}) C M. In fact, for A € S and

p € M\ {0} one has¥y;(z,) € Ragp. If A+ o ¢ M thenYy;(x,) = O for all 4.
This clearly is impossible for = 1. Otherwise, look at

AjzuYni = NV — HiYap,-

After choosingi such thatu; # 0 one sees; # 0 for all j. Division by \; leads
to n equations which are contradictory in case 2. Our next claim is

T T, = xryy, forall A pue M.
For such)\, x we have
i, Yy = AaarnYs = pixgn Yy — Ajeap,Yi.
In casen > 2, this immediately implies the claim whereas foe= 1 one needs

p # X To showr? = x5, one may proceed similarly as in the last step of the proof
of Theorem 3 below.
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Suppose that > 2. AsR = k[S] ~ k[M] is Cohen—Macaulay we haye= S
andM’ = M with M’ as defined at the beginning of Section 2, see [TH, Cor. 2.2].
ButthenS + (M \ {0}) C M yieldsM = S. ThereforeYy;(z,) = i - ©a, for
all A, u € S. We want to show the same equation foe E; andy € S. This is
clearifA + u ¢ S because thel;(x,) = 0 andu; = 0. Otherwise, given € E;
we may choose € S\ {0} with s; = 0, A + s ¢ S and thenj with s; # 0. The
claim follows by applying

Vail@p) - Yy = XjauYai = piwan Yy — Xjeae Y

to xs. We can define an automorphisinof k[S] by ¢(t°) = x5 and obtain
®(D)=¢poDog tforall D c O(S).

Finally, consider the case= 1. ThenS + (M \ {0}) C M implies thatM is
a numerical semigroup. Letbe the conductor af/ andx = z.y1/x. € k(t). For
p € M one calculatestz# = ztx, andz* = x,. In particular,z is integral over
k[t] and hence contained ift]. Write for shortY = ®(t9;) andYy = ®(t*td;).
FromY(z,) = p -z, one deduced’(z) = x. This impliesY = f0, with a
polynomialf of degree 1. Because+# N, the constant term of vanishes. Then
must be a monomial, say of degreeNow k[S]| = @, R, With R, spanned by
t"#. SincesS is a numerical semigroup we obtain= 1 andM = S. For\ € S one
hasz?Y € ©), andzY is a scalar multiple o¥’y. UsingY; = z°Y for s € S and
[Y),Y;] = (s — A\)Y), One can deducky, = Y. ThenY) (z*) = s- 2’ for all
A € S ands € S. Therefore, the automorphisenof k[S] defined byp(t*) = z*
satisfiesh = ¢. O

5. Derivations of the Lie Algebra
In this section we show

THEOREM 3.Let S C N" be a simplicial affine semigroup such thaltS] is
Buchsbaum. Then every derivatidn of ©(S) is inner: A = ad D for some
D € ©(S).

Proof. The cochain complex of the Lie algebedS) with coefficients in the
adjoint representation haé-grading given by the root space decomposition. By
[F, Thm. 1.5.2b] it is acyclic in degrees different from zero. Hence, we may assume
that the givemA has degree 0, i.é\(0©,) C ©, for all X. For each roof\ denote
by M (X) the set of suchthatD,; € ©(S). ThusM (\) = {1,...,n} for ordinary
roots andM (\) = {i} for i-exceptional roots. We have

ADy)= > bymDan for iecM(X) (1)
meM(X)

with suitable constants,;,, € k. The brackets of the generators are given by

[Dxi, Dyjl = piDxypj — ANjDagp,i (2)
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Inserting (1) and (2) into the cocycle condition

A([Dxis Dujl) = [A(Dxi), Dl + [Dxis A(Dyj)]
gives

> (i - bagpgom — Aj - batpiim) Daepm

m

= Z(Mz’ “bujm = Aj - Oxim) Dagpm+

+ (Z Hm - b/\im> D/\Jr,u,j - (Z Am bujm) D/\Jr,u,z'-

By comparing the coefficients one obtains
1 - Oxppjom = Aj - bxtpim

= Wi bujm — Aj - byim  fOr m #1473, )

fi* Oxpgg = Aj - Oatpig

= pt; - bujj — Aj - baij + Zum “byim  for g #4, (4)

(i = Ni)bagp,isi
= Hi- b,uii - )\z : b)\ii + Z Hm - b)\im - Z )\m : buim- (5)
Equation (4) with\ = p = o/ yields
bZaJ',i,j — 0 fOI’ Z 75 j (6)

Let us show thab,;; = O for all A € Sandalli,j € M(\) with i # j. Set
1= 2a’. In case\; = 0 the claim follows from (5) and (6). Ik; # 0 use (3) with
J = ¢ andm replaced byj to showb, ,,; ; = bx;;. Then (4) gives the claim.

Now we haveA (D,;) = by; Dy, fori € M (), with suitableby; € k. Equations
(4) and (5) reduce to

Mi - bagpg = i - by +pi - by for g #14, (7)
(kg = Ai)oxatprg = (15 = Aj) (bag + bpj)- (8)
For fixed\ € S the coefficient$); are independent afe M (). In fact, forj # i

apply (7) and (8) wherg is any element of with y; # 0 andu; # );. Thus we
may writeb, instead ofb,;.
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Consider first the case > 2. Then (7) impliedy,, = by + b, for A\, u € S.
Let ¢; = b,:/a; Wherea; denotes the nonzero entry af. Using the fact that
is torsion modulo the semigroup generated bydhene shows, = 3", ¢;\; for
all A € S. The same is seen to hold fare A; by applying (7) with some: € S,
u; # 0. We have proven

[Z CzDi,DAj] =Y ciXiDyj = bxDyj = A(Dy;)

forall A € A andj € M(X). Thismeang\ = adD for D =", ¢; D;.

In the casen = 1 only Equation (8) is available. Them, = b3y + byy =
2boy + by andbsy = bay + by = bay + 2b\ = by + 3by, hencé,, = 2b, and then
by = mby for allm € N, A € S with m, A > 0. This shows that the ratig, /A
is independent ok, sayb, /A = c¢. Henceb) = ¢\ for all positive roots. Since the
same clearly holds fok = 0 (and\ = —1 in the special cas® = N) we have
again shown thad\ is inner. O

Remark3. In the special cas€ = N" Theorem 3 was proven by Heinze [He,
Kap. ll, Satz 2.8]. More generally, for semigroups corresponding to a product along
a line it follows from work of Skryabin [Sk, Thm. 3].
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