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Abstract
We prove that the homology classes of closed geodesics associated to subgroups of narrow class groups of real
quadratic fields concentrate around the Eisenstein line. This fits into the framework of Duke’s Theorem and can be
seen as a real quadratic analogue of results of Michel and Liu–Masri–Young on supersingular reduction of CM-
elliptic curves. We also study the level aspect, as well as a homological version of the sup norm problem. Finally,
we present applications to group theory and modular forms
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1. Introduction

Let p be a prime and consider the modular curve 𝑌0 (𝑝) = Γ0(𝑝)\H of level p equipped with the
hyperbolic line element |𝑑𝑧 |/𝑦 and volume element 𝑑𝑥𝑑𝑦/𝑦2, where H = {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑦 > 0}
is the upper half-plane and Γ0(𝑝) ≤ PSL2(Z) is the level p Hecke congruence group1 acting on H by
linear fractional transformations. Given a real quadratic field K of discriminant 𝑑𝐾 > 0 such that p
splits in K, one can associate to an element 𝐴 ∈ Cl+𝐾 of the narrow class group of K an oriented closed
geodesic C𝐴(𝑝) on 𝑌0 (𝑝) (see Section 3.1 for details). In a celebrated paper [Duk88], Duke proved that
the geodesics {C𝐴(𝑝) ⊂ 𝑌0 (𝑝) : 𝐴 ∈ Cl+𝐾 } equidistribute with respect to hyperbolic measure as 𝑑𝐾
tends to infinity, meaning that∑

𝐴∈Cl+𝐾

∫
C𝐴 (𝑝)

𝑓 (𝑧) |𝑑𝑧 |𝑦∑
𝐴∈Cl+𝐾

∫
C𝐴 (𝑝)

1 |𝑑𝑧 |
𝑦

→ 1
vol(𝑌0 (𝑝))

∫
𝑌0 (𝑝)

𝑓 (𝑧) 𝑑𝑥𝑑𝑦
𝑦2 , 𝑑𝐾 →∞, (1.1)

for 𝑓 : 𝑌0 (𝑝) → C smooth of compact support (for further results, see [ELMV12], [MV06] and the
reference therein). In this paper, we study the homological behavior of the oriented closed geodesics –
that is, the map

Cl+𝐾 → 𝐻1(𝑌0 (𝑝),Z), 𝐴 ↦→ [C𝐴(𝑝)] := class of C𝐴(𝑝), (1.2)

from the narrow class group to the integral homology of 𝑌0 (𝑝) (which one can identity with the
abelinization of Γ0(𝑝) modulo torsion) as 𝑑𝐾 → ∞. Our result can be stated as saying that the classes
concentrate around the Eisenstein line. This is a real quadratic analogue of the equidistribution of
supersingular reduction of CM elliptic curves as in [Mic04] (see Section 2). We also study the level
aspect (analogue of [LMY15]) leading to a homological version of the sup norm problem (see Section 6)
which might be of independent interest (for another application, consult [HN22]). We also present
applications of our distribution results – one group theoretic and another concerning nonvanishing of
cycle integrals of modular forms (see Section 1.2). Finally, we refer to Section 1.3 and Remark 1.9
below for geometric interpretations of our results.

1.1. Statement of results

Let p be prime and let g denote the genus of the (noncompact) Riemann surface 𝑌0 (𝑝) satisfying
𝑔 = 𝑝

12 +𝑂 (1). The integral homology

𝐻1(𝑌0 (𝑝),Z) � Z2𝑔+1

sits as a lattice inside the real homology

𝑉𝑝 := 𝐻1(𝑌0 (𝑝),R) � Γ0(𝑝)ab ⊗ R � R2𝑔+1. (1.3)

1Here and throughout we will (contrary to standard conventions) consider the Hecke congruence groups Γ0 (𝑝) as subgroups
of PSL2 (R) .
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We will be interested in how elements of 𝑉𝑝 distribute when projected to the 2𝑔-sphere, by which we
mean the map

𝑉𝑝 − {0} � S(𝑉𝑝) := (𝑉𝑝 − {0})/R>0, 𝑣 ↦→ 𝑣, (1.4)

where we endow S(𝑉𝑝) with the quotient topology of the Euclidean topology of 𝑉𝑝 . We define the
Eisenstein class

𝑣𝐸 (𝑝) ∈ 𝐻1(𝑌0 (𝑝),Z) (1.5)

as the homology class of a simple loop going once around the cusp at∞with positive orientation (which
corresponds to the image of the matrix 𝑇 =

( 1 1
0 1

)
in Γ0(𝑝)ab using the identification (1.3)). This is

indeed a Hecke eigenclass with the same eigenvalues as the weight 2 Eisenstein series, as we will see in
Section 3.2.1. Our first main result is the following.

Theorem 1.1. Let p be a prime and consider a real quadratic field K of discriminant 𝑑𝐾 such that p
splits in K with 𝑝O𝐾 = 𝔭1𝔭2. Consider a subgroup 𝐻 ≤ Cl+𝐾 such that 𝔭1 ∉ 𝐻 and (

√
𝑑𝐾 ) ∉ 𝐻. Then

as 𝑑𝐾 → ∞, the classes of the closed geodesics associated to H concentrate around the line generated
by the Eisenstein element, meaning that∑

𝐴∈𝐻
[𝐶𝐴(𝑝)] −→ −𝑣𝐸 (𝑝), as 𝑑𝐾 →∞ (1.6)

in the quotient topology of S(𝑉𝑝).

This is the real quadratic analogue of a distribution result due to Michel [Mic04] (see also [EOY05],
[Yan08], [Kan09], [LMY15] and [ALMW22]) concerning the map

Cl𝐾 → Eℓℓ𝑠𝑠 (F𝑝2) (1.7)

from the class group of an imaginary quadratic field K (in which p is inert) to the isomorphism classes
of supersingular elliptic curves defined over F𝑝2 (or equivalently over F𝑝). We refer to Section 2 for
a more elaborate explanation of the analogy between the two cases. We note also that our results can
be phrased as a weak convergence statement (see Theorem 5.1) which resembles (1.1). Another useful
analogue to have in mind is the distribution of lattice points on the unit sphere 𝑆2 ⊂ R3 [Duk88]:

1
√
𝑑
{(𝑎, 𝑏, 𝑐) ∈ Z3 : 𝑎2 + 𝑏2 + 𝑐2 = 𝑑} ⊂ 𝑆2,

as 𝑑 → ∞ (which is the basic case of Linnik’s Problem; see [MV06]); in both cases, one rescales the
points to get a convergence of measures to, respectively, the Haar measure and the point measure at
(minus) the Eisenstein element. We have the following useful corollary. In Section 1.3 below, we will
use this to explain the geometric content of our result.

Corollary 1.2. Let K and 𝐻 ≤ Cl+𝐾 be as in Theorem 1.1 and consider a basis B of 𝑉𝑝 containing
𝑣𝐸 (𝑝). Then for 𝑑𝐾 sufficiently large, the 𝑣𝐸 (𝑝)-coordinate of the vector∑

𝐴∈𝐻
[C𝐴(𝑝)] ∈ 𝑉𝑝

in the basis B has strictly maximal absolute value among all coordinates (and in particular is nonzero).

Remark 1.3. The conditions on the level and discriminant in the theorems above are necessary. If either
𝑝O𝐾 = 𝔭1𝔭2 with 𝔭1 ∈ (Cl+𝐾 )2 or (

√
𝑑𝐾 ) ∈ 𝐻, then there is a basis for 𝑉𝑝 (the Hecke basis) such that

the 𝑣𝐸 (𝑝)-coordinate of
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𝐴∈(Cl+𝐾 )2

[C𝐴(𝑝)]

is zero. In Section 3.1, we construct for each p an infinite family of real quadratic fields K that satisfy
the conditions in Theorem 1.1. It is unclear whether the statement should be true for any genus.

Remark 1.4. The restriction to prime level ensures that there are no old forms and also that there is a
unique Eisenstein class in the (co)homology. The main steps in the proofs should, however, work for
general (square-free) level, but the statements would have to be modified accordingly.

1.1.1. Varying the level
Our second result is concerned with the level aspect in the sense that we will obtain a distribution
statement uniform in p. Notice, first of all, that for 𝑣0, 𝑣1, . . . ∈ 𝑉𝑝 − {0}, the convergence

𝑣𝑛 −→ 𝑣0 ∈ S(𝑉𝑝) as 𝑛→∞

is equivalent to �������� 𝑣𝑛||𝑣𝑛 || − 𝑣0
||𝑣0 ||

�������� → 0 as 𝑛→∞ (1.8)

for any (fixed) norm || · || of 𝑉𝑝 . A natural question is to ask for bounds for the left-hand side of (1.8)
uniform in 𝑑𝐾 and p for certain specific norms of𝑉𝑝 . A basis B for𝐻1(𝑌0 (𝑝),R) defines an isomorphism
of vector spaces 𝑉𝑝 � R2𝑔+1 (by mapping B to the standard basis of R2𝑔+1), and by pulling back the
𝐿𝑟 -norm for 1 ≤ 𝑟 ≤ ∞, we obtain a norm on 𝑉𝑝 which we denote by || · ||𝐵,𝑟 (see (7.3) for details).
We notice that one can choose a sequence of bases for each p such that the convergence in (1.8) (with
say 𝑟 = 1) is arbitrarily slow in p. This is parallel to the case of the distribution of CM points on
modular curves in the level aspect as considered in [LMY13]; here, one has to consider ‘compatible’
test functions as the level varies. Similarly, we will consider certain ‘compatible’ bases of 𝐻1 (𝑌0 (𝑝),R).
To define these, we recall (see Section 4.2) that the following matrices generate Γ0(𝑝);

S (𝑝) :=
{( 1 1

0 1
)}
∪

{(
𝑎 −(𝑎𝑎∗+1)/𝑝
𝑝 −𝑎∗

)
: 0 < 𝑎 < 𝑝,

}
, (1.9)

where 0 < 𝑎∗ < 𝑝 is such that 𝑎𝑎∗ ≡ −1 mod 𝑝. We say that a basis B of 𝐻1(𝑌0 (𝑝),R) is a basic
basis of level p if it consists of homology classes containing the oriented geodesic connecting 𝑖 ∈ H and
𝜎𝑖 ∈ H for some 𝜎 ∈ S (𝑝). We think of these bases as analogues of the sets Eℓℓ𝑠𝑠 (F𝑝2) considered in
the imaginary quadratic case (1.7) (see Section 2). Our second main result is the following.

Theorem 1.5. Let p be prime and 𝐵 a basic basis of level p with associated norm || · ||𝐵,∞ (note that
||𝑣𝐸 (𝑝) ||𝐵,∞ = 1). Let K be a real quadratic field of discriminant 𝑑𝐾 with no unit of norm −1 such that
p splits in K with 𝑝O𝐾 = 𝔭1𝔭2 and 𝔭1 ∉ (Cl+𝐾 )2. Then we have�����

�����
∑

𝐴∈(Cl+𝐾 )2 [C𝐴(𝑝)]
||
∑

𝐴∈(Cl+𝐾 )2 [C𝐴(𝑝)] ||𝐵,∞
+ 𝑣𝐸 (𝑝)

�����
�����
𝐵,∞

𝜀 𝑝
2+𝜀𝑑−1/12+𝜀

𝐾 . (1.10)

As above, we get the following corollary.

Corollary 1.6. Let p and K be as above and consider a basic basis 𝐵 ⊂ 𝑉𝑝 of level p containing 𝑣𝐸 (𝑝).
Then for 𝑑𝐾 �𝜀 𝑝

24+𝜀 , the 𝑣𝐸 (𝑝)-coordinate of the vector∑
𝐴∈(Cl+𝐾 )2

[C𝐴(𝑝)] ∈ 𝑉𝑝

in the basis 𝐵 has strictly maximal absolute value among all coordinates (and in particular is nonzero).
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The above result has a very close analogue in the imaginary quadratic case as worked out by Liu–
Masri–Young [LMY15], who studied a level p version of the equidistribution of the map (1.7). One
can identify the finite set Eℓℓ𝑠𝑠 (F𝑝2) = {𝑒1, . . . , 𝑒𝑛} with the connected components of a certain conic
curve 𝑋 𝑝,∞ defined from the quaternion algebra over Q ramified at p and ∞. Thus, {𝑒1, . . . , 𝑒𝑛} defines
a basis for the 0-th homology group 𝐻0 (𝑋 𝑝,∞,Z). In this language, the results of [LMY15] can be
phrased exactly as (1.10) (see (2.5)). We will develop this analogy in greater detail in Section 2.

1.2. Applications

We will now present some applications of our results; one is group theoretic and the other has to do
with nonvanishing of cycle integrals of modular forms.

Consider a prime 𝑝 ≡ −1 mod 12 (for simplicity) and put 𝑛 = 𝑝+1
3 . Then Γ0(𝑝) considered as a

subgroup of PSL2 (Z) is torsion-free with Γ0(𝑝)ab � Z𝑛/2+1, and thus we know by the Kurosh subgroup
theorem that Γ0(𝑝) is a free group on 𝑛/2+1 generators (being a subgroup of PSL2(Z) � Z/2Z∗Z/3Z).
Let

0
1
=
𝑎0
𝑏0

<
𝑎1
𝑏1

< . . . <
𝑎𝑛−1
𝑏𝑛−1

<
𝑎𝑛
𝑏𝑛

=
1
1

be a Farey symbol of level p in the terminology of Kulkarni [Kul91], meaning that 𝑎𝑖/𝑏𝑖 are reduced
fractions such that 𝑎𝑖𝑏𝑖+1 − 𝑎𝑖+1𝑏𝑖 = 1 for all 1 ≤ 𝑖 < 𝑛 and that there is a pairing 𝑖 ↔ 𝑖∗ on 0, . . . , 𝑛− 1
satisfying

𝑏𝑖𝑏𝑖∗ + 𝑏𝑖+1𝑏𝑖∗+1 ≡ 0 mod 𝑝.

Such a symbol always exists, even one that is symmetric around 1/2, by [Kul91, Section 13]. It follows
from [Kul91] and a classical result of Poincaré that Γ0(𝑝) is freely generated by (the images inside
PSL2(Z) of) 𝑇 =

( 1 1
0 1

)
together with the 𝑛/2 = 𝑝+1

6 matrices(
𝑎𝑖∗+1𝑏𝑖+1 + 𝑎𝑖∗𝑏𝑖 −𝑎𝑖𝑎𝑖∗ − 𝑎𝑖+1𝑎𝑖∗+1
𝑏𝑖𝑏𝑖∗ + 𝑏𝑖+1𝑏𝑖∗+1 −𝑎𝑖+1𝑏𝑖∗+1 − 𝑎𝑖𝑏𝑖∗

)
for 𝑖 < 𝑖∗ a pair. (1.11)

The following group theoretic application can be thought of as an analogue of Linnik’s Theorem on the
smallest prime in arithmetic progressions (see also Theorem 2.3 below).

Corollary 1.7. Let 𝑝 ≡ −1 mod 12 be prime and consider a real quadratic field K of discriminant 𝑑𝐾
and (wide) class number one such that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2 such that 𝔭1 does not have a
generator of positive norm. Let (𝑢, 𝑣) be the positive half-integer solution to 𝑢2 − 𝑑𝐾 𝑣2 = 1 such that v
is minimal among all such and let 𝑎, 𝑏, 𝑐 ∈ Z satisfy 𝑏2 − 4𝑎𝑐 = 𝑑𝐾 and 𝑝 |𝑎. Then for 𝑑𝐾 �𝜀 𝑝

24+𝜀 ,
the matrix

(
𝑢+𝑏𝑣 2𝑐𝑣
−2𝑎𝑣 𝑢−𝑏𝑣

)
∈ Γ0 (𝑝) is not contained in the subgroup generated by the matrices (1.11).

The conjugacy class in Γ0(𝑝) of the matrix
(
𝑢+𝑏𝑣 2𝑐𝑣
−2𝑎𝑣 𝑢−𝑏𝑣

)
in the corollary above corresponds exactly

to one of the two oriented closed geodesic associated to the class group of K (see Section 3.1 for details).
We also obtain a related result when the wide class number of K is not one and for general prime levels
p, which is, however, a bit more cumbersome to state. We will refer to Section 8 for details.

The next application is concerned with the nonvanishing of integrals of modular forms over closed
geodesics. Let 𝜎1(𝑛) =

∑
𝑑 |𝑛 𝑑 be the sum of divisors function. For a Hecke eigenform 𝑓 ∈ M2 (𝑝)

with Fourier coefficients 𝑎 𝑓 (𝑛) (at ∞), we have the trivial bound |𝑎 𝑓 (𝑛) |  𝜎1(𝑛). This means that for
any nonzero modular form 𝑓 ∈ M2 (𝑝), we can define

𝑀 𝑓 := inf{𝑐 ≥ 0 : |𝑎 𝑓 (𝑛) | ≤ 𝑐𝜎1(𝑛), ∀𝑛 ≥ 1} ∈ (0,∞),

where again, 𝑎 𝑓 (𝑛) denotes the Fourier coefficients of f at ∞.
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1
2

2
3

1
3

10

𝐵 𝐴−1

𝐴 𝐵−1

𝑇−1 𝑇

Figure 1. The closed geodesic on 𝑌0 (11) associated to the principal class in Q(
√

23).

Corollary 1.8. Let p be prime and let 𝑓 ∈ M2 (𝑝) be a holomorphic modular form of weight 2 and
level p with constant Fourier coefficient equal to 1. Consider a real quadratic field K of discriminant
𝑑𝐾 and (wide) class number one such that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2 such that 𝔭1 does not have a
generator of positive norm. Let C denote the geodesic associated to the class group of K. Then we have
for 𝑑𝐾 �𝜀 (𝑀 𝑓 )12+𝜀 𝑝48+𝜀 that ∫

𝐶
𝑓 (𝑧)𝑑𝑧 ≠ 0.

Notice that the above does not depend on the choice of orientation of C.

