FINITE GROUPS WITH SHORT NONNORMAL CHAINS

ARMOND E. SPENCER
(Received 5 October 1971, revised 5 April 1972)
Communicated by G. E. Wall

This note is a continuation of the author's work [6], describing the structure of a finite group given some information about the distribution of the subnormal subgroups in the lattice of all subgoups. The notation is that of [6], briefly as follows:

Definition. An upper chain of length n in the finite group G is a sequence of subgroups of $G ; G=G_{0}>G_{1}>\cdots>G_{n}$, such that for each i, G_{i} is a maximal subgroup of G_{i-1}. Let $h(G)=n$ if every upper chain in G of length n contains a proper $(\neq G)$ subnormal entry, and there is at least one upper chain in G of length ($n-1$) which contains no proper subnormal entry.

Let $k(G)$ denote the derived length of $G,|G|$ denote the order of $G, \pi(G)$ denote the number of distinct prime divisors of $|G|, l(G)$ denote the Fitting length of G, and $\omega(G)$ denote the length of the longest upper chain in G. Note that if G is solvable, $\omega(G)$ is simply the number of prime factors of $|G|$.

We obtain the following theorem.
Theorem. If G is a finite solvable, non-nilpotent group, then
(1) $k(G) \leqq h(G)$
(2) $\quad l(G) \leqq h(G)-\pi(G)+2$.

For reference we list a few lemmas, proven in [6], concerning the function h. All groups under consideration are assumed to be finite.

Lemma 1. If N is a normal subgroup of G, then $h(G / N) \leqq h(G)$.
Lemma 2. If H is a nonnormal maximal subgroup of G, then $h(H)<h(G)$.
Lemma 3. If $G=H \times K$, where H is not nilpotent, then $h(G) \geqq h(H)+\omega(K)$.
Lemma 4. If N is a proper normal subgroup of G and $h(G / N)=h(G)$, then N is cyclic of prime power order.

In [6, Theorem 1] the author showed that for a solvable group $G, l(G) \leqq h(G)$. We now prove a stronger result relating $h(G)$ and $k(G)$.

Theorem 1. If G is a finite solvable group such that $2 \leqq h(G) \leqq n$, then $k(G) \leqq n$.

Proof. The proof is by induction on n. For $n=2$, the theorem follows from [6, Theorem 5], so assume the theorem is true for all groups K satisfying $2 \leqq h(K) \leqq(n-1)$, and is false for some group K satisfying $h(K)=n$. Among such groups, let G be one of minimal order. We show that such a group G does not exist. For such a group G we have:
(1) G has a proper non-nilpotent homomorphic image.

Suppose not and let N denote a minimal normal subgroup of G, and let L denote a nonnormal maximal subgroup of G. Since $h(G) \geqq 2$, such an L exists. Since G / N is nilpotent, and L is nonnormal, $N \nsubseteq L$. Therefore $L N=G$, and $L \cap N=\{1\} . L$ is core free and nilpotent, so L does not contain a non trivial subgroup subnormal in G. Thus $h(G) \geqq 1+\omega(L)$. But then

$$
1+\omega(L) \leqq h(G)<k(G) \leqq 1+k(L) \leqq 1+\omega(L)
$$

which is a contradiction.
(2) If A is an abelian normal subroup of G and G / A is not nilpotent, then $h(G / A)=h(G)$.

In any case $h(G / A) \leqq h(G)$. If $h(G / A)<h(G)$, we have by induction that $k(G / A) \leqq h(G / A)$, so that $k(G) \leqq h(G)$. This contradicts the choice of G, so is impossible.
(3) $k(G)=n+1$

Let A denote an abelian normal subgroup of G such that G / A is not nilpotent. By (1), such an A exists. By (2), $h(G / A)=n$, so

$$
n=h(G)<k(G) \leqq k(G / A)+1=h(G / A)+1 \leqq n+1
$$

(4) G has a unique minimal normal subgroup.

If N is a minimal normal subgroup of G, then either G / N is nilpotent or $k(G / N) \leqq n$, so clearly there are at most two minimal normal subgroups. Suppose there are two, say A and B such that G / A is not nilpotent, and G / B is nilpotent. Let L be a nonnormal maximal subgroup of G. Now $B \nsubseteq L$, so $G=B L$, and $B \cap L=\{1\}$. Also $h(G / A)=n$, so $k(G / A)=n$, and hence $k(G / B)=k(L)$ $=n+1$. Now $G^{\prime} \geqq B$, and $G^{(n)}=A \geqq B$, so let r be minimal with respect to $G^{(r)} \geqq B$, and $G^{(r+1)} \geq B . G / G^{(r+1)}$ is not nilpotent, and each nonnormal maximal subgroup of G is a complement to B so without loss of generality we may assume that $G^{(r+1)} \leqq L$. But since $G^{(r+1)} B=G^{(r+1)} \times B=G^{(r)}$, we have $k\left(G^{(r)}\right)=$ $k\left(G^{(r+1)}\right)$, which is a contradiction. Thus there is ust one minimal normal
subgroup. Note that by the minimality of G, and (2) and (3), the unique minimal normal subgroup is actually of prime order and is actually $G^{(n)}$.
(5) G does not contain a normal Sylow subgroup.