1.3. Geometric interpretation

We will now explain the geometric content of Theorem 1.1. Recall that topologically, 𝑌0 (𝑝) is a genus
g curve with two punctures where the genus satisfies 𝑔 = 𝑝

12 +𝑂 (1). We are interested in understanding
the sum of the homology classes of the oriented closed geodesics of the principal genus. The associated
geodesics will travel around𝑌0 (𝑝) in a complicated way but our results can be interpreted as saying that

‘closed geodesics from the principal genus wind around the cusp at infinity a lot’.

To illustrate this, let us consider the simplest nontrivial case 𝑝 = 11 where the genus is one. A
fundamental polygon for 𝑌0 (11) is given by the hyperbolic polygon with vertices ∞, 0, 1

3 ,
1
2 ,

2
3 , 1 as

illustrated in Figure 1. The associated side pairing transformations (forgetting inverses) are

𝑇 =
( 1 1

0 1
)
, 𝐴 =

( 3 −2
11 −7

)
, 𝐵 =

( 4 −3
11 −8

)
,

which define a set of free generators for Γ0(11) (this follows from Poincaré’s Theorem as explained
in Section 4). As illustrated in Figure 2, when viewing 𝑌0 (11) as a double punctured torus, the matrix
T corresponds to a simple loop around the puncture at ∞, and 𝐴, 𝐵 correspond to the loops going
around the two ‘holes’ of the torus. The content of Theorem 1.1 is concerned with the coordinates of
the closed geodesics in the basis {𝑇, 𝐴, 𝐵} in the homology (or equivalently, when the corresponding
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· ·
𝑇

�

𝐴

𝐵

𝐵

𝑇

𝐴

1 − 1 = 0

0 − 2 =−2

0 − 1 =−1

Figure 2. The {𝑇, 𝐴, 𝐵}-coordinates in the homology of𝑌0 (11) of the closed geodesic associated to the
principal class of Q(

√
23).

hyperbolic conjugacy classes are projected to the abelinization of Γ0(11)). Now consider the quadratic
field 𝐾 = Q(

√
23) which has narrow class number two and wide class number one. In this case, we have

associated to the principal class 𝐼 ∈ Cl+𝐾 the conjugacy class of the following matrix:

𝛾𝐼 :=
( 26 −35

55 −74
)
,

and one can check that we have

𝛾𝐼 = 𝐵𝐴
−1𝑇−1𝐵−1𝑇−1

in our basis (see Figure 1). Observe that 𝑌0 (11) is homotopic to a wedge of three circles, and we are
counting the (oriented) number of times the geodesic goes around each of the three circles as illustrated in
Figure 2. We already see in this numerically very small example a tendency towards large T-coordinate.

Remark 1.9. Our results can be interpreted in the context of the classical problem of understanding the
distribution of the projection

𝜋1 (𝑀) � Conj(𝜋1 (𝑀)) � 𝜋1 (𝑀)ab � 𝐻1 (𝑀,Z) (1.12)

for a manifold M. Note that if Γ0(𝑝) is torsion free, then we have 𝜋1 (𝑌0 (𝑝)) � Γ0(𝑝) and𝐻1(𝑌0 (𝑝),Z) �
Γ0(𝑝)ab. For M a compact Riemann surface, there is a 1-to-1 correspondence between conjugacy
classes in 𝜋1 (𝑀) and oriented closed geodesics. Phillips and Sarnak [PS87] obtained an asymptotic
expansion for the number of primitive geodesics of length ≤ 𝑋 with specified image under the map
(1.12). In the same setup, Petridis and Risager [PR08] obtained an equidistribution statement for subsets
𝐴 ⊂ 𝐻1(𝑀,Z) with asymptotic density. Also, Petridis and Risager [PR05] showed that given a splitting
𝐻1 (𝑀,Z) = Z𝑣 ⊕ 𝑉 with 𝑣 ∈ 𝐻1 (𝑀,Z), the v-coordinate of closed geodesics become normally
distributed (when properly normalized) again ordered by the length of the geodesics. See also [NC20],
[Bv22]. From an arithmetic point of view, the ordering by geodesic length is not very natural as it gives
very large weight to discriminants with a large class group (compared to the discriminant), whereas the
ordering by discriminant does not seem to admit any nice geometric description.

2. Supersingular reduction of CM elliptic curves

The result of Duke [Duk88] mentioned in the introduction regarding equidistribution of closed geodesics
has an imaginary quadratic analogue, which amounts to the equidistribution of elliptic curves with
complex multiplication inside the moduli space of elliptic curves over C (i.e., CM points on the modular
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curve; see again [Duk88]). Similarly, our results can be seen as a real quadratic analogue of the
distribution of the supersingular reduction of elliptic curves with complex multiplication as investigated
by many authors [Mic04], [EOY05], [Yan08], [Kan09], [LMY15], [ALMW22]. This analogy between
oriented closed geodesics in homology and supersingular reduction of CM elliptic curves is very natural
and appears, for example, in the recent work of Darmon–Harris–Rotger–Venkatesh [DHRV21].

Let Eℓℓ𝑠𝑠 (F𝑝2) = {𝑒1, . . . , 𝑒𝑛} denote the set of isomorphism classes of supersingular elliptic curves
defined over F𝑝2 . It is known that |Eℓℓ𝑠𝑠 (F𝑝2) | = 𝑝

12 + 𝑂 (1). We endow Eℓℓ𝑠𝑠 (F𝑝2) with the measure
defined by

𝜇𝑝 ({𝑒𝑖}) =
𝑤−1
𝑖∑𝑛

𝑗=1 𝑤
−1
𝑗

, (2.1)

where𝑤𝑖 denotes the size of the endomorphism group of the elliptic curves corresponding to 𝑒𝑖 . LetEℓℓ𝐾
denote the set of isomorphism classes of elliptic curve (defined over Q) with complex multiplication by
the ring of integers of the imaginary quadratic field K with discriminant 𝑑𝐾 < 0 and class group Cl𝐾 .
The set Eℓℓ𝐾 carries a natural Cl𝐾 -action which is free and transitive. If p is inert in K, we have a map

𝑟𝔭 : Eℓℓ𝐾 → Eℓℓ𝑠𝑠 (F𝑝2)

given by taking the mod 𝔭 reduction where 𝔭 is a prime ideal of the Hilbert class field of K lying over
p. The following is [Mic04, Theorem 3].

Theorem 2.1 (Michel). Consider a CM elliptic curve 𝐸 ∈ Eℓℓ𝐾 and a subgroup 𝐻 ≤ Cl𝐾 of index
≤ |𝑑𝐾 |1/2015. Then the orbits 𝐻.𝐸 = {𝑟𝔭 (𝐴.𝐸) ∈ Eℓℓ𝑠𝑠 (F𝑝2) : 𝐴 ∈ 𝐻} become equidistributed as
𝑑𝐾 → −∞ with respect to the measure 𝜇𝑝 given by (2.1).

The proof goes through an identification of Eℓℓ𝑠𝑠 (F𝑝2) with the set of connected components of a
certain conic curve

𝑋 𝑝,∞ := PB×(Q)\PB×(AQ)/PB×(Ẑ)𝐾∞, (2.2)

where B denotes the unique quaternion algebra overQ ramified at p and∞, PB× is its group of projective
units,𝐾∞ denotes a maximal compact torus of PB×(R) and PB×(Ẑ) denotes the projective units of Ẑ⊗O
where O ⊂ B is a maximal order. Using the Jacquet–Langlands correspondence and a formula of Gross,
this reduces the distribution problem to subconvexity bounds of certain Rankin–Selberg L-functions
which is resolved (see [Mic04, Section 5] for details).

In order to set up the analogy with the real quadratic case, we will slightly reformulate the statement
in Theorem 2.1 above. Denote by 𝐻0(𝑋 𝑝,∞,Z) the 0-th (singular) homology group of 𝑋 𝑝,∞ with
integral coefficients (one should picture a copy of Z at each connected component of 𝑋 𝑝,∞), which is
a lattice inside the real homology group 𝐻0(𝑋 𝑝,∞,R). Note that both of these abelian groups carry a
natural action of the Hecke algebra coming from the description in terms of quaternion algebras (see,
for example, [BD96, Section 1.5]), and as such is isomorphic to the space of modular forms M2(𝑝) of
level p and weight 2. We have a natural basis of 𝐻0 (𝑋 𝑝,∞,Z) of geometric nature corresponding to the
classes 𝑒1, . . . , 𝑒𝑛 (using suggestive notation) associated to each connected component of 𝑋 𝑝,∞. In this
basis, the Eisenstein element is the following:

𝑒0 :=
𝑛∑
𝑖=1

𝑤−1
𝑖 𝑒𝑖 ,

meaning that 𝑇ℓ𝑒0 = (ℓ + 1)𝑒0 for ℓ ≠ 𝑝 prime and 𝑇ℓ the ℓ-th Hecke operator. Using the above
identifications with supersingular elliptic curves and after fixing an elliptic curve 𝐸 ∈ Eℓℓ𝐾 , we get a
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map

𝑟𝑝 : Cl𝐾 → {𝑒1, . . . , 𝑒𝑛} ⊂ 𝐻0 (𝑋 𝑝,∞,Z) ⊂ 𝐻0(𝑋 𝑝,∞,R), 𝐴 ↦→ 𝑟𝔭 (𝐴.𝐸), (2.3)

which will serve as an imaginary quadratic analogue of the map (1.2). We will now consider Theorem 2.1
as a statement about convergence (with respect to the standard topology) on the (𝑛 − 1)-sphere which
we identity with S(𝑉𝑝,∞) := (𝑉𝑝,∞ − {0})/R>0 equipped with the quotient toplogy where 𝑉𝑝,∞ :=
𝐻0 (𝑋 𝑝,∞,R) � R𝑛 (equipped with the Euclidean topology). As above for 𝑣 ∈ 𝑉𝑝,∞ − {0}, we denote
by 𝑣 ∈ S(𝑉𝑝,∞) the image under the natural projection 𝑉𝑝,∞ − {0} � S(𝑉𝑝,∞). We can then recast the
equidistribution statement of Michel as follows.
Theorem 2.2 (‘Vector space’-version of Theorem 2.1). Let 𝑝 > 2 be prime and let K be an imaginary
quadratic field of discriminant 𝑑𝐾 < 0 such that p is inert in K. Consider a subgroup 𝐻 ≤ Cl𝐾 of index
≤ |𝑑𝐾 |1/2015 and a coset 𝐶𝐻 ⊂ Cl𝐾 . Then we have as 𝑑𝐾 → −∞ that∑

𝐴∈𝐶𝐻

𝑟𝑝 (𝐴) −→ 𝑒0 (2.4)

in the standard topology of S(𝑉𝑝,∞).
We will now show that this is equivalent to Theorem 2.1. Let 𝐵 = {𝑒1, . . . , 𝑒𝑛} be the standard basis

for 𝑉𝑝,∞ which defines an isomorphism 𝑉𝑝,∞ � R𝑛. As explained above, we get a norm || · ||𝐵,1 on
𝑉𝑝,∞ by pulling back the 𝐿1-norm in the standard basis of R𝑛. Now recall that the convergence on the
(𝑛 − 1)-sphere S(𝑉𝑝,∞) is equivalent to the convergence statement (1.8) using, for example, the norm
|| · ||𝐵,1. Notice that we have �����

����� ∑
𝐴∈𝐶𝐻

𝑟𝑝 (𝐴)

�����
�����
𝐵,1

= |𝐻 |, ||𝑒0 ||𝐵,1 =
𝑛∑
𝑖=1

𝑤−1
𝑖 ,

recalling that the 𝑒𝑖-coordinate of 𝑒0 is equal to 𝑤−1
𝑖 . Now the convergence in (1.8) implies that the

𝑒𝑖-coordinates of
∑

𝐴∈𝐶𝐻 𝑟𝑝 (𝐴) converge to those of 𝑒0 (both normalized). This recovers the statement
of Michel as in Theorem 2.1 up to the fact that Theorem 2.2 does not see that 𝑟𝑝 (𝐴) is always equal to
one of the vectors 𝑒1, . . . , 𝑒𝑛.

2.1. Supersingular reduction of elliptic curves of varying level

It is natural to ask what happens if we let p vary with 𝑑𝐾 as has been considered by Liu–Masri–Young
[LMY15]. In the above terminology, they consider the convergence with respect to the basis correspond-
ing to the connected components {𝑒1, . . . , 𝑒𝑛} of 𝑋 𝑝,∞. Then [LMY15, Theorem 1.1] amounts to the
following: �������� ∑

𝐴∈Cl𝐾 𝑟𝑝 (𝐴)
||
∑

𝐴∈Cl𝐾 𝑟𝑝 (𝐴) ||𝐵,1
− 𝑒0
||𝑒0 ||𝐵,1

��������
𝐵,∞

𝜀 𝑝
1/8+𝜀 |𝑑𝐾 |−1/16+𝜀 , (2.5)

where again, || · ||𝐵,1 and || · ||𝐵,∞ denote the pullback of, respectively, the 𝐿1-norm and sup norm under
the isomorphism 𝑉𝑝,∞ � R𝑛 defined by 𝐵 = {𝑒1, . . . , 𝑒𝑛}. We note that the statement (2.5) is exactly
parallel to Theorem 1.5. Translating back to the language of elliptic curves, (2.5) implies the following
analogue of Linnik’s Theorem on the smallest prime in arithmetic progressions.
Theorem 2.3 (Liu–Masri–Young). The reduction map 𝑟𝔮 : Eℓℓ𝐾 → Eℓℓ𝑠𝑠

𝑝2 is surjective for
|𝑑𝐾 | �𝜀 𝑝

18+𝜀 .
We think of Corollary 1.7 (and more generally Corollary 8.1 below) as a real quadratic analogue of

the above.
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3. Arithmetic background

In this section, we will introduce some basic facts about, respectively, oriented closed geodesics asso-
ciated to class groups of real quadratic fields and (co)homology of modular curves.

3.1. Real quadratic fields and closed geodesics

We will refer to [Pop06] and [Dar94] for an in-depth account of the following material. Let K be a real
quadratic extension of Q of discriminant 𝑑𝐾 > 0. Let p be a prime which splits in K and fix throughout
a residue 𝑟 mod 2𝑝 such that 𝑟2 ≡ 𝑑𝐾 mod 4𝑝. Then we have the following equality of ideals:

𝑝O𝐾 =

[
𝑝,
𝑟 −

√
𝑑𝐾

2

] [
𝑝,
𝑟 +

√
𝑑𝐾

2

]
,

where we use the following notation for 𝛼, 𝛽 ∈ 𝐾:

[𝛼, 𝛽] := Z𝛼 + Z𝛽 ⊂ 𝐾. (3.1)

In other words, [𝑝, 𝑟±
√
𝑑𝐾

2 ] are the two prime ideals of O𝐾 lying over p.
We let Cl+𝐾 denote the narrow class group of K (i.e., fractional ideals modulo principal ideals

generated by elements of positive norms). Below, when the discriminant 𝑑𝐾 is clear from context, we
let 𝐼 ∈ Cl+𝐾 denote the class containing the principal fractional ideal (1) = O𝐾 ⊂ 𝐾 and 𝐽 ∈ Cl+𝐾 denote
the class containing the different (

√
𝑑𝐾 ) =

√
𝑑𝐾O𝐾 ⊂ 𝐾 . Observe that for fundamental discriminants

divisible by a prime 𝑞 ≡ 3 mod 4, there exists no unit with norm −1 (as −1 is not a quadratic residue
modulo q) which implies that 𝐽 ≠ 𝐼. In this case, a principal ideal belongs to the class J exactly if it has
a generator with negative norm.

We will now show the following result, which is closely related to the conditions appearing in our
main results as we will see below.

Proposition 3.1. Let p be an odd prime. Then there exists infinitely many positive fundamental discrim-
inants d such that 𝐽 ≠ 𝐼 and [𝑝, 𝑟−

√
𝑑

2 ] ∈ 𝐽 inside Cl+𝐾 with 𝐾 = Q(
√
𝑑).

Proof. Pick an odd prime 𝑞 ≡ 3 mod 4 such that −𝑝 is a quadratic residue mod q. Then by simple
considerations about quadratic residues, there is a residue 𝑡 mod 8𝑞 such that

𝑞 |𝑡2 + 𝑝, 𝑞2� |𝑡2 + 𝑝 and (𝑡2 + 𝑝 mod 16) ∈ {1, 5, 8, 9, 12, 13},

meaning in particular that 𝑡2 + 𝑝 ≡ 0 or 1 mod 4. Now for each 𝑛 ≡ 𝑡 mod 8𝑞, there is a unique positive
fundamental discriminant 𝑑 > 0 and integer 𝑚 > 0 such that 𝑑𝑚2 = 𝑛2 + 𝑝. By construction, we have
𝑞 |𝑑, and thus 𝐽 ≠ 𝐼 inside Cl+𝐾 where 𝐾 = Q(

√
𝑑). Furthermore, we have the factorization

−𝑝 = (𝑛 −
√
𝑑𝑚) (𝑛 +

√
𝑑𝑚),

which means that [𝑝, 𝑟−
√
𝑑

2 ] is a principal ideal generated by 𝑛 ±
√
𝑑𝑚 (for some choice of sign ±). By

construction, the norm of 𝑛±
√
𝑑𝑚 is negative (and equal to−𝑝). By the above, this implies [𝑝, 𝑟−

√
𝑑

2 ] ∈ 𝐽
in Cl+𝐾 as wanted. �

Now it follows that if 𝐽 ≠ 𝐼, then 𝐽 ∉ (Cl+𝐾 )2. Thus, for 𝑝, 𝑑 as in Proposition 3.1 and each subgroup
𝐻 ≤ (Cl+𝐾 )2, we have [𝑝, 𝑟−

√
𝑑

2 ] ∉ 𝐻. This gives plenty of examples for which Theorems 1.1 and 1.5
apply, recalling that {𝔭1,𝔭2} = {[𝑝, 𝑟±

√
𝑑

2 ]}.
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3.1.1. Closed geodesics and class groups
Let p be prime and K a real quadratic field of discriminant 𝑑𝐾 such that p splits in K. Let 𝑟 mod 2𝑝
as above be such that 𝑟2 ≡ 𝑑𝐾 mod 4𝑝. Denote by Q𝐾,𝑝 (suppressing r in the notation) the set of all
integral binary quadratic form

𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2

of discriminant 𝑏2 − 4𝑎𝑐 = 𝑑𝐾 and level p, meaning that 𝑎 ≡ 0 mod 𝑝 and 𝑏 ≡ 𝑟 mod 2𝑝. The group
Γ0(𝑝) acts naturally on Q𝐾,𝑝 by coordinate transformation. It is a classical fact, essentially due to Gauß,
that there is a natural bijection (depending on the choice of 𝑟 mod 𝑝)

Cl+𝐾
∼−→ Γ0(𝑝)\Q𝐾,𝑝 . (3.2)

When the level is trivial, the above bijection is induced by mapping 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 to the narrow ideal
class of the fractional ideal [1, −sign(𝑎)𝑏+

√
𝑑𝐾

2 |𝑎 | ] (using the notation (3.1)).
Given an integral binary quadratic form 𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 of discriminant 𝑑𝐾 and level p,

we associate the following matrix:

𝛾𝑄 :=
(
𝑢 + 𝑏𝑣 2𝑐𝑣
−2𝑎𝑣 𝑢 − 𝑏𝑣

)
∈ Γ0(𝑝), (3.3)

where 𝑢, 𝑣 are positive half-integers satisfying Pell’s equation 𝑢2 − 𝑑𝐾 𝑣2 = 1 and such that v is minimal
among all such solutions (i.e., the fundamental positive unit of K is 𝜖𝐾 = 𝑢 + 𝑣

√
𝑑𝐾 ).

For 𝐴 ∈ Cl+𝐾 , we denote by C𝐴(𝑝) the oriented closed geodesic on 𝑌0 (𝑝) obtained by projecting the
oriented geodesic connecting 𝑧𝑄 and 𝛾𝑄𝑧𝑄, where

𝑧𝑄 :=
−sign(𝑎)𝑏 + 𝑖

√
𝑑𝐾

2|𝑎 |

and 𝑄 ∈ Q𝐾,𝑝 corresponds to A under the isomorphism (3.2) (the image in 𝑌0 (𝑝) is independent of the
choice of representative Q).

3.2. (Co)homology of modular curves

Here and throughout, we will consider matrices in SL2(R) as elements of PSL2(R) without further
mentioning. Let p be prime and consider the Hecke congruence group (or more precisely, its projection
to PSL2(R))

Γ0(𝑝) := {
(
𝑎 𝑏
𝑐 𝑑

)
∈ PSL2 (Z) : 𝑝 |𝑐}.

Let

𝑌0 (𝑝) := Γ0(𝑝)\H, 𝑋0 (𝑝) := 𝑌0 (𝑝) = 𝑌0 (𝑝) ∪ Γ0(𝑝)\P1 (Q)

be resp., the modular curve of level p and its compactification which is a compact Riemann surface of
genus 𝑔 = 𝑝

12 +𝑂 (1) (see, for example, [Shi94, Proposition 1.40]). We can consider the integral singular
homology group [Hat02, Chapter 2]

𝐻1 (𝑌0 (𝑝),Z) � Z2𝑔+1,

which sits as a lattice inside the real homology

𝐻1 (𝑌0 (𝑝),R) � R2𝑔+1.
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We will be interested in the distribution of oriented closed geodesics inside the lattice 𝐻1 (𝑌0 (𝑝),Z).
We have the cap product pairing

〈·, ·〉 : 𝐻1(𝑌0 (𝑝),R) × 𝐻1(𝑌0 (𝑝),R) → R (3.4)

between real homology and cohomology which identifies 𝐻1(𝑌0 (𝑝),R) with the linear dual
𝐻1 (𝑌0 (𝑝),R)∗. Given a basis B of 𝐻1(𝑌0 (𝑝),R), we denote by 𝐵∗ ⊂ 𝐻1 (𝑌0 (𝑝),R) the dual basis
of B with respect to the cap product pairing as in (3.4).

Recall that the de Rham isomorphism gives a description of 𝐻1 (𝑌0 (𝑝),R) in terms of real valued
harmonic 1-forms on 𝑌0 (𝑝). Any such 1-form is a linear combination of forms of the type

𝜔 𝑓 = 2𝜋𝑖 𝑓 (𝑧)𝑑𝑧, 𝜔 𝑓 = 2𝜋𝑖 𝑓 (𝑧)𝑑𝑧,

where 𝑓 ∈ M2 (𝑝) is a weight 2 and level p holomorphic form (not necessarily cuspidal). We also have
a surjective map

Γ0(𝑝) � 𝐻1(𝑌0 (𝑝),Z), 𝛾 ↦→ {𝑧, 𝛾𝑧}, (3.5)

where 𝑧 ∈ H (the class does not depend on the choice of z), and we are using the following notation for
𝑧1, 𝑧2 ∈ H:

{𝑧1, 𝑧2} := [class of the oriented geodesic connecting𝑧1 and 𝑧2] ∈ 𝐻1(𝑌0 (𝑝),R), (3.6)

which defines an element of the real homology 𝐻1 (𝑌0 (𝑝),R) via integration against 1-forms. The map
(3.5) induces an isomorphism

Γ0(𝑝)ab/(Γ0 (𝑝)ab)tor � 𝐻1 (𝑌0 (𝑝),Z). (3.7)

We note that for a closed oriented geodesic C𝐴(𝑝) as in the previous section, the homology class
[C𝐴(𝑝)] ∈ 𝐻1 (𝑌0 (𝑝),Z) corresponds exactly to the image of (any) 𝛾𝑄 as in (3.3) under the map (3.5).
Using the above identifications, the cap product pairing is induced by the map

Γ0(𝑝) ×M2 (𝑝) � (𝛾, 𝑓 ) ↦→
∫ 𝛾𝑧

𝑧
𝜔 𝑓 ,

for any 𝑧 ∈ H.
The natural pullback map induced by inclusion fits into a short exact sequence of R-vector spaces

0 → 𝐻1 (𝑋0 (𝑝),R) → 𝐻1 (𝑌0 (𝑝),R) → R→ 0, (3.8)

using here that we have two cusps (which, as we will see, implies that the Eisenstein space of weight
2 is one-dimensional). This identifies 𝐻1(𝑋0 (𝑝),R) with the parabolic classes in 𝐻1(𝑌0 (𝑝),R) (i.e.,
classes which vanish on all parabolic elements of Γ0(𝑝) using the above pairing). Under the de Rham
isomorphism, the parabolic classes correspond to 1-forms obtained from holomorphic cusp(!) forms of
weight 2 and level p (see, for example, [Shi94, Section 5]). Similarly, we have the pushforward map
𝐻1 (𝑌0 (𝑝),R) → 𝐻1(𝑋0 (𝑝),R) whose kernel is exactly given by the image of the parabolic elements of
Γ0 (𝑝) ⊗ R inside 𝐻1 (𝑌0 (𝑝),R) under the map (3.5).

3.2.1. Hecke operators
Due to the arithmetic nature of Γ0(𝑝), we have a family of commuting linear operators acting on all of
the above-mentioned (co)homology groups, namely the Hecke operators. The Hecke action is induced
by the following: on the space of holomorphic forms M2(𝑝) of weight 2 and level p, the n-th Hecke

https://doi.org/10.1017/fms.2023.85 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.85


Forum of Mathematics, Sigma 13

operator 𝑇𝑛 acts by (see, for example, [IK04, (14.46)])

𝑇𝑛 𝑓 (𝑧) :=
1
𝑛

∑
𝑎𝑑=𝑛,
(𝑎,𝑝)=1

𝑎2
∑

0≤𝑏<𝑑
𝑓

(
𝑎𝑧 + 𝑏
𝑑

)
, (3.9)

the Fricke involution𝑊𝑝 acts as

𝑊𝑝 𝑓 (𝑧) := 𝑝−1𝑧−2 𝑓 (−1/(𝑝𝑧)) (3.10)

and we also have the involution 𝜄 given by

𝜄 𝑓 (𝑧) := 𝑓 (−𝑧), (3.11)

defined for 𝑓 ∈ M2(𝑝) ⊕ M2 (𝑝). Notice that, with this normalization, the Ramanujan conjecture
amounts to the bound ≤ 𝑑 (𝑛)𝑛1/2 for the Hecke eigenvalues. See also [Shi94, Section 5] for an intrinsic
definition in terms of group cohomology using double cosets. Similarly, we can define an action on the
homology groups by (using the notation (3.6))

𝑇𝑛{𝑧1, 𝑧2} :=
∑
𝑎𝑑=𝑛,
(𝑎,𝑝)=1

∑
0≤𝑏<𝑑

{
𝑎𝑧1 + 𝑏
𝑑

,
𝑎𝑧2 + 𝑏
𝑑

}
, (3.12)

𝑊𝑝{𝑧1, 𝑧2} := {−1/(𝑝𝑧1),−1/(𝑝𝑧2)} (3.13)

and

𝜄{𝑧1, 𝑧2} := {−𝑧1,−𝑧2}. (3.14)

One can now check that all of these operators are pairwise adjoint with respect to the cap product pairing
as above. Furthermore, it can be shown that all of these linear operators commute, and thus we can find
a common eigen-basis. Explicitly, such a Hecke eigen-basis for 𝐻1(𝑌0 (𝑝),R) is given by

𝐵Hecke(𝑝) := {𝜔𝜖
𝑓 : 𝑓 ∈ B𝑝 , 𝜖 ∈ {±}} ∪ {𝜔𝐸 (𝑝)}, (3.15)

where

𝜔±𝑓 :=
2𝜋𝑖 𝑓 (𝑧)𝑑𝑧 ± 2𝜋𝑖 𝑓 (𝑧)𝑑𝑧

1 + 𝑖 ± (1 − 𝑖) ∈ 𝐻1(𝑌0 (𝑝),R),

with B𝑝 := { 𝑓1, . . . , 𝑓𝑔} ⊂ S2 (𝑝) a basis of Hecke normalized (i.e., the first Fourier coefficient is 1)
holomorphic cuspidal eigen forms of weight 2 and level p. And

𝜔𝐸 (𝑝) := 𝐸2, 𝑝 (𝑧)𝑑𝑧 ∈ 𝐻1 (𝑌0 (𝑝),R) (3.16)

is the normalized Eisenstein class defined from the weight 2 Eisenstein series of level p:

𝐸2, 𝑝 (𝑧) :=
𝑝𝐸2 (𝑝𝑧) − 𝐸2 (𝑧)

𝑝 − 1
=
𝑝𝐸∗2 (𝑝𝑧) − 𝐸

∗
2 (𝑧)

𝑝 − 1
= 1 + 24

𝑝 − 1
𝑒2𝜋𝑖𝑧 + . . . ,
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where 𝐸2 denotes the the weight 2 Eisenstein series of level 1 and 𝐸∗2 the modified Eisenstein series
given by

𝐸2 (𝑧) := 1 − 24
∑
𝑛≥1

𝜎1(𝑛)𝑒2𝜋𝑖𝑛𝑧 = 𝐸∗2 (𝑧) +
3
𝜋𝑦
. (3.17)

Here, 𝜎1(𝑛) =
∑
𝑑 |𝑛 𝑑 is the sum of divisors function. One obtains a Hecke eigen basis for the homology

as the dual basis of 𝐵Hecke(𝑝) with respect to the cap product pairing (3.4) which we denote by

𝐵Hecke(𝑝)∗ := {𝑣±𝑓 : 𝑓 ∈ B𝑝 ,±} ∪ {𝑣𝐸 (𝑝)} ⊂ 𝐻1 (𝑌0 (𝑝),R), (3.18)

where 〈𝑣±𝑓 , 𝜔
±
𝑓 〉 = 1 for 𝑓 ∈ B𝑝 and 〈𝑣𝐸 (𝑝), 𝜔𝐸 (𝑝)〉 = 1. Since the constant Fourier coefficient of 𝐸2, 𝑝

is 1, one sees that, in fact,

𝑣𝐸 (𝑝) = {𝑖, 𝑖 + 1} ∈ 𝐻1 (𝑌0 (𝑝),Z), (3.19)

with notation as in (3.6). In other words, 𝑣𝐸 (𝑝) is the (normalized) Eisenstein class in homology
appearing in Theorem 1.1 which geometrically is the class of a simple loop going around the cusp at ∞.

We have the following classical formula for 𝛾 ∈ PSL2 (Z) (see, for example, [DIT18, (55)]):∫ 𝛾𝑧

𝑧
𝐸∗2 (𝑧)𝑑𝑧 = Ψ(𝛾),

where

Ψ(
(
𝑎 𝑏
𝑐 𝑑

)
) :=

{
𝑎+𝑑
𝑐 − 12 sign(𝑐)𝑠(𝑎, 𝑐) − 3 sign(𝑐(𝑎 + 𝑑)), 𝑐 ≠ 0

𝑏
𝑑 , 𝑐 = 0

is the Rademacher symbol with

𝑠(𝑎, 𝑐) :=
𝑐∑
𝑛=1

(( 𝑛𝑐 )) ((
𝑛𝑎
𝑐 )),

the classical Dedekind sum with

((𝑥)) =
{
𝑥 − �𝑥� − 1/2, 𝑥 ∉ Z

0, 𝑥 ∈ Z

the sawtooth function. Notice that Ψ(𝛾) does not depend on the representative of 𝛾 ∈ PSL2(Z) as should
be the case. This implies the following key formula for 𝛾 ∈ Γ0 (𝑝):

〈{𝑧, 𝛾𝑧}, 𝜔𝐸 (𝑝)〉 =
Ψ(𝛾′) − Ψ(𝛾)

𝑝 − 1
, (3.20)

where

𝛾′ =
(
𝑝 0
0 1

)
𝛾
(

1/𝑝 0
0 1

)
=

(
𝑎 𝑏𝑝
𝑐/𝑝 𝑑

)
∈ PSL2 (Z),

with 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
. Using the trivial bound Ψ(𝛾)  |𝑎+𝑑 |

𝑐 + 𝑐 (for 𝑐 > 0), we get the following useful
estimate:

〈{𝑧, 𝛾𝑧}, 𝜔𝐸 (𝑝)〉 
𝑝 |𝑎 + 𝑑 | + 𝑐2

𝑝𝑐
, 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ0(𝑝), 𝑐 > 0. (3.21)
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Recall the short exact sequence (3.8) above. A Hecke-equivariant splitting is given by mapping 1 ∈ R
to the Eisenstein class 𝜔𝐸 (𝑝) = 𝐸2, 𝑝 (𝑧)𝑑𝑧 (this fits into a general framework due to Franke [Fra98]).
This defines an isomorphism

𝐻1(𝑌0 (𝑝),R) � 𝐻1(𝑋0 (𝑝),R) ⊕ R𝜔𝐸 (𝑝), (3.22)

and we will denote the projection to the ‘cuspidal subspace’ (which we will identify with 𝐻1 (𝑋0 (𝑝),R))
with respect to this splitting by

Pcusp : 𝐻1 (𝑌0 (𝑝),R) → 𝐻1(𝑋0 (𝑝),R) ⊂ 𝐻1(𝑌0 (𝑝),R), (3.23)

which is explicitly given by

Pcusp𝜔 = 𝜔 − 〈𝑣𝐸 (𝑝), 𝜔〉𝜔𝐸 (𝑝),

where 𝑣𝐸 (𝑝), 𝜔𝐸 (𝑝) are the Eisenstein classes defined above.

4. Background on Fuchsian groups

In this section, we will review some useful facts regarding the geometry of fundamental polygons of
Fuchsian groups. We will refer to [Bea83, Section 9] for an in-depth treatment.

4.1. Fundamental polygons

Let Γ ⊂ PSL2 (R) be a Fuchsian subgroup of the first kind (i.e., a discrete and cofinite subgroup of
PSL2(R)). A fundamental domain for Γ is a locally finite domain F ⊂ H such that
1. For any 𝑧 ∈ H, we have 𝛾𝑧 ∈ F for some 𝛾 ∈ Γ.
2. If 𝑧1, 𝑧2 ∈ F are Γ-equivalent, then 𝑧1 = 𝑧2 or 𝑧1, 𝑧2 ∈ 𝜕F .
We say that F is a fundamental polygon for Γ if F is furthermore (hyperbolically) convex with a
piecewise geodesic boundary. We define a side of F as a nonempty subset of the shape 𝛾F ∩ F with
Id ≠ 𝛾 ∈ Γ. We define a vertex of F as a non-empty subset of the shape 𝛾1F ∩ 𝛾2F ∩ F with
Id, 𝛾1, 𝛾2 ∈ Γ pairwise distinct. It can be shown that a fundamental polygon F has an even number of
sides which are pairwise Γ-equivalent, and ΓF gives a tessellation ofH. The set of elements identifying
sides of F are called the side pairing transformations associated to F which we denote by S (F) ⊂ Γ
(which formally is a multiset if there are order two elements in Γ). Given a side L of F we refer to the
side pairing transformation associated to the side L as the element 𝜎 ∈ S (F) such that 𝜎−1𝐿 is also
a side of F . Similarly we say that 𝜎 is the side pairing transformation associated to the side 𝛾𝐿 of the
translate 𝛾F for each 𝛾 ∈ Γ.

It is known that S (F) generates Γ for any fundamental polygon F , and it is a fundamental fact that
one can understand the relation between the elements of S (F) from the geometry of a fundamental
polygon and vice versa (see Lemma 4.3). A simple but key incarnation is the following.
Proposition 4.1. Let F be a fundamental polygon for a discrete and co-finite subgroup Γ ⊂ PSL2(R).
Consider a sequence of consecutive Γ-translates of F:

F , 𝛾1F , . . . , 𝛾𝑛F .

Then

𝛾𝑛 = 𝜎1𝜎2 · · ·𝜎𝑛,

where 𝜎𝑖 ∈ S (F) denotes the side pairing transformation associated to the side shared between 𝛾𝑖−1F
and 𝛾𝑖F (here, we put 𝛾0 = Id).
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Proof. Note that the side of F shared with 𝛾1F will exactly have associated 𝜎1 = 𝛾1 ∈ S (F). Now if
the side shared between 𝛾1F and 𝛾2F has associated 𝜎2 ∈ S (F), then we have

𝛾2F = (𝜎1𝜎2𝜎
−1
1 ) (𝜎1F) = 𝜎1𝜎2F .

Continuing like this, we get

𝛾𝑛F = 𝜎1 · · ·𝜎𝑛F ,

and since 𝛾F = 𝛾′F implies 𝛾 = 𝛾′ ∈ Γ by condition (2), we conclude the wanted equality. �

A first application of Proposition 4.1 is the following slight reformulation.

Corollary 4.2. Let 𝑐 : [0, 1] → H be a continuous, injective curve with 𝑐(0) = 𝑧 ∈ F and 𝑐(1) = 𝛾𝑧 for
some 𝛾 ∈ Γ. Assume that 𝑐([0, 1]) does not intersect the set of Γ-translates of the vertices of F . Then
one can code the element 𝛾 in the following way; let 𝜎1, . . . , 𝜎𝑛 ∈ S (F) be the (ordered) sequence of
side pairing transformations associated to the intersection between the curve c and Γ-translates of the
sides of F . Then one has

𝛾 = 𝜎1 · · ·𝜎𝑛.

When 𝑐([0, 1]) is a closed geodesic (when projected to Γ\H), this is known as geometric coding of
geodesics (see [Kat96] for a nice treatment).

As a second consequence, we note that if the sequence of translates ‘loops around’, meaning that
𝛾𝑛 = 1, then one obtains a relation between the side pairing transformations 𝑆(Γ). This yields immedi-
ately that if two sides of F are paired, then the associated elements in S (F) are inverses. We call these
the inverse relations of F . We also get relations by looping around the vertices of F which we will now
make precise. Observe that the embedding F ⊂ H defines an orientation on the boundary 𝜕F . Let 𝐿1
be a side of F with leftmost (wrt. the orientation) vertex 𝑣1 and let 𝜎1 ∈ S (F) be the associated side
pairing transformation. Let 𝐿2 be the side of F different from 𝜎−1

1 𝐿1 containing the vertex 𝑣2 = 𝜎−1
1 𝑣

and let 𝜎2 ∈ S (F) be the associated side pairing transformation. Continuing like this yields a periodic
sequence of pairs

(𝐿1, 𝑣1), (𝐿2, 𝑣2), . . . ,

with minimal period 𝑚 ≥ 1, say, which we call a cycle of F . It is now clear that 𝜎1𝜎2 . . . 𝜎𝑚 fixes 𝑣1.
Thus, if we put 𝜈 = |Γ𝑣1 | (i.e., the size of the stabilizer of 𝑣1 inside Γ), then we get the following relation
on the side pairing transformations:

(𝜎1𝜎2 . . . 𝜎𝑚)𝜈 = 1,

where if 𝜈 = ∞ (i.e., 𝑣1 is a boundary vertex), this is understood as the empty relation. Notice that the
relation does not depend on the choice of starting point (𝐿1, 𝑣1). We call these the cycle relations of F ,
and we have the following key theorem of Poincaré; see [Mas71] for a proof.

Lemma 4.3 (Poincaré’s Theorem). The side pairing transformations S (F) generate Γ, and the inverse
and cycle relations give a complete set of relations for S (F).

Secondly, it is clear that each side appears in exactly one cycle. Thus, we obtain the following useful
fact.

Lemma 4.4 (cf. Lemma 5.3 of [Voi09]). Each side pairing transformation appears exactly once in a
cycle relation.

https://doi.org/10.1017/fms.2023.85 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.85


Forum of Mathematics, Sigma 17

4.1.1. Bounding coordinates of side pairing transformations
Now we consider the image of the inverse and cycle relations when mapped to𝑉𝑝 under the composition
of maps:

Γ0 (𝑝) � Γ0 (𝑝)ab � 𝐻1(𝑌0 (𝑝),Z) ↩→ 𝑉𝑝 = 𝐻1(𝑌0 (𝑝),R) � R2𝑔+1.

Notice that since𝑉𝑝 is torsion-free, we can divide the relations by 𝜈 so that all coefficients in the relations
are contained in {−1, 0, 1}. By killing the inverse relations, this yields a system of linear relations with
a variable for each pair {𝜎, 𝜎−1} ⊂ S (F) of side pairing transformations so that each such variable
appears once with positive and once with negative sign (which follows from Lemma 4.4).

Let 𝐵 = {𝑣0, . . . , 𝑣2𝑔} ⊂ 𝑉𝑝 be a basis of the real homology corresponding to side pairing transfor-
mations 𝜎 ∈ S (F) under the surjection (3.5). Combining the cycle relations with the choice of B gives
rise to a system of linear equations in 𝑉𝑝:

LF ,𝐵 (𝑥0, . . . , 𝑥𝑛) =
⎧⎪⎨⎪⎩

∑
0≤𝑖≤𝑛

𝑎𝑖𝑘𝑥𝑖 +
∑

0≤ 𝑗≤2𝑔
𝑏 𝑗𝑘𝑣 𝑗 = 0

⎫⎪⎬⎪⎭0≤𝑘≤𝐾

,

where 𝑥0, . . . , 𝑥𝑛 are variables, one for each pair {𝜎, 𝜎−1} ⊂ S (F) not corresponding to an element of
B. Lemmata 4.3 and 4.4 translate to two key properties:

1. LF ,𝐵 has exactly one solution (𝑥0, . . . , 𝑥𝑛) ∈ (𝑉𝑝)𝑛+1.
2. For any subset 𝐴 ⊂ {0, . . . , 𝐾}, and any indices 0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 2𝑔, we have∑

𝑘∈𝐴
𝑎𝑖𝑘 ,

∑
𝑘∈𝐴

𝑏 𝑗𝑘 ∈ {−1, 0, 1}.

We have the following general result about such systems of linear equations.

Lemma 4.5. Let

L(𝑥0, . . . , 𝑥𝑛) =
⎧⎪⎨⎪⎩

∑
0≤𝑖≤𝑛

𝑎𝑖𝑘𝑥𝑖 +
∑

0≤ 𝑗≤2𝑔
𝑏 𝑗𝑘𝑣 𝑗 = 0

⎫⎪⎬⎪⎭0≤𝑘≤𝐾

be a system of linear equations in 𝑉𝑝 satisfying (1) and (2).
Then the unique solution (𝑥0, . . . , 𝑥𝑛) ∈ (𝑉𝑝)𝑛+1 satisfies

𝑥𝑖 =
∑

0≤ 𝑗≤2𝑔
𝑐𝑖 𝑗𝑣 𝑗 , 𝑐𝑖 𝑗 ∈ {−1, 0, 1}, (4.1)

for all 0 ≤ 𝑖 ≤ 𝑛.

Proof. We proceed by induction on 𝐾 + 1 ≥ 0 (i.e., the number of equations). If 𝐾 + 1 = 0, then
there is nothing to prove. Now assume the claim is known for systems of 𝐾 ′ < 𝐾 + 1 equations. We
start by making the following reductions. We may assume that all equations contain a variable (i.e.,
∀𝑘∃𝑖 : 𝑎𝑖𝑘 ≠ 0), since otherwise we can remove such an equation. Furthermore, we may assume that
there are some variables appearing exactly once (i.e., ∃𝑖 : |{𝑘 : 𝑎𝑖𝑘 ≠ 0}| = 1). If this is not the
case, then by (1) and (2) every variable appears exactly twice with coefficients ±1, respectively. This
means that the equation obtained by adding all of the equations in L(𝑥0, . . . , 𝑥𝑛) has to be trivial. Thus,
by removing any equation, we obtain an equivalent system with K equations, and we are done by the
induction hypothesis.

The key observation is that there is always an equation with exactly one variable appearing (i.e.,
∃𝑘 : |{𝑖 : 𝑎𝑖𝑘 ≠ 0}| = 1). If not, then since every variable appears at most twice and there is one variable
appearing once (by the above reductions) we have a system of linear equations with more variables than
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equations. Thus, the number of solutions (𝑥0, . . . , 𝑥𝑛) ∈ (𝑉𝑝)𝑛+1 is either 0 or ∞, which contradicts (1).
Let 𝑥𝑖 be the only variable appearing in some equation. Then this equation determines 𝑥𝑖 , which by (2)
satisfies (4.1). Now if −𝑥𝑖 does not appear, we are done by the induction hypothesis. Otherwise, we add
the equation containing 𝑥𝑖 to the one containing −𝑥𝑖 which gives a system of K linear equations again
satisfying (1) and (2). Thus, the claim follows from the induction hypothesis. �

Corollary 4.6. Let Γ be a Fuchsian group with a fundamental polygon F , and let B be a basis for
𝐻1 (Γ\H,R) consisting of classes of the form {𝑧, 𝜎𝑧} with 𝜎 ∈ S (F) and 𝑧 ∈ H.

Then we have for any 𝜎 ∈ S (F), 𝑧 ∈ H and 𝜔 ∈ 𝐵∗ that

|〈{𝑧, 𝜎𝑧}, 𝜔〉| ≤ 1.

Proof. Observe that if the variable 𝑥𝑖 corresponds to {𝜎, 𝜎−1} ∈ S (F), then the numbers

(〈{𝑧, 𝜎𝑧}, 𝜔〉)𝜔∈𝐵∗

are exactly the coordinates of either 𝑥𝑖 or −𝑥𝑖 in the basis B where (𝑥0, . . . , 𝑥𝑛) ∈ (𝑉𝑝)𝑛+1 is the unique
solution to LF ,𝐵. Now the result follows directly from Lemma 4.5. �

4.2. Zagier’s fundamental polygon

We will now consider a fundamental polygon for Γ0(𝑝) introduced by Zagier [Zag85, Section 3] which
will give rise to a set of natural bases for the homology. The following is a fundamental polygon for
Γ0 (𝑝):

F̃Zag(𝑝) = ∪𝑝
𝑖=0𝜎𝑖Fstd,

where 𝜎𝑖 =
( 0 −1

1 𝑖

)
for 0 ≤ 𝑖 < 𝑝 and 𝜎𝑝 =

( 1 0
0 1

)
, and

Fstd := {𝑧 ∈ H : | Re 𝑧 | < 1/2, |𝑧 | > 1} (4.2)

is the standard fundamental polygon for PSL2(Z). This gives rise to the side pairing transformation set

S (F̃Zag(𝑝)) = {
(

1 0
±𝑝 1

)
} ∪ {

( 1 ±1
0 1

)
} ∪

{(
−𝑎∗ −1

(𝑎𝑎∗+1) 𝑗

)
: 0 < 𝑎 < 𝑝

}
,

where 0 < 𝑎∗ < 𝑝 is such that 𝑎𝑎∗ ≡ −1 mod 𝑝. Recall that Γ0(𝑝) is normalized by the matrix
𝑊𝑝 =

(
0 −1/√𝑝√
𝑝 0

)
, which implies that also FZag(𝑝) := 𝑊𝑝F̃Zag(𝑝) is a fundamental polygon for Γ0(𝑝)

with side pairing transformations given by

S (FZag(𝑝)) = 𝑊𝑝

(
{
(

1 0
±𝑝 1

)
} ∪ {

( 1 ±1
0 1

)
} ∪

{(
−𝑎∗ −1

(𝑎𝑎∗+1) 𝑎

)
: 0 < 𝑎 < 𝑝

})
𝑊−1

𝑝

= {
( 1 ±1

0 1
)
} ∪ {

(
1 0
±𝑝 1

)
} ∪

{(
𝑎 −(𝑎𝑎∗+1)/𝑝
𝑝 −𝑎∗

)
: 0 < 𝑎 < 𝑝

}
,

which, by Lemma 4.3, generate Γ0(𝑝) (as claimed in the introduction). Both of these fundamental
polygons have the nice property that all cuspidal sides (i.e., sides containing a cusp) are paired by
a parabolic element of Γ0(𝑝) (which is not the case for all fundamental polygons). The elements of
S (FZag (𝑝)) are minimal in the sense that the archimedean sizes of the entries are as small as one can
hope for (≤ 𝑝). Explicitly, the fundamental polygon FZag(𝑝) has 𝑝 + 3 vertices: the two cusps 0 and
∞ as well as 2 𝑗−1+𝑖

√
3

2𝑝 for 0 ≤ 𝑗 ≤ 𝑝. We see that the matrix 𝑊𝑝 takes the hyperbolic triangle with

vertices { −1+𝑖
√

3
2𝑝 , 0, 1+𝑖

√
3

2𝑝 } to the hyperbolic triangle with vertices { −1+𝑖
√

3
2 ,∞, 1+𝑖

√
3

2 }. In particular, the
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subgroup 〈𝑊𝑝 , Γ0(𝑝)〉 ≤ PSL2 (R) has a fundamental domain contained in

{𝑧 ∈ H : | Re 𝑧 | ≤ 1/2, Im 𝑧 ≥
√

3/(2𝑝)}, (4.3)

which will be useful later on.
We define the following compatible family of bases of the homology groups.

Definition 4.7. A basic basis of level p is a basis 𝐵 ⊂ 𝐻1(𝑌0 (𝑝),R) consisting of elements {𝑧, 𝜎𝑧} with
𝑧 ∈ H and 𝜎 ∈ S (FZag(𝑝)).

4.3. Special fundamental polygons

By the Kurosh subgroup theorem, we know that any subgroup of PSL2(Z) � Z/2Z∗Z/3Z is isomorphic
to a free product of a number of copies of Z/2Z,Z/3Z and Z. In particular, a torsion-free Hecke
congruence subgroup Γ0(𝑝) is a free group on 𝑘 = rankZ Γ0(𝑝)ab generators. We will now describe
an explicit geometric way due to Kulkarni [Kul91] for constructing a set of independent generators of
Γ0(𝑝). The starting points are so-called special fundamental polygons of Γ0(𝑝).

Let g be the genus of 𝑌0 (𝑝), and 𝑒2, 𝑒3 the number of conjugacy classes of subgroups in Γ0(𝑝) of
order, respectively, 2 and 3. Following [Kul91], we define a Farey symbol of level p as a sequence of
reduced fractions

0
1
=
𝑎0
𝑏0

<
𝑎1
𝑏1

< . . . <
𝑎𝑛−1
𝑏𝑛−1

<
𝑎𝑛
𝑏𝑛

=
1
1
,

with 𝑛 = 4𝑔 + 𝑒2 + 𝑒3 such that 𝑎𝑖+1𝑏𝑖 − 𝑎𝑖𝑏𝑖+1 = 1 for all 1 ≤ 𝑖 < 𝑛. Furthermore (considering below
the indices modulo 𝑛 + 2),

◦ there are 𝑒2 even indices i such that

𝑏2
𝑖 + 𝑏2

𝑖+1 ≡ 0 mod 𝑝,

◦ there are 𝑒3 odd indices i such that

𝑏2
𝑖 + 𝑏𝑖𝑏𝑖+1 + 𝑏2

𝑖+1 ≡ 0 mod 𝑝,

◦ for the remaining 4𝑔 free indices, there is a pairing 𝑖 ↔ 𝑖∗ satisfying

𝑏𝑖𝑏𝑖∗ + 𝑏𝑖+1𝑏𝑖∗+1 ≡ 0 mod 𝑝.

Such a symbol always exists, and one can even find one which is symmetric around 1/2 [Kul91,
Section 13]. Dooms–Jesper–Konolalov [DJK10] have described an algorithm for determining Farey
symbols of a general level.

Consider the polygon P (𝑝) with vertices at ∞, at the fractions of the Farey symbol, at the midpoint
of the geodesic circle connecting 𝑎𝑖/𝑏𝑖 and 𝑎𝑖+1/𝑏𝑖+1 for i an even index, and for an odd index i at the
PGL2 (Z)-translate of 1+𝑖

√
3

2 lying between 𝑎𝑖/𝑏𝑖 and 𝑎𝑖+1/𝑏𝑖+1 (for details see [Kul91, Section 2]). Note
that P (𝑝) consists of PGL2(Z)-translates of

F+ := {𝑧 ∈ H : 0 < Re 𝑧 < 1/2, |𝑧 | > 1}. (4.4)

The map ∗ defines a side pairing transformation on this polygon by identifying the half circle connecting
𝑎𝑖
𝑏𝑖
, 𝑎𝑖+1
𝑏𝑖+1

and the one connecting 𝑎𝑖∗+1
𝑏𝑖∗+1

, 𝑎𝑖
∗

𝑏𝑖∗
, as well as identifying the vertical sides of P (𝑝) and the elliptic

sides. By Poincaré’s theorem, P (𝑝) together with this pairing defines a subgroup of PSL2(R) which can
be shown to be equal to Γ0(𝑝). Furthermore, sinceP (𝑝) has a minimal number of sides, it follows that an
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independent set of generators of Γ0(𝑝) is given by the matrices which map between the sides identified
by the pairing induced from ∗. These matrices are explicitly given by (see [Kul91, Theorem 6.1])

𝑇 =
( 1 1

0 1
)
, (4.5)

and the 𝑒2 matrices of order 2 and 𝑒3 matrices of order 3(
𝑎𝑖+1𝑏𝑖+1 + 𝑎𝑖𝑏𝑖 −𝑎2

𝑖 − 𝑎2
𝑖+1

𝑏2
𝑖 + 𝑏2

𝑖+1 −𝑎𝑖+1𝑏𝑖+1 − 𝑎𝑖𝑏𝑖

)
, (4.6)(

𝑎𝑖+1𝑏𝑖+1 + 𝑎𝑖𝑏𝑖+1 + 𝑎𝑖𝑏𝑖 −𝑎2
𝑖 − 𝑎𝑖𝑎𝑖+1 − 𝑎2

𝑖+1
𝑏2
𝑖 + 𝑏𝑖𝑏𝑖+1 + 𝑏2

𝑖+1 −𝑎𝑖+1𝑏𝑖+1 − 𝑎𝑖+1𝑏𝑖 − 𝑎𝑖𝑏𝑖

)
, (4.7)

together with the 2𝑔 hyperbolic matrices(
𝑎𝑖∗+1𝑏𝑖+1 + 𝑎𝑖∗𝑏𝑖 −𝑎𝑖𝑎𝑖∗ − 𝑎𝑖+1𝑎𝑖∗+1
𝑏𝑖𝑏𝑖∗ + 𝑏𝑖+1𝑏𝑖∗+1 −𝑎𝑖+1𝑏𝑖∗+1 − 𝑎𝑖𝑏𝑖∗

)
for 𝑖 < 𝑖∗ a pair. (4.8)

Observe that the 2𝑔 hyperbolic matrices above, together with T, define a basis for 𝐻1 (𝑌0 (𝑝),R) under
the map (3.5). Recently, Doan–Kim–Lang–Tan [DKLP22] have shown that one can find minimal special
fundamental polygons Pmin(𝑝), meaning that we have

𝑏𝑖𝑏𝑖∗ + 𝑏𝑖+1𝑏𝑖∗+1 = 𝑝, 0 ≤ 𝑖 ≤ 𝑛,

which implies that, in fact, S (Pmin(𝑝)) ⊂ S (FZag(𝑝)).

5. Proof of Theorem 1.1

In this section, we will prove the following statement which implies our first main result.

Theorem 5.1. Fix a prime p and 𝛿 ∈ (0, 1
2114 ). Consider a real quadratic field K of discriminant 𝑑𝐾 such

that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2. Consider a subgroup 𝐻 ≤ Cl+𝐾 with 𝔭1 ∉ 𝐻 and 𝐽 = (
√
𝑑𝐾 ) ∉ 𝐻.

Then for any 𝜔 ∈ 𝐻1(𝑌0 (𝑝),R), we have as 𝑑𝐾 →∞∑
𝐴∈𝐻 〈[C𝐴(𝑝)], 𝜔〉

|
∑

𝐴∈𝐻 〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉|
= −〈𝑣𝐸 (𝑝), 𝜔〉 +𝑂𝜔 (𝑑−𝛿𝐾 ), (5.1)

where 〈·, ·〉 denotes the cap product pairing, and 𝑣𝐸 (𝑝), 𝜔𝐸 (𝑝) are the Eisenstein classes in
(co)homology defined in (3.16) and (3.19).

First of all, let us see how Theorem 1.1 follows from this.

Proof of Theorem 1.1 assuming Theorem 5.1. Let B be any basis of 𝑉𝑝 = 𝐻1(𝑌0 (𝑝),R) containing
𝑣𝐸 (𝑝) and let 𝐵∗ denote the dual basis of 𝐻1(𝑌0 (𝑝),R) with respect to the cap product pairing.
Consider the isomorphism 𝑉𝑝 � R2𝑔+1 defined by sending B to the standard basis of R2𝑔+1 and denote
by || · || = || · ||𝐵,∞ the norm on 𝑉𝑝 obtained by pulling back the sup norm with respect to the standard
basis of R2𝑔+1. We will prove the convergence (1.8) which implies Theorem 1.1. By Theorem 5.1, we
have for 𝑑𝐾 large enough that�����
�����∑
𝐴∈𝐻

[C𝐴(𝑝)]
�����
����� = max

𝜔∈𝐵∗

�����∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔〉
����� =

�����∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉

����� max
𝜔∈𝐵∗

(
|〈𝑣𝐸 (𝑝), 𝜔〉| +𝑂𝜔 (𝑑−𝛿𝐾 )

)
(5.2)

=

�����∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉

�����(1 +𝑂𝐵 (𝑑−𝛿𝐾 )). (5.3)
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By the triangle inequality, we conclude that�������� ∑
𝐴∈𝐻 [C𝐴(𝑝)]

||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||
+ 𝑣𝐸 (𝑝)

�������� (5.4)

≤
�������� ∑

𝐴∈𝐻 [C𝐴(𝑝)]
|〈
∑

𝐴∈𝐻 [C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉|
+ 𝑣𝐸 (𝑝)

�������� + ���� ||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||
|〈
∑

𝐴∈𝐻 [C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉|
− 1

����. (5.5)

Finally by (5.3) and Theorem 5.1, the above is bounded by 𝑂𝐵 (𝑑−𝛿𝐾 ), which yields the wanted
expression. �

The rest of this section is occupied with the proof of Theorem 5.1. The idea is to do a change of
coordinates to the Hecke basis (3.15) of the real cohomology. Then using formulas due to Hecke and
Waldspurger (more precisely, an explicit extension due in this case to Popa [Pop08]), we reduce the
problem to a question about certain special values of L-functions. Now the result follows upon applying
subconvexity bounds (as well as lower bounds for L-functions on the critical line). This is exactly the
same proof structure as is used in the automorphic approach to Duke’s Theorem (see, for example,
[MV06] and the references therein).

Given 𝜔 ∈ 𝐻1 (𝑌0 (𝑝),R), we obtain by expanding in the Hecke basis for homology defined in (3.18)
that

〈[C𝐴(𝑝)], 𝜔〉 = 〈𝑣𝐸 (𝑝), 𝜔〉〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉 +
∑

𝑓 ∈B𝑝 ,±
〈𝑣±𝑓 , 𝜔〉〈[C𝐴(𝑝)], 𝜔±𝑓 〉.

Now we want to average over cosets 𝐶𝐻 ⊂ Cl+𝐾 for subgroups 𝐻 ≤ Cl+𝐾 of the narrow class group.
Using a standard trick from Fourier analysis, we can write∑

𝐴∈𝐶𝐻

〈[C𝐴(𝑝)], 𝜔〉 =
|𝐻 |
|Cl+𝐾 |

∑
𝜒∈Ĉl+𝐾 :𝜒|𝐻=1

𝜒(𝐶)
∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔〉𝜒(𝐴)

= 〈𝑣𝐸 (𝑝), 𝜔〉
∑

𝐴∈𝐶𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉

+
∑

𝑓 ∈B𝑝 ,±
〈𝑣±𝑓 , 𝜔〉

|𝐻 |
|Cl+𝐾 |

∑
𝜒∈Ĉl+𝐾 :𝜒|𝐻=1

𝜒(𝐶)
∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔±𝑓 〉𝜒(𝐴). (5.6)

The inner sums in the cuspidal contribution are twisted Weyl sums, which we will have to estimate.
These sums fits into the framework of toric periods (see, for example, [ELMV11, Section 4]) and
they turn out to be related to special values of automorphic L-functions as first proved by Waldspurger
[Wal85]. This is exactly the reason why we have changed to the Hecke coordinates.

5.1. The Eisenstein contribution

In order to estimate the Eisenstein contribution, we will rely on the following classical formula of Hecke
(see [DIT18, (68)]): ∑

𝐴∈Cl+𝐾

∫
C𝐴 (𝑝)

𝐸∗2 (𝑧)𝑑𝑧 𝜒(𝐴) = 6(1 − 𝜒(𝐽))𝐿(𝜒, 0),

where 𝐸∗2 (𝑧) = 𝐸2(𝑧) − 3
𝜋 Im 𝑧 (with 𝐸2(𝑧) defined in (3.17)), 𝐽 = (

√
𝐷) ∈ Cl+𝐾 is the different of K and

𝐿(𝜒, 𝑠) denotes the (finite part) of the Hecke L-function associated to the narrow class group character
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𝜒. Thus, by a change of variable, we get∑
𝐴∈Cl+𝐾

∫
C𝐴 (𝑝)

𝑝𝐸∗2 (𝑝𝑧)𝑑𝑧 𝜒(𝐴) =
∑
𝐴∈Cl+𝐾

∫
𝑝 C𝐴 (𝑝)

𝐸∗2 (𝑧)𝑑𝑧 𝜒(𝐴).

We notice by direct computation that 𝑝 C𝐴(𝑝) (i.e., the dilation of C𝐴(𝑝) by the factor p) is again a
closed geodesic as follows. If C𝐴(𝑝) corresponds to the quadratic form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 of discriminant
𝑑𝐾 and level p, then 𝑝 C𝐴(𝑝) corresponds to 𝑎

𝑝 𝑥
2 + 𝑏𝑥𝑦 + 𝑐𝑝𝑦2 (which now might not be of level p).

Recall that in Section 3.1 we fixed a residue 𝑟 mod 2𝑝 such that 𝑟2 ≡ 𝑑𝐾 mod 4𝑝. One can now check
by direct computation on ideals that(

Z
𝑎

𝑝
+ Z𝑏 −

√
𝑑𝐾

2

) (
Z𝑝 + Z𝑟 −

√
𝑑𝐾

2

)
= Z𝑎 + Z𝑏 −

√
𝑑𝐾

2

if 𝑎 > 0, and similarly,(
Z

(
− 𝑎
𝑝

√
𝑑𝐾

)
+ Z𝑑 − 𝑏

√
𝑑𝐾

2

) (
Z𝑝 + Z𝑟 −

√
𝑑𝐾

2

)
= Z(−𝑎

√
𝑑𝐾 ) + Z

𝑑 − 𝑏
√
𝑑𝐾

2

if 𝑎 < 0. This implies that when projected to the modular curve PSL2(Z)\H of level 1, we have

𝑝 C𝐴(𝑝) = C𝐴𝐴𝑝 (1),

where 𝐴𝑝 = [𝑝, 𝑟−
√
𝑑𝐾

2 ] ∈ Cl+𝐾 (using the notation (3.1)). This implies that∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉𝜒(𝐴) =
∑
𝐴∈Cl+𝐾

∫
C𝐴 (𝑝)

𝐸2, 𝑝 (𝑧)𝑑𝑧 𝜒(𝐴)

=
6

𝑝 − 1
(1 − 𝜒(𝐽)) (𝜒(𝐴𝑝) − 1)𝐿(𝜒, 0), (5.7)

using that (𝑝−1)𝐸2, 𝑝 (𝑧) = 𝑝𝐸∗2 (𝑝𝑧)−𝐸
∗
2 (𝑧). Note that the above vanishes when 𝜒(𝐽) = 1 or 𝜒(𝐴𝑝) = 1.

By the functional equation for odd class group L-functions [DIT18, p. 13] and the fact that class
group characters are self-dual (i.e., 𝜒 ◦ 𝑐 = 𝜒 where c denotes complex conjugation), we conclude for
𝜒 ∈ Ĉl+𝐾 with 𝜒(𝐽) = −1 that

𝐿(𝜒, 0) = 𝐿(𝜒, 0) = 𝐿(𝜒 ◦ 𝑐, 0) = 𝐿(𝜒, 0) = 𝜋−2𝑑1/2
𝐾 𝐿(𝜒, 1) > 0. (5.8)

By standard estimates for L-functions on the critical line for all 𝜀 > 0, there is some uniform (but
ineffective) constant 𝑐𝜀 > 0 such that

𝐿(𝜒, 0) ≥ 𝑐𝜀𝑑1/2−𝜀
𝐾 . (5.9)

Proposition 5.2. Let 𝐻 ≤ Cl+𝐾 be a subgroup such that 𝐴𝑝 ∉ 𝐻 and 𝐽 ∉ 𝐻. Then for each 𝜀 > 0, there
exists a constant 𝑐𝜀 > 0 such that

∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉 ≤ −𝑐𝜀
𝑑1/2−𝜀
𝐾

𝑝
. (5.10)
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Proof. By orthogonality, the Hecke formula (5.7), and equations (5.8) and (5.9), we conclude∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉 =
|𝐻 |
|Cl+𝐾 |

∑
𝜒∈Ĉl+𝐾 :𝜒|𝐻=1

∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉𝜒(𝐴) (5.11)

= − 12|𝐻 |
(𝑝 − 1) |Cl+𝐾 |

∑
𝜒∈Ĉl+𝐾 :

𝜒|𝐻=1,𝜒 (𝐽 )=−1

∑
𝐴∈Cl+𝐾

(1 − Re 𝜒(𝐴𝑝))𝐿(𝜒, 0) (5.12)

≤ −𝑐𝜀
𝑑1/2−𝜀
𝐾

𝑝

|𝐻 |
|Cl+𝐾 |

∑
𝜒∈Ĉl+𝐾 :

𝜒|𝐻=1,𝜒 (𝐽 )=−1

(1 − Re 𝜒(𝐴𝑝)), (5.13)

where we are using that (1 − Re 𝜒(𝐴𝑝)) ≥ 0. Now we observe that if 𝐻 ′ := 〈𝐻, 𝐽〉 ≤ Cl+𝐾 denotes the
group generated by 𝐻 ≤ Cl+𝐾 and 𝐽 = (

√
𝑑𝐾 ), then we can write

∑
𝜒∈Ĉl+𝐾 :

𝜒|𝐻=1,𝜒 (𝐽 )=−1

(1 − Re 𝜒(𝐴𝑝)) =
|Cl+𝐾 |
|𝐻 ′ | − Re

 !!"
∑

𝜒∈#Cl+𝐾 /𝐻

𝜒(𝐴𝑝𝐻) −
∑

𝜒∈ #Cl+𝐾 /𝐻 ′

𝜒(𝐴𝑝𝐻
′)
$%%& (5.14)

=

{ |Cl+𝐾 |
2 |𝐻 | , 𝐴𝑝 ∉ 𝐻 ′

|Cl+𝐾 |
|𝐻 | , 𝐴𝑝 ∈ 𝐻 ′

. (5.15)

Here, we are using that 𝐽 ∉ 𝐻, which implies that |𝐻 ′ | = 2|𝐻 |, and 𝐴𝑝 ∉ 𝐻. Inserting this into the
above yields the wanted estimate. �

5.2. The cuspidal contribution

In the case of cuspidal Weyl sums, we will use the following formula due to Popa [Pop06, Theorem
6.3.1] (see also the first formula in the introduction of [Pop06]):������ ∑

𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔 𝑓 〉𝜒(𝐴)

������
2

= 𝑑1/2
𝐾 𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2), (5.16)

where 𝜋 𝑓 denotes the GL2-automorphic representation associated to f, 𝜋𝜒 denotes the GL2-automorphic
representation associated to 𝜒 via automorphic induction and 𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2) denotes the central value
of the (finite part of the) Rankin–Selberg L-function of 𝜋 𝑓 and 𝜋𝜒. This implies

∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔±𝑓 〉𝜒(𝐴) =
𝑑1/4
𝐾

2

(
𝜖 𝑓 ,𝜒 |𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2) |1/2 ± 𝜖 𝑓 ,𝜒 |𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2) |1/2

)
, (5.17)

with |𝜖 𝑓 ,𝜒 | = |𝜖 𝑓 ,𝜒 | = 1. By the subconvexity bound

𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2)  𝑓 𝑑
1/2−1/1057
𝐾
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due to Michel [Mic04, Theorem 2], we conclude the following bound on the twisted Weyl sums:∑
𝐴∈Cl+𝐾

〈[C𝐴(𝑝)], 𝜔±𝑓 〉𝜒(𝐴)  𝑓 𝑑
1/2−1/2114
𝐾 . (5.18)

Combining this with the lower bound for the Eisenstein contribution yields the proof of our main
result.

Proof of Theorem 5.1. Let 𝐻 ≤ Cl+𝐾 be a subgroup as in the statement. Then by Proposition 5.2, we
have for all 𝜀 > 0 that there exists an absolute constant 𝑐𝜀 > 0 such that�����∑

𝐴∈𝐻
〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉

����� = − ∑
𝐴∈𝐻

〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉 ≥ 𝑐𝜀𝑑1/2−𝜀
𝐾 𝑝−1. (5.19)

Now the result follows from (5.6) (with 𝐶 = 1) by dividing through by (5.19) and bounding the cuspidal
contribution using (5.18). Here, we are using that the number of narrow class group characters 𝜒 such
that 𝜒 |𝐻 = 1 is exactly |Cl+𝐾 |

|𝐻 | , and the remaining terms in (5.6) do not depend on 𝑑𝐾 . �

6. A homological version of the sup norm problem

In this section, we will deal with the problem of obtaining a version of Theorem 5.1 where the level p
is allowed to vary. By (5.6) and (5.17), this requires, first of all, bounds for 𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 1/2) in terms
of both 𝑑𝐾 and p which in the case of genus characters has been studied by Petrow and Young [PY19].
Secondly, we will need estimates for the cap product pairings 〈𝑣±𝑓 , 𝜔〉 (with 𝑓 ∈ B𝑝) in terms of p. This
can be thought of as an analogue of the sup norm problem from arithmetic quantum chaos (see, for
example, [BH10]) as we will explain below. We will have to restrict to certain compatible families of
𝜔 ∈ 𝐻1(𝑌0 (𝑝),R), which in our case will be dual bases of basic bases of level p as in Definition 4.7.

Theorem 6.1. Let p be prime and let 𝐵 ⊂ 𝐻1(𝑌0 (𝑝),Z) be a basic basis of level p. Then for 𝜔 ∈ 𝐵∗
(the dual basis of B with respect to (3.4)), we have∑

𝜖 ∈{±}

∑
𝑓 ∈B𝑝

|〈𝑣 𝜖𝑓 , 𝜔〉|
2 𝜀 𝑝

1+𝜀 . (6.1)

See Remark 6.2 below for thoughts on the optimal bound that one can expect. Notice that since the
newforms 𝑓 ∈ B𝑝 are Hecke normalized, the dual vectors 𝑣±𝑓 are very subtle quantities as they are related
to the minimal periods 𝑐±𝑓 of f (characterized when f has rational coefficients by (𝑐+𝑓 )

−1 Re 𝑓 (𝑧)𝑑𝑧 ∈
𝐻1 (𝑋0 (𝑝),Z) being primitive, and similarly for 𝑐−𝑓 ). Upper bounding 𝑐±𝑓 in terms of the level is
extremely hard as any polynomial bound implies (a weak form of) the ABC-conjecture (see [Gol02]).

To put Theorem 6.1 into perspective, it is again useful to compare to the imaginary quadratic
analogue of supersingular reduction of CM elliptic curves. Recall that in Section 2 we defined an
n-dimensional vector space 𝐻0 (𝑋 𝑝,∞,R) having a canonical basis 𝑒1, . . . , 𝑒𝑛 corresponding to the
connected components of the conic curve 𝑋 𝑝,∞ as defined in (2.2), which, in turn, can be identified
with isomorphism classes of supersingular elliptic curves defined over F𝑝2 . There is a canonical bilinear
form 〈·, ·〉ss on 𝐻0(𝑋 𝑝,∞,R) given by

〈𝑒𝑖 , 𝑒 𝑗〉ss := 𝛿𝑖, 𝑗𝑤𝑖 , (6.2)

where 𝑤𝑖 is the size of the endomorphism ring of the elliptic curves corresponding to 𝑒𝑖 . The homology
group𝐻0(𝑋 𝑝,∞,R) carries a natural action of the Hecke algebra (of level p) defined via correspondences,
and these linear operators are self-adjoint with respect to the bilinear form 〈·, ·〉ss. The homology group
𝐻0 (𝑋 𝑝,∞,R) is (by the Jacquet–Langlands correspondence) isomorphic as a Hecke algebra to the space
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M2 (𝑝) of holomorphic modular forms of level p and weight 2. In particular, one can associate to each
Hecke eigenform f a unique element 𝑒 𝑓 ∈ 𝐻0 (𝑋 𝑝,∞,R) such that 〈𝑒 𝑓 , 𝑒 𝑓 〉ss = 1 and 𝑇ℓ 𝑒 𝑓 = 𝜆 𝑓 (ℓ)𝑒 𝑓 ,
where 𝜆 𝑓 (ℓ) denotes the ℓ-th Hecke eigenvalues of f with ℓ ≠ 𝑝 prime. In this setting, we are interested
in upper bounds for the ‘𝐿𝑟 -norms’:

||𝑒 𝑓 ||𝑟 :=

(
𝑛∑
𝑖=1

|〈𝑒 𝑓 , 𝑒𝑖〉ss |𝑟
)1/𝑟

, 1 ≤ 𝑟 < ∞, ||𝑒 𝑓 ||∞ := max
1≤𝑖≤𝑛

|〈𝑒 𝑓 , 𝑒𝑖〉ss |.

Putting 𝑟 = 2 and using Parseval, one obtains ||𝑒 𝑓 ||2 = 1 which implies the trivial (or convexity) bound
||𝑒 𝑓 ||𝑟 ≤ 1 for all 𝑟 ≥ 2. In the case 𝑟 = ∞, Blomer and Michel [BM11] were the first to go beyond
this by proving ||𝑒 𝑓 ||∞  𝑝−1/6+𝜀 . This was recently improved by Khayutin–Nelson–Steiner [KNS22,
Corollary 2.3] who obtained ||𝑒 𝑓 ||∞  𝑝−1/4+𝜀 . Liu–Masri–Young [LMY15, Proposition 1.12] obtained
the 𝐿4-bound ||𝑒 𝑓 ||4  𝑝−1/8+𝜀 .

The fact that the Hecke operators are self-adjoint with respect to the bilinear form (6.2) on
𝐻0 (𝑋 𝑝,∞,R) implies that the dual basis

𝑒∗1, . . . , 𝑒
∗
𝑛 ∈ 𝐻0 (𝑋 𝑝,∞,R)∗

of 𝑒1, . . . , 𝑒𝑛 (which we can identify with 𝑤−1
1 〈·, 𝑒1〉ss, . . . , 𝑤

−1
𝑛 〈·, 𝑒𝑛〉ss) have the same behavior under

the action of the Hecke algebra. This is why in the proof of the level aspect version (2.5) by Liu–
Masri–Young one does not need any nontrivial input to bound the factors 〈𝑒 𝑓 , 𝑒𝑖〉ss appearing when
spectrally expanding; one can simply employ the trivial Parseval bound

∑
𝑓 ∈B𝑝 |〈𝑒 𝑓 , 𝑒𝑖〉ss |2 ≤ 1.This is

not necessarily the case for the basic bases 𝐵 ⊂ 𝐻1 (𝑌0 (𝑝),R) in our setting. This means, in particular,
that we do not know whether

〈𝑣, 𝜔±𝑓 〉〈𝑣
±
𝑓 , 𝑣

∗〉 (6.3)

is positive or not for 𝑣 ∈ 𝐵 and 𝑣∗ ∈ 𝐵∗ such that 〈𝑣, 𝑣∗〉 = 1. This lack of positivity makes it hard to
obtain any bound at all.

6.1. The method of proof

The first natural approach to bounding the left-hand side of (6.1) would be to use a version of the
amplified pre-trace formula approach to the sup norm problem in arithmetic quantum chaos (see, for
example, [BH10]). This is, however, not very effective due to the possible non-positivity of (6.3) (i.e.,
we are working in a Banach space rather than a Hilbert space). However, it has become apparent from
the work of Steiner [Ste20], Khayutin–Steiner [KS20] and Khayutin–Nelson–Steiner [KNS22] that one
in many cases can obtain very strong sup norm bounds by using the theta correspondence. We will
employ a version of this argument in our setting. The basic fact is that for 𝑣0 ∈ 𝐻1(𝑋0 (𝑝),R) and
𝜔 ∈ 𝐻1(𝑋0 (𝑝),R), ∑

𝑛≥1
〈𝑇𝑛𝑣0, 𝜔〉𝑒2𝜋𝑖𝑛𝑧 (6.4)

defines a cusp form of level p. This follows easily by the fact that the ±1 isotypic components of 𝜄 acting
on 𝐻1 (𝑋0 (𝑝),R) are isomorphic as Hecke modules to the space of holomorphic cusp forms S2 (𝑝) of
weight 2 and level p (which is an incarnation of the Eichler–Shimura isomorphism [Shi94, Section 8.2]).
This can be seen as an instance of the theta correspondence (see [DHRV21, Section 5.3]). We will give
a simple proof below of the exact statement that we need. Now the key fact is that if 𝜄𝑣0 = ±𝑣0, then the
𝐿2-norm of (6.4) is (by spectrally expanding) equal to∑

𝑓 ∈B𝑝

|〈𝑣0, 𝜔
±
𝑓 〉|

2 |〈𝑣±𝑓 , 𝜔〉|
2.
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Note that now we have obtained positivity for free! Thus, we are reduced to, one the one hand, a lower
bound for |〈𝑣0, 𝜔

±
𝑓 〉|

2 which we resolve in Corollary 6.5, and on the other hand, a bound for the 𝐿2-norm
of (6.4) which is essentially equal to ∑

1≤𝑛≤𝑝

|〈𝑇𝑛𝑣0, Pcusp 𝜔〉|2

𝑛
. (6.5)

The above is an analogue of the second moment matrix count that appears in, for example, [KS20,
Section 9]. We will bound (6.5) using geometric coding of geodesics.

Remark 6.2. Let B be a basic basis of level p and let 𝑣 ∈ 𝐵 and 𝑣∗ ∈ 𝐵∗ such that 〈𝑣, 𝑣∗〉 = 1. Then we
get by expanding in the Hecke basis

1 =
∑

𝑓 ∈B𝑝 ,±
〈𝑣±𝑓 , 𝑣

∗〉〈𝑣, 𝜔±𝑓 〉.

As we will see in Corollary 6.5, we have on average that 〈𝑣, 𝜔±𝑓 〉 � 1. Thus, if the classes 𝑣±𝑓 are
perfectly distributed (relative to B), then we would have 〈𝑣±𝑓 , 𝑣

∗〉 � 1/𝑝. Thus, the strongest sup norm
conjecture one can hope for is

〈𝑣±𝑓 , 𝜔〉 𝜀 𝑝
−1+𝜀 ,

for 𝜔 ∈ 𝐵∗. This might, however, be too much to hope for.

Remark 6.3. The dual sup norm problem corresponds to obtaining bounds for the modular symbols

sup
𝑣 ∈𝐵

|〈𝑣, 𝜔 𝑓 〉|,

for 𝑣 ∈ 𝐵 as 𝑝 → ∞, where 𝜔 𝑓 = 𝑓 (𝑧)𝑑𝑧 with 𝑓 ∈ B𝑝 a holomorphic Hecke eigenform of weight 2
and level p. Let 𝑣 = {𝛾𝑧, 𝑧} ∈ 𝐻1 (𝑌0 (𝑝),Z) with 𝛾 ∈ S (FZag(𝑝)), which we may assume is hyperbolic.
Picking z on the fixed circle of 𝛾 and using Hölder’s inequality, we see that��〈𝑣, 𝜔 𝑓 〉

�� ≤ 2𝜋
∫
C𝛾
| Im(𝑧) 𝑓 (𝑧) | 𝑑𝑧

Im(𝑧) 𝜀 𝑝
1/4+𝜀 ,

using the sup norm estimate coming from [KNS22, Theorem 1.6]. Here, C𝛾 denotes the closed geodesic
on 𝑋0(𝑝) associated to 𝛾 with hyperbolic length ℓ(C𝛾)  log 𝑝. Notice that we also have the trivial
bound

 !"
∑
𝑓 ∈B𝑝

��〈𝑣, 𝜔 𝑓 〉
��2$%&

1/2

≤ 2𝜋
∫
C𝛾

 !"
∑
𝑓 ∈B𝑝

| Im(𝑧) 𝑓 (𝑧) |2$%&
1/2

𝑑𝑧

Im(𝑧) 𝜀 𝑝
1/2+𝜀

by Minkowski’s integral inequality and the pre-trace formula (thanks to the referee for pointing this out).

6.2. A lower bound for modular symbols

In this section, we will construct the homology class 𝑣0 ∈ 𝐻1(𝑋0 (𝑝),R) mentioned above such that
〈𝑣0, 𝜔

±
𝑓 〉 is ‘not too small’ in terms of the level. We will be constructing 𝑣0 in terms of classes of the

shape { 𝑥𝑝 ,∞} for 1 ≤ 𝑥 < 𝑝 (using the notation (3.6)). This reduces the problem to a lower bound for
the additive twist L-functions of f. One could naively try to calculate the average of all additive twists
with 1 ≤ 𝑥 < 𝑝. But this yields very poor results as there is a lot of cancellation in this sum. Instead, we
use that the second moment coincides with the second moment of Dirichlet twists of the L-function of f
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(by the Birch–Stevens formula). By Cauchy–Schwarz, it suffices to calculate the first moment of these
L-functions instead. Such a calculation is quite standard using an approximate functional equation. The
exact case we need, however, does not seem to have been considered before as we are in the case of joint
ramification. For the sake of completeness, we have provided a detailed argument below.

To be more precise, let 𝑓 ∈ B𝑝 be a Hecke normalized eigenform and let 𝜒 be a primitive Dirichlet
character modulo q with 𝑝 |𝑞. Then we define the twisted L-function as the analytic continuation of

𝐿( 𝑓 , 𝜒, 𝑠) :=
∑
𝑛≥1

𝜆 𝑓 (𝑛)𝜒(𝑛)
𝑛𝑠+1/2

(here the Ramanujan conjecture is |𝜆 𝑓 (𝑛) | ≤ 𝑑 (𝑛)𝑛1/2). By the Birch–Stevens formula (see, for example,
[Nor21, Proposition 6.1]), we have for a primitive 𝜒 with 𝜒(−1) = ±1

𝑖 (𝜒 (−1)−1)/2𝜏(𝜒)𝐿( 𝑓 , 𝜒, 𝑠) =
∑∗

𝑎 mod 𝑞

𝐿±( 𝑓 , 𝑎/𝑞, 𝑠)𝜒(𝑎), (6.6)

where

𝐿±( 𝑓 , 𝑎/𝑞, 𝑠) :=
𝐿( 𝑓 , 𝑎/𝑞, 𝑠) ± 𝐿( 𝑓 ,−𝑎/𝑞, 𝑠)

1 + 𝑖 ± (1 − 𝑖) , 𝐿( 𝑓 , 𝑎/𝑞, 𝑠) :=
∑
𝑛≥1

𝜆 𝑓 (𝑛)𝑒(𝑛𝑎/𝑞)
𝑛𝑠+1/2 , Re 𝑠 > 1

are the additive twist L-series satisfying analytic continuation and the functional equation

𝛾 𝑓 (𝑠)𝑞𝑠𝐿( 𝑓 , 𝑎/𝑞, 𝑠) = −𝛾 𝑓 (1 − 𝑠)𝑞1−𝑠𝐿( 𝑓 ,−𝑎/𝑞, 1 − 𝑠),

where 𝑎𝑎 ≡ 1 mod 𝑞 and 𝛾 𝑓 (𝑠) = Γ(𝑠 + 1/2) (2𝜋)−𝑠 (see e.g. Nor21, Proposition 3.3). This implies the
functional equation

𝛾 𝑓 (𝑠)𝑞𝑠𝐿( 𝑓 , 𝜒, 𝑠) = 𝜀𝜒𝛾 𝑓 (1 − 𝑠)𝑞1−𝑠𝐿( 𝑓 , 𝜒, 1 − 𝑠), (6.7)

where 𝜀𝜒 = −𝜏 (𝜒)2

𝑞 . Note that by inserting the Fourier expansion of f and interchanging sum and integral,
we arrive at the identity

〈{ 𝑎𝑞 ,∞}, 𝜔
±
𝑓 〉 = −𝐿

±( 𝑓 , 𝑎𝑞 , 1/2). (6.8)

Lemma 6.4. Let 𝑓 ∈ B𝑝 and let q be an integer such that 𝑝 |𝑞. Then we have (uniformly in p and f) that

1
𝜑∗±(𝑞)

∑∗,±

𝜒 mod 𝑞

𝐿( 𝑓 , 𝜒, 1/2) = 1 +𝑂 𝜀 (𝑞−1/4+𝜀),

where the sum is restricted to primitive characters 𝜒 modulo q with 𝜒(−1) = ±1, and 𝜑∗±(𝑞) denotes
the total number of such characters.

Proof. By the approximate functional equation [IK04, Theorem 5.3] using (6.7), we can write the
moment in question as

2
𝜑∗(𝑞)

∑∗,±

𝜒 mod 𝑞

∑
𝑛≥1

𝜆 𝑓 (𝑛)
𝑛

(
𝜒(𝑛)𝑉

(
𝑛

𝑞𝜆

)
+ 𝜀𝜒𝜒(𝑛)𝑉

(
𝑛

𝑞2−𝜆

))
, (6.9)

for some 0 < 𝜆 < 2 to be chosen and 𝑉 : R>0 → R a smooth, rapidly decaying function satisfying
𝑉 (𝑦) = 1 + 𝑂 (𝑦1/3) as 𝑦 → 0 (see [IK04, Proposition 5.4]). Now by a simple application of Möbius
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inversion, we get that for (𝑛, 𝑞) = 1,∑∗,±

𝜒 mod 𝑞

𝜒(𝑛) =
∑
𝑑 |𝑞

𝜇(𝑞/𝑑)𝜑(𝑑) (𝛿𝑛≡1 (𝑑) ± 𝛿𝑛≡−1 (𝑑) )/2, (6.10)

∑∗,±

𝜒 mod 𝑞

𝜀𝜒𝜒(𝑛) = −
1
𝑞

∑
𝑑 |𝑞

𝜇(𝑞/𝑑)𝜑(𝑑)𝐾2(𝑛; 𝑑) ± 𝐾2(−𝑛; 𝑑)
2

, (6.11)

where 𝐾2(𝑛; 𝑑) =
∑

𝑥𝑦≡𝑛 (𝑑) 𝑒((𝑥 + 𝑦)/𝑑) denotes the usual 2-dimensional Kloosterman sum. By Weil’s
bound and standard estimates, we conclude that for (𝑛, 𝑞) = 1,∑∗,±

𝜒 mod 𝑞

𝜀𝜒𝜒(𝑛) 𝜀 𝑞
1/2+𝜀 . (6.12)

Now for the primary part of the sum (6.9) we obtain using the analytic properties of V mentioned above
as well as (6.10), we get

1
𝜑∗±(𝑞)

∑∗,±

𝜒 mod 𝑞

∑
𝑛≥1

𝜆 𝑓 (𝑛)
𝑛

𝜒(𝑛)𝑉
(
𝑛

𝑞𝜆

)
(6.13)

= 1 +𝑂 𝜀

 !!!"
𝑞1−𝜆/3

𝜑∗±(𝑞)
+ 1
𝜑∗±(𝑞)

∑
𝑑 |𝑞

𝜑(𝑑)
∑

𝑛≡±1 (𝑑)
1<𝑛𝑞𝜆+𝜀

|𝜆 𝑓 (𝑛) |
𝑛

$%%%&, (6.14)

with the main term corresponding to 𝑛 = 1. Now using the Ramanujan bound |𝜆 𝑓 (𝑛) | ≤ 𝑑 (𝑛)𝑛1/2 𝜀

𝑛1/2+𝜀 , we get ∑
𝑛≡±1 (𝑑)

1<𝑛𝑐𝜆+𝜀

|𝜆 𝑓 (𝑛) |
𝑛

𝜀

∑
1≤𝑚𝑞𝜆+𝜀/𝑑

∑
±
(𝑚𝑑 ± 1)−1/2+𝜀  𝑞𝜆/2+𝜀𝑑−1, (6.15)

which bounds the error-term in (6.13) by𝑂 𝜀 ((𝑞1−𝜆/3+𝑞𝜆/2+𝜀)/𝜑∗(𝑞)). Similarly, by using (6.11), we can
bound the dual sum by 𝑂 𝜀 (𝑞3/2−𝜆/2+𝜀/𝜑∗±(𝑞)). Choosing 𝜆 = 3/2 and recalling that 𝜑∗±(𝑞) �𝜀 𝑞

1−𝜀 ,
we get the wanted asymptotic formula. �

Corollary 6.5. There exists an absolute constant 𝑐0 > 0 such that for any prime p, 𝑓 ∈ B𝑝 and 𝜖 ∈ {±},
we have

1
𝑝 − 1

∑
0<𝑎<𝑝

|〈{ 𝑎𝑝 ,∞}, 𝜔
𝜖
𝑓 〉|

2 ≥ 𝑐0. (6.16)

Proof. First of all, recall that the following matrices generate Γ0(𝑝):

𝑇 =
( 1 1

0 1
)
,

(
𝑎 −(𝑎𝑎∗+1)/𝑝
𝑝 −𝑎∗

)
: 0 < 𝑎 < 𝑝,

where 0 < 𝑎∗ < 𝑝 are such that 𝑎𝑎 ≡ −1 mod 𝑝 (as is proved in Section 4.2). Since 𝜔±𝑓 are nonzero
cohomology classes vanishing on parabolic elements, we conclude that the left-hand side of (6.16) is
always nonzero.

We now define the Fourier transform of

(Z/𝑝Z)× � 𝑎 ↦→ 〈{ 𝑎𝑝 ,∞}, 𝜔
±
𝑓 〉
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as follows for a Dirichlet character 𝜒 mod 𝑝:

�̂�±𝑓 (𝜒) :=
∑∗

𝑎 mod 𝑝

〈{ 𝑎𝑝 ,∞}, 𝜔
±
𝑓 〉𝜒(𝑎).

For 𝜒 primitive with 𝜒(−1) = ±1, we have by the equality (6.8) and the Birch–Stevens formula (6.6) that

�̂�±𝑓 (𝜒) = −𝑖
(𝜒 (−1)−1)/2𝜏(𝜒)𝐿( 𝑓 , 𝜒, 1/2).

Now by Parseval, we have∑
0<𝑎<𝑝

|〈{ 𝑎𝑝 ,∞}, 𝜔
±
𝑓 〉|

2 =
1

𝑝 − 1

∑
𝜒 mod 𝑝

| �̂�±𝑓 (𝜒) |
2 ≥ 𝑝

𝑝 − 1

∑∗,±

𝜒 mod 𝑝

|𝐿( 𝑓 , 𝜒, 1/2) |2.

Using the previous lemma, we conclude by Cauchy–Schwarz that

1
𝜑∗±(𝑝)

∑∗,±

𝜒 mod 𝑝

|𝐿( 𝑓 , 𝜒, 1/2) |2 ≥  !" 1
𝜑∗±(𝑝)

∑∗,±

𝜒 mod 𝑝

𝐿( 𝑓 , 𝜒, 1/2)$%&
2

≥ 1/2,

for p large enough. This yields the wanted lower bound since 𝜑∗±(𝑝) � 𝑝 − 1. �

Remark 6.6. Using a subconvexity bound for 𝐿( 𝑓 ⊗ 𝜒, 1/2) as in [MV10], the above implies that there
is some constant 𝛿 > 0 such that 𝐿( 𝑓 ⊗ 𝜒, 1/2) is nonvanishing for at least � 𝑝 𝛿 of both odd and
even characters. This improves on Merel [Mer09, Corollaire 2], who has shown using modular symbol
techniques that for 𝑓 ∈ B𝑝 , there exists at least one odd and one even character 𝜒 of conductor p such
that 𝐿( 𝑓 ⊗ 𝜒, 1/2) ≠ 0. One can probably get much better results using mollification.

6.3. Reduction to a counting problem

We will now use the theta correspondence in a simple form to reduce the sup norm problem to a certain
counting problem.

Lemma 6.7. Let 𝜔 ∈ 𝐻1(𝑋0 (𝑝),R) be a cuspidal cohomology class. Then we have

∑
𝜖 ∈{±}

∑
𝑓 ∈B𝑝

|〈𝑣 𝜖𝑓 , 𝜔〉|
2 𝜀 𝑝

−1+𝜀
∑
𝑛≥1

1
𝑝

∑
0<𝑥<𝑝 (|〈𝑇𝑛{ 𝑥𝑝 ,∞}, 𝜔〉|

2 + |〈𝑇𝑛{ 1
𝑥 , 0}, 𝜔〉|

2)
𝑛

𝑒−8𝑛/𝑝

uniformly in p, where 〈·, ·〉 denotes the cap product pairing (3.4) between homology and cohomology
and 𝑇𝑛 denotes the n-th Hecke operator.

Proof. For 0 < 𝑥 < 𝑝 and ε = (𝜖1, 𝜖2) with 𝜖𝑖 ∈ {±1}, we consider the following class in the compactly
supported homology

𝑣ε𝑥 := (1 + 𝜖1𝜄) (1 + 𝜖2𝑊𝑝){ 𝑥𝑝 ,∞} (6.17)

= { 𝑥𝑝 ,∞} + 𝜖1{− 𝑥
𝑝 ,∞} + 𝜖2{− 1

𝑥 , 0} + 𝜖1𝜖2{ 1
𝑥 , 0} ∈ 𝐻1(𝑋0 (𝑝),Z). (6.18)
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By construction, 𝑣ε𝑥 is contained in the 𝜖1 eigenspace of the involution 𝜄 as in (3.14), and in the 𝜖2
eigenspace of the Fricke involution 𝑊𝑝 as in (3.13). Associated to 0 < 𝑥 < 𝑝, ε ∈ {(±1,±1)} and
𝜔 ∈ 𝐻1(𝑋0 (𝑝),R) (suppressed in the notation), we define 𝑔 : H→ C by

𝑔(𝑧) :=
∑
𝑛≥1

〈𝑇𝑛𝑣ε𝑥 , 𝜔〉𝑒2𝜋𝑖𝑛𝑧 . (6.19)

By expanding in the Hecke basis of cohomology, we obtain

〈𝑇𝑛𝑣ε𝑥 , 𝜔〉 =
∑
𝑓 ∈B𝑝 :

𝑊𝑝 𝑓 =𝜖2 𝑓

𝜆 𝑓 (𝑛)〈𝑣ε𝑥 , 𝜔
𝜖1
𝑓 〉〈𝑣

𝜖1
𝑓 , 𝜔〉.

By newform theory, we know that for 𝑓 ∈ B𝑝 , we have 𝜆 𝑓 (𝑛) = 𝑎 𝑓 (𝑛), where 𝑎 𝑓 (𝑛) denotes the
Fourier coefficients (at ∞) of f. Thus, we conclude that

𝑔(𝑧) =
∑
𝑓 ∈B𝑝 :

𝑊𝑝 𝑓 =𝜖2 𝑓

〈𝑣ε𝑥 , 𝜔
𝜖1
𝑓 〉〈𝑣

𝜖1
𝑓 , 𝜔〉 𝑓 (𝑧),

and, in particular, 𝑔 ∈ 𝑆2(𝑝) is a holomorphic cusp form of weight 2 for Γ0(𝑝) contained in the 𝜖2
eigenspace of 𝑊𝑝 . This can be seen as an instance of the theta correspondence as explained above. By
orthogonality of Hecke eigenforms, this implies the key identity

〈𝑔, 𝑔〉Pet =
∑
𝑓 ∈B𝑝 :

𝑊𝑝 𝑓 =𝜖2 𝑓

〈 𝑓 , 𝑓 〉Pet |〈𝑣ε𝑥 , 𝜔
𝜖1
𝑓 〉〈𝑣

𝜖1
𝑓 , 𝜔〉|

2, (6.20)

where 〈 𝑓 , 𝑔〉Pet =
∫
𝑌0 (𝑝)

𝑓 (𝑧)𝑔(𝑧)𝑑𝑥𝑑𝑦 denotes the Petersson inner-product on S2(𝑝). Recall from (4.3)
that the subgroup

Γ∗0 (𝑝) := 〈𝑊𝑝 , Γ0(𝑝)〉 ⊂ PSL2(R)

has Γ0(𝑝) as an index two subgroup and has a fundamental domain contained in

{𝑧 ∈ H : | Re 𝑧 | ≤ 1/2, Im 𝑧 ≥
√

3/(2𝑝)}.

By unfolding and using that |𝑔 |2 is invariant under the Fricke involution𝑊𝑝 , by construction we arrive
at the following bound:∑

𝑓 ∈B𝑝 :
𝑊𝑝 𝑓 =𝜖2 𝑓

〈 𝑓 , 𝑓 〉Pet |〈𝑣ε𝑥 , 𝜔
𝜖1
𝑓 〉〈𝑣

𝜖1
𝑓 , 𝜔〉|

2 = 2
∫
Γ∗0 (𝑝)\H

|𝑔(𝑧) |2𝑑𝑥𝑑𝑦 
∫ ∞

√
3/(2𝑝)

∫ 1/2

−1/2
|𝑔(𝑧) |2𝑑𝑥𝑑𝑦


∑
𝑛≥1

|〈𝑇𝑛𝑣ε𝑥 , 𝜔〉|2
∫ ∞

√
3/(2𝑝)

𝑒−4𝜋𝑛𝑦𝑑𝑦


∑
𝑛≥1

|〈𝑇𝑛𝑣ε𝑥 , 𝜔〉|2

𝑛
𝑒−2

√
3𝜋𝑛/𝑝 . (6.21)

Notice that for 𝑓 ∈ B𝑝 with 𝑊𝑝 𝑓 = 𝜖2 𝑓 , we have by self-adjointness of 𝜄 and 𝑊𝑝 with respect to the
cap product pairing that

〈𝑣ε𝑥 , 𝜔
𝜖1
𝑓 〉 = 4〈{ 𝑥𝑝 ,∞}, 𝜔

𝜖1
𝑓 〉.
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Now we sum over 0 < 𝑥 < 𝑝, ε ∈ {(±1,±1)} and apply Corollary 6.5 to the left-hand side of (6.21).
Finally, by expressing the Petersson inner product in terms of a special value of an adjoint L-function
(see, for example, [PR18, (8.6)]) and using the lower bounds of Hoffstein–Lockhart [HL94], we arrive at

〈 𝑓 , 𝑓 〉Pet =
𝑝𝐿(sym2 𝑓 , 1)

8𝜋3 �𝜀 𝑝
1−𝜀 .

Finally, we have by linearity of 𝑇𝑛 that

|〈𝑇𝑛𝑣ε𝑥 , 𝜔〉|2  |〈𝑇𝑛{ 𝑥𝑝 ,∞}, 𝜔〉|
2 + |〈𝑇𝑛{− 𝑥

𝑝 ,∞}, 𝜔〉|
2 + |〈𝑇𝑛{ 1

𝑥 ,∞}, 𝜔〉|
2 + |〈𝑇𝑛{− 1

𝑥 ,∞}, 𝜔〉|
2,

from which we conclude the wanted inequality since 2
√

3𝜋 > 8. �

6.4. The counting argument

By Lemma 6.7, we are reduced to a certain second moment count. We think of this as an analogue
of the matrix counts that show up in most approaches to the (arithmetic) sup norm problem (see, for
example, [Tem15]). Recall the Ramanujan bound |𝜆 𝑓 (𝑛) | ≤ 𝑛1/2𝑑 (𝑛) for Hecke eigenforms 𝑓 ∈ B𝑝 .
This implies for any class 𝑣 ∈ 𝐻1(𝑋0 (𝑝),R) and 𝜔 ∈ 𝐻1(𝑋0 (𝑝),R), we have

〈𝑇𝑛𝑣, 𝜔〉 𝑣,𝜔 𝑛
1/2𝑑 (𝑛), as 𝑛→∞.

This is, however, not useful as for us the main point is exactly the dependence on v and 𝜔. Our approach
is to use the explicit description of the Hecke operators and then lift the counting from Γ0(𝑝)ab to Γ0(𝑝).
As a first step, we use geometric coding as in Proposition 4.1 to obtain the following.

Lemma 6.8. Let 𝜔 ∈ 𝐻1(𝑋0 (𝑝),R) be a cuspidal cohomology class and 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ0(𝑝) with

𝑐 > 0. Then we have

|〈{𝛾∞,∞}, 𝜔〉| 
(

max
0<𝑥<𝑝

|〈{ 𝑥𝑝 ,∞}, 𝜔〉|
)

log 𝑐, (6.22)

uniformly in p.

Proof. Observe that {𝛾∞,∞} only depends on 𝑎/𝑐 mod 1. This means that without changing the
homology class, we may assume that 𝑎, 𝑑 are integers satisfying 2𝑐 ≤ |𝑎 + 𝑑 | ≤ 4𝑐 as well as
−𝑐 < 𝑎 − 𝑑 < 𝑐. This implies that all entries of 𝛾 are 𝑂 (𝑐), and that the half circle 𝑆𝛾 fixed by 𝛾
intersects the standard fundamental domain Fstd for PSL2 (Z). Recall Zagier’s fundamental polygon
F ′

Zag(𝑝) for Γ0(𝑝) defined in Section 4.2 which consists of PSL2(Z)-translates of Fstd, as well as the
fundamental polygon FZag(𝑝) := 𝑊𝑝F ′

Zag(𝑝). This latter polygon has the advantage that all entries of
the associated side pairing transformations are of size ≤ 𝑝, whereas for F ′

Zag(𝑝), the lower left entry
can be of magnitude 𝑝2. Notice also that the assumptions on 𝛾 above ensure that the half circle 𝑆𝛾 fixed
by 𝛾 intersects the Siegel domain {𝑧 ∈ H : | Re 𝑧 | ≤ 1/2, Im 𝑧 ≥ 1} which is contained in FZag(𝑝).

We now consider the geometric coding of 𝛾 with respect to FZag(𝑝) as in Corollary 4.2. This yields
an expression

𝛾 = 𝜎1 · · ·𝜎𝑁 ,

where 𝜎𝑖 ∈ S (FZag(𝑝)) are side pairing transformations. When considering the class {𝛾∞,∞} ∈
𝐻1 (𝑋0 (𝑝),Z) in the compact homology, we can ignore the parabolic elements among the 𝜎𝑖’s. More
precisely, if 𝜎′1, . . . , 𝜎

′
ℓ is the subsequence of 𝜎1, . . . , 𝜎𝑁 consisting of non-parabolic elements, then we

have
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{𝛾∞,∞} =
ℓ∑
𝑖=1
{𝜎′𝑖∞,∞} ∈ 𝐻1(𝑋0 (𝑝),Z).

Now ℓ is exactly the number of intersections between the geodesic from w to 𝛾𝑤 (for any 𝑤 ∈
FZag(𝑝) ∩ 𝑆𝛾) and Γ0 (𝑝)-translates of the sides of FZag(𝑝) being paired by non-parabolic elements.
This is equal to the number of intersections between the geodesic from w to 𝛾′𝑤 (where 𝛾′ = 𝑊𝑝𝛾𝑊

−1
𝑝

and 𝑤 ∈ F ′
Zag(𝑝) ∩ 𝑆𝛾′) and Γ0 (𝑝)-translates of the non-parabolic sides of F ′

Zag(𝑝) (this follows by
conjugating everything which preserves parabolicity). Recall that for F ′

Zag(𝑝), all sides containing a
cusp are paired by parabolic elements. Since F ′

Zag(𝑝) consists of PSL2(Z)-translates of Fstd, we can
bound ℓ by the number of intersections between the geodesic from w to 𝛾′𝑤 (for 𝑤 ∈ Fstd ∩ 𝑆𝛾′) and
PSL2(Z)-translates of the non-parabolic side of Fstd – that is, the arc

{𝑧 ∈ H : |𝑧 | = 1,−1/2 < Re 𝑧 < 1/2}.

It now follows from a result of Eichler [Eic65, Satz 1] that

ℓ  log((𝑎′)2 + (𝑏′)2 + (𝑐′)2 + (𝑑 ′)2)  log 𝑐,

where 𝑎′, 𝑏′, 𝑐′, 𝑑 ′ are the entries of 𝛾′, which by the assumptions on the entries of 𝛾 are all 𝑂 (𝑝𝑐) =
𝑂 (𝑐2). By definition of FZag(𝑝), we have for all 1 ≤ 𝑖 ≤ ℓ that 𝜎′𝑖∞ is of the form 𝑥

𝑝 with 0 < 𝑥 < 𝑝.
Thus, we conclude

|〈{𝛾∞,∞}, 𝜔〉|  ℓ

(
max

0<𝑥<𝑝
|〈{ 𝑥𝑝 ,∞}, 𝜔〉|

)
 log 𝑐

(
max

0<𝑥<𝑝
|〈{ 𝑥𝑝 ,∞}, 𝜔〉|

)
,

as wanted. �

This implies the following result for basic bases. Recall the definition of the cuspidal projection
operator Pcusp in (3.23).
Corollary 6.9. Let 𝐵 be a basic basis of level p. Then for 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ0(𝑝) with 𝑐 > 0 and 𝜔 ∈ 𝐵∗,

we have

|〈{𝛾∞,∞}, Pcusp 𝜔〉|  log 𝑐,

uniformly in p.
Proof. By Proposition 6.8, we are reduced to proving that

max
0<𝑥<𝑝

|〈{ 𝑥𝑝 ,∞}, Pcusp𝜔〉|  1

for 𝜔 ∈ 𝐵∗. Recall that we have

〈{ 𝑥𝑝 ,∞}, Pcusp𝜔〉 = 〈{𝛾𝑥𝑧, 𝑧}, 𝜔〉 − 〈𝑣𝐸 (𝑝), 𝜔〉〈{𝛾𝑥𝑧, 𝑧}, 𝜔𝐸 (𝑝)〉,

where 𝛾𝑥 :=
(
𝑥 −(𝑥𝑥∗+1)/𝑝
𝑝 −𝑥∗

)
with 0 < 𝑥∗ < 𝑝 such that 𝑥𝑥∗ ≡ −1 mod 𝑝 and 𝑧 ∈ H is arbitrary. Now by

Corollary 4.6, we have

〈𝑣𝐸 (𝑝), 𝜔〉  1, 〈{𝛾𝑥𝑧, 𝑧}, 𝜔〉  1,

and by (3.21), we have

〈{𝛾𝑥𝑧, 𝑧}, 𝜔𝐸 (𝑝)〉 
𝑝 |𝑥 − 𝑥∗ | + 𝑝2

𝑝2  1,

which yields the wanted bound. �
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6.5. Proof of Theorem 6.1

Combining all of the above, we are now ready to prove our sup norm bounds.

Proof of Theorem 6.1. Let B be a basic basis of level p. By the definition of the Hecke operators acting
on homology (3.12), we have for 𝜔 ∈ 𝐵∗ by Corollary 6.9

|〈𝑇𝑛{ 𝑥𝑝 ,∞}, Pcusp 𝜔〉| ≤
∑
𝑎𝑑=𝑛,
(𝑎,𝑝)=1

∑
0≤𝑏<𝑑

����〈{ 𝑎𝑥 + 𝑏𝑝𝑝𝑑
,∞

}
, Pcusp 𝜔

〉����


∑
𝑎𝑑=𝑛,
(𝑎,𝑝)=1

∑
0≤𝑏<𝑑

log 𝑝𝑑 𝜀 𝑝
𝜀𝑛1+𝜀 . (6.23)

Here, we are using that (𝑎𝑥 + 𝑏𝑝, 𝑝) = 1, meaning that 𝑎𝑥+𝑏𝑝
𝑝𝑑 is of the shape 𝛾∞ for 𝛾 ∈ Γ0(𝑝) with

left lower entry of size 𝑂 (𝑝𝑑). By changing contours, we have the following equality of compactly
supported homology classes:

{ 1
𝑥 , 0} = {

(
𝑥 1

𝑥𝑥−1 𝑥

)
0, 0} = {

(
𝑥 1

𝑥𝑥−1 𝑥

)
∞,∞} = { 𝑥

𝑥𝑥−1 ,∞}, 0 < 𝑥 < 𝑝 : 𝑥𝑥 ≡ 1 mod 𝑝.

A similar argument as above, again using Corollary 6.9, yields

|〈𝑇𝑛{ 1
𝑥 ,∞}, Pcusp 𝜔〉| 𝜀 𝑝

𝜀𝑛1+𝜀 , 𝜔 ∈ 𝐵∗.

Thus, by Lemma 6.7, we conclude that∑
𝑓 ∈B𝑝

|〈𝑣±𝑓 , 𝜔〉|
2 𝜀 𝑝

−1+𝜀
∑
𝑛≥1

𝑛2+𝜀

𝑛
𝑒−8𝑛/𝑝 𝜀 𝑝

1+𝜀 , 𝜔 ∈ 𝐵∗,

as wanted. �

7. The level aspect

Using the second moment bound from Theorem 6.1, we are ready to prove our main result.

Theorem 7.1. Let p be prime and let K be a real quadratic field of discriminant 𝑑𝐾 with no unit of norm
−1 such that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2 and 𝔭1 ∉ 𝐻 where 𝐻 = (Cl+𝐾 )2.

For 𝐵 a basic basis of level p and 𝜔 ∈ 𝐵∗, we have∑
𝐴∈𝐻 〈[C𝐴(𝑝)], 𝜔〉

|
∑

𝐴∈𝐻 〈[C𝐴(𝑝)], 𝜔𝐸 (𝑝)〉|
= −〈𝑣𝐸 (𝑝), 𝜔〉 +𝑂 𝜀 (𝑑−1/12+𝜀

𝐾 𝑝2+𝜀), (7.1)

where 𝑣𝐸 (𝑝), 𝜔𝐸 (𝑝) denotes the Eisenstein classes in homology and cohomology as defined in (3.19)
and (3.16), respectively.

Proof. Starting from (5.6), we want to bound the cuspidal contribution on the right-hand side, which by
(5.17) can be expressed in terms of L-functions. Recall that class group characters 𝜒 such that 𝜒 | (Cl+𝐾 )2

(i.e., genus characters) correspond to factorizations 𝑑1𝑑2 = 𝑑𝐾 in terms of fundamental discriminants,
and we have

𝐿(𝜋 𝑓 ⊗ 𝜋𝜒, 𝑠) = 𝐿( 𝑓 ⊗ 𝜒𝑑1 , 𝑠)𝐿( 𝑓 ⊗ 𝜒𝑑2 , 𝑠),

where 𝜒𝑑𝑖 = ( 𝑑𝑖· ) are quadratic characters. Now we apply Cauchy–Schwarz followed by Hölder’s
inequality with exponents (3, 3, 3) combined with Theorem 6.1 as well as the third moment bound of
Petrow and Young [PY19, Theorem 1]:
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𝐴∈𝐻

〈[C𝐴(𝑝)], Pcusp 𝜔〉

�����2
 𝑑1/2+𝜀

𝐾

 !"
∑

𝑓 ∈B𝑝 ,±
|〈𝑣±𝑓 , 𝜔〉|

2$%& !"
∑

𝑑1𝑑2=𝑑𝐾

∑
𝑓 ∈B𝑝

𝐿( 𝑓 ⊗ 𝜒𝑑1 , 1/2)𝐿( 𝑓 ⊗ 𝜒𝑑2 , 1/2)
$%&

 𝑑1/2+𝜀
𝐾

 !"
∑

𝑓 ∈B𝑝 ,±
|〈𝑣±𝑓 , 𝜔〉|

2$%&
×

∑
𝑑1𝑑2=𝑑𝐾

𝑝1/3 !"
∑
𝑓 ∈B𝑝

𝐿( 𝑓 ⊗ 𝜒𝑑1 , 1/2)3
$%&

1/3 !"
∑
𝑓 ∈B𝑝

𝐿( 𝑓 ⊗ 𝜒𝑑2 , 1/2)3
$%&

1/3

(7.2)

𝜀 𝑝
2+𝜀𝑑5/6+𝜀

𝐾 ,

for all 𝜔 ∈ 𝐵∗ (using here also that 𝐿( 𝑓 ⊗ 𝜒𝑑𝑖 , 1/2) ≥ 0). It follows from Proposition 5.2 that the
Eisenstein contribution on the right-hand side of (5.6) is �𝜀 𝑑

1/2−𝜀
𝐾 𝑝−1. Inserting all of this into (5.6)

yields as wanted. �

Recall that given a basis 𝐵 ⊂ 𝑉𝑝 = 𝐻1(𝑌0 (𝑝),R), we get an associated isomorphism 𝑉𝑝 � R2𝑔+1

by mapping B to the standard basis of R2𝑔+1. By pulling back the 𝐿𝑟 -norm with respect to the standard
basis of R2𝑔+1, we get the following norm on 𝑉𝑝:

||𝑣 ||𝐵,𝑟 :=

( ∑
𝜔∈𝐵∗

|〈𝑣, 𝜔〉|𝑟
)1/𝑟

for 1 ≤ 𝑟 < ∞, ||𝑣 ||𝐵,∞ := sup
𝜔∈𝐵∗

|〈𝑣, 𝜔〉|, (7.3)

with 𝐵∗ ⊂ 𝐻1 (𝑌0 (𝑝),R) the dual basis of B. Combining Theorem 7.1 and equations (5.2) and (5.4), we
arrive at the following (we will skip the details).

Theorem 7.2. Let p be prime and let K be a real quadratic field of discriminant 𝑑𝐾 with no unit of norm
−1 such that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2 and 𝔭1 ∉ 𝐻 where 𝐻 = (Cl+𝐾 )2.

For B a basic basis of level p, we have�������� ∑
𝐴∈𝐻 〈[C𝐴(𝑝)]〉

||
∑

𝐴∈𝐻 〈[C𝐴(𝑝)]〉||𝐵,∞
+ 𝑣𝐸 (𝑝)

��������
𝐵,∞

𝜀 𝑑
−1/12+𝜀
𝐾 𝑝2+𝜀 . (7.4)

8. Applications

In this section, we will present certain applications of Theorem 7.2.

8.1. A group theoretic application

Recall the independent generators of Γ0(𝑝) described in Section 4.3 coming from special fundamental
polygons. Given a real quadratic field K of discriminant 𝑑𝐾 such that p splits in K, the oriented closed
geodesics C𝐴(𝑝) associated to 𝐴 ∈ Cl+𝐾 corresponds to a conjugacy class of matrices inside Γ0(𝑝)
(given by the matrices 𝛾𝑄 defined in (3.3) where𝑄 ∈ Q𝐾,𝑝 runs through integral binary quadratic form
of discriminant 𝑑𝐾 and level p corresponding to A under the identification (3.2)). We will apply our
results to understand the representation of the matrices 𝛾𝑄 in terms of the independent generators (4.5)
(4.6), (4.7) and (4.8) coming from a special fundamental domain of Γ0(𝑝).

Corollary 8.1. Let p be prime and let P (𝑝) be a special fundamental polygon for Γ0(𝑝). Consider a real
quadratic field K of discriminant 𝑑𝐾 with no unit of norm −1 such that p splits in K with 𝑝O𝐾 = 𝔭1𝔭2
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and such that 𝔭1 ∉ (Cl+𝐾 )2. Then for 𝑑𝐾 �𝜀 𝑝
24+𝜀 , there is some class 𝐴 ∈ (Cl+𝐾 )2 such that none of

the matrices 𝛾𝑄 ∈ Γ0(𝑝) with 𝑄 ∈ Q𝐾,𝑝 corresponding to A are contained in the subgroup generated
by the matrices in (4.6), (4.7) and (4.8).

Proof. Let 𝐵sp ⊂ 𝐻1 (𝑌0 (𝑝),R) be a basis obtained from the side pairing transformations of P (𝑝). Note
that 𝑣𝐸 (𝑝) ∈ 𝐵sp and let 𝜔0 ∈ 𝐵∗sp be characterized by 〈𝑣𝐸 (𝑝), 𝜔0〉 = 1. Let 𝐵 be a basic basis of level
p containing 𝑣𝐸 (𝑝). Then by expanding in this basis, we get by Theorem 7.2 that〈 ∑

𝐴∈𝐻 [C𝐴(𝑝)]
||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||
, 𝜔0

〉
= −

〈
𝑣𝐸 (𝑝)
||𝑣𝐸 (𝑝) ||

, 𝜔0

〉
+
〈 ∑

𝐴∈𝐻 [C𝐴(𝑝)]
||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||
+ 𝑣𝐸 (𝑝)
||𝑣𝐸 (𝑝) ||

, 𝜔0

〉
= −1 +

∑
𝑣 ∈𝐵

〈𝑣, 𝜔0〉
〈 ∑

𝐴∈𝐻 [C𝐴(𝑝)]
||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||
+ 𝑣𝐸 (𝑝)
||𝑣𝐸 (𝑝) ||

, 𝑣∗
〉

= −1 +𝑂 𝜀

(
𝑑−1/12+𝜀
𝐾 𝑝2+𝜀

∑
𝑣 ∈𝐵

|〈𝑣, 𝜔0〉|
)
, (8.1)

where ||·|| = ||·||𝐵,∞ and 𝑣∗ ∈ 𝐵∗ is characterized by 〈𝑣, 𝑣∗〉 = 1. For 𝑣 ∈ 𝐵−{𝑣𝐸 (𝑝)}, let 𝛾𝑣 ∈ S (FZag(𝑝))
be such that

𝑣 = {𝑧, 𝛾𝑣 𝑧} ∈ 𝐻1(𝑌0 (𝑝),R),

using the notation (3.6) (note that the lower left entry of 𝛾𝑣 is equal to p). Now for 𝑌 > 0, consider a
curve 𝑐𝑌 : [0, 1] → H connecting the three points

𝛾−1
𝑣 ∞ + 𝑖𝑌 , 𝛾𝑣∞ + 𝑖𝑌 , 𝛾𝑣 (𝛾−1

𝑣 ∞ + 𝑖𝑌 ) = 𝛾𝑣∞ + 𝑖𝑝−2𝑌−1

by a (Euclidean) straight line. We assume that Y is large enough so that

{𝑥 + 𝑖𝑌 : min(𝛾𝑣∞, 𝛾−1
𝑣 ∞) < 𝑥 < max(𝛾𝑣∞, 𝛾−1

𝑣 ∞)} ⊂ P (𝑝).

Observe that by Corollary 4.2, the quantity |〈𝑣, 𝜔0〉| is bounded by the number of intersections between
𝑐𝑌 and Γ0(𝑝)-translates of {𝑖𝑦 : 𝑦 > 0} (which is a side of the special fundamental polygon P (𝑝)).
Since 0 < 𝛾𝑣∞, 𝛾−1

𝑣 ∞ < 1, there is no such intersection for the horizontal segment of 𝑐𝑌 . Intersections
with the vertical segment correspond to integers 𝑎, 𝑏, 𝑐, 𝑑 such that

𝑝 |𝑐, 𝑎𝑑 − 𝑏𝑐 = 1, and
𝑎

𝑐
< 𝛾𝑣∞ <

𝑏

𝑑
or
𝑏

𝑑
< 𝛾𝑣∞ <

𝑎

𝑐
. (8.2)

In particular, we have 𝛾𝑣 ≠ 𝑎
𝑐 , which implies���𝛾𝑣∞− 𝑎

𝑐

��� ≥ 1
|𝑐 | ,

���� 𝑏𝑑 − 𝑎𝑐 ���� = 1
|𝑐𝑑 | ,

but this contradicts (8.2). This implies that 〈𝑣, 𝜔0〉 = 0 for 𝑣 ∈ 𝐵 − {𝑣𝐸 (𝑝)} which by (8.1) yields the
wanted error-term. �

From the above, Corollary 1.7 follows in the case where K has wide class number one and narrow
class number two by writing out explicitly the matrices 𝛾𝑄 associated to 𝑄 ∈ Q𝐾,𝑝 as in (3.3) and
recalling that since K does not have a unit of norm −1, the condition 𝔭1 ∉ (Cl+𝐾 )2 is equivalent to 𝔭1 not
having a generator of positive norm.
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8.2. An application to modular forms

Recall the following definition mentioned in the introduction for a modular form 𝑓 ∈ M2 (𝑝):

𝑀 𝑓 := inf{𝑐 ≥ 0 : |𝑎 𝑓 (𝑛) | ≤ 𝑐𝜎1(𝑛), 𝑛 ≥ 1} < ∞,

where 𝑎 𝑓 (𝑛) denotes the Fourier coefficients of f (at ∞) and 𝜎1(𝑛) =
∑
𝑑 |𝑛 𝑑. We have the following

nonvanishing result for cycle integrals of modular forms.

Corollary 8.2. Let p be prime and let 𝑓 ∈ M2 (𝑝) be a holomorphic modular form of weight 2 and
level p with constant Fourier coefficient equal to 𝑎 𝑓 (0) = 1. Consider a real quadratic field 𝐾 of
discriminant 𝑑𝐾 with no unit of norm −1 such that 𝑝 splits in 𝐾 with 𝑝O𝐾 = 𝔭1𝔭2 and 𝔭1 ∉ (Cl+𝐾 )2.
Then for 𝑑𝐾 �𝜀 (𝑀 𝑓 )12+𝜀 𝑝48+𝜀 there is some 𝐴 ∈ (Cl+𝐾 )2 such that

〈[C𝐴(𝑝)], 𝑓 (𝑧)𝑑𝑧〉 =
∫
C𝐴 (𝑝)

𝑓 (𝑧)𝑑𝑧 ≠ 0.

Proof. Let

𝑓 (𝑧)𝑑𝑧 = 𝜔+ + 𝑖𝜔− ∈ 𝐻1(𝑌0 (𝑝),R) ⊕ 𝑖𝐻1(𝑋0 (𝑝),R)

be the cohomology class (with complex coefficients) associated to f. By expanding in a basic basis
𝐵 ⊂ 𝐻1(𝑌0 (𝑝),R) as in (8.1) and using Cauchy–Schwarz followed up by (7.4), we conclude that����〈 ∑

𝐴∈𝐻 [C𝐴(𝑝)]
||
∑

𝐴∈𝐻 [C𝐴(𝑝)] ||𝐵,∞
− 𝑣𝐸 (𝑝), 𝜔±

〉���� 𝜀 𝑝
3+𝜀𝑑−1/12+𝜀

𝐾 sup
𝑣 ∈𝐵

|〈𝑣, 𝜔±〉|.

Now by the assumptions on the Fourier expansion of f, we get

𝑓 (𝑥 + 𝑖𝑦)  1 + 𝑀 𝑓

∑
𝑛≥1

𝜎1(𝑛)𝑒−2𝜋𝑦𝑛 𝜀 1 + 𝑀 𝑓

∫ ∞

1
𝑡1+𝜀𝑒−2𝜋𝑡𝑦 𝑑𝑡

𝑡
𝜀 max(1, 𝑀 𝑓 𝑦

−1−𝜀).

In order to bound the quantities 〈𝑣, 𝜔±〉 for 𝑣 ∈ 𝐵, we recall that we can write 𝑣 = {𝛾𝑧, 𝑧} for
𝑧 ∈ H (which we may choose freely) and some matrix 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ S (FZag(𝑝))as in Section 4.2. In

particular, we observe that by construction, we have 𝑎, 𝑏, 𝑐, 𝑑  𝑝 and 𝑐 ∈ {0, 𝑝}. If 𝑐 = 0, then clearly
〈𝑣, 𝜔±〉 ∈ {0, 1}. If 𝑐 = 𝑝, we make the following convenient choice 𝑧 = −𝑑

𝑝 + 𝑖
𝑝 satisfying 𝛾𝑧 = 𝑎

𝑝 +
𝑖
𝑝 .

This gives

〈𝑣, 𝜔±〉 =
∫ −𝑑/𝑝

𝑎
𝑝

𝑓 (𝑥 + 𝑖𝑝−1) ± 𝑓 (𝑥 + 𝑖𝑝−1)
2𝑖 (1∓1)/2 𝑑𝑥 𝜀 𝑀 𝑓

|𝑎 + 𝑑 |
𝑝

𝑝1+𝜀 𝜀 𝑀 𝑓 𝑝
1+𝜀 ,

which we plug into the above. Since 〈𝑣𝐸 (𝑝), 𝜔+〉 = 1 and 〈𝑣𝐸 (𝑝), 𝜔−〉 = 0, we conclude that
〈
∑

𝐴∈𝐻 [C𝐴(𝑝)], 𝑓 (𝑧)𝑑𝑧〉 is indeed nonvanishing for 𝑑𝐾 �𝜀 (𝑀 𝑓 )12+𝜀 𝑝48+𝜀 , as wanted. �

Now Corollary 1.8 follows from the above in the case of wide class number one and narrow class
number two.
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