This follows from (2) and (4), and the fact that the next to last entry in an h-chain for G is cyclic, primary, and not subnormal. Here h-chain refers to any upper chain in G of length $h(G)$ with only its terminal entry subnormal in G.
(6) For each $r, h\left(G / G^{(r)}\right)=r$ or 1 .

This is certainly true for $r=1$ and $r=n$, so suppose $h\left(G / G^{(r+1)}\right)=r+1$, and consider $G / G^{(r)}$. If $h\left(G / G^{(r)}\right) \neq 1$, then since $k\left(G / G^{(r)}\right)=r, h\left(G / G^{(r)}\right) \geqq 1$. To show equality, we suppose that $h\left(G / G^{(r)}\right)>r$, and let $G=H_{0}>H_{1}>\cdots H_{r}$ $>G^{(r)}$ be an h-chain for $G / G^{(r)}$. Now H_{r} is not subnormal in G, and $h\left(G / G^{(r+1)}\right)$ $=r+1$, so $H_{r} / G^{(r+1)}$ is cyclic of prime power order. But then $G^{(r)} / G^{(r+1)}$ is cyclic, which implies that $G^{(r)}$ is cyclic, hence $r=n$. Thus (6) follows.
(7) $\quad G^{(3)} \leqq \Phi(G)$.

Certainly $G^{(3)}$ is in each normal maximal subgroup, so let L denote a nonnormal maximal subgroup. By lemma $1, h(L) \leqq(n-1)$, so by induction $k(L) \leqq(n-1)$. By (4), $G^{(n)}$ is a minimal normal subgroup of G, so since $k(G)$ $k(G)=(n+1), L \geqq G^{(n)}$. Now $L \geq G^{\prime}$ so let s be minimal with respect to $G^{(s)} \$ L$. We show that $s=2$. Certainly $G^{(s)} L=G$, and $G^{(s)} \cap L \geqq G^{(s+1)}$, and by (6), $h\left(G / G^{(s+1)}\right)=s+1$. Let C denote the core of L in $G . C \cap G^{(s)}=L \cap G^{(s)}$, and $k(G / C)=s+1$, so $h(G / C)=s+1$. Let

$$
L=L_{1}>L_{2}>\cdots>L_{s}>\cdots>C
$$

be a composition series for L thru C. In the chain:

$$
G=G_{0}>L_{1}>L_{2} \cdots>L_{s}
$$

no proper entry is subnormal in G. However $h\left(G / G^{(s+1)}\right)=s+1$, so $L_{s} / G^{(s+1)}$ is cyclic, and moreover L_{s} / C is of prime order. Let $D=C \cap G^{(s)}$. Then C / D and $G^{(s)} / D$ are abelian, so $C G^{(s)} / D$ is abelian. But since $k(G / D)=s+1, k\left(G / C G^{(s)}\right)=s$. Hence $k(L / C)=s$, but $\omega(L / C) \leqq s$, and so $s=2$.
(i) G has a Sylow tower.
$G / G^{(3)}$ is not nilpotent so by (6), $h\left(G / G^{(3)}\right)=3$. By [6, Theorem 2, Theorem 3], $G / G^{(3)}$ has a Sylow tower. Hence by (7), $G / \phi(G)$ has a Sylow tower. Thus G has a Sylow tower, which contradicts (5), and hence G does not exist, and the theorem is proved.

Mann [5, Theorem 8] described the structure of a group G satisfying $\pi(G)=n$ and having each nth maximal subgroup subnormal. Some of the same structure was noted by the author [6 , Theorem 4] under the weaker hypothesis, $h(G)=n$. To see that this is truly a weaker hypothesis, consider the group G given by $G=S_{3} l Z_{x} .|G|=72$, and the Sylow-3-subgroup is a minimal normal subgroup.

An h-chain for G must begin with a Sylow-2-subgroup, and thus $h(G)=4$. However there are subgroups of order 2 in G which are fourth maximal and not subnormal. In particular if G_{1} denotes the copy of $S_{3} \times S_{3}$ in G then a subgroup of order 2 in G_{1} is not subnormal in G_{1}. Notice also that $h\left(G_{1}\right)=4$, showing in general that the h function is not strictly decreasing on subgroups. We now show that the rest of Theorem 8 in [5] follows from the hypothesis $h(G)=n$.

Theorem 2. If G is a finite solvable group such that $h(G)=\pi(G) \geqq 2$, then $G=N H$ where N is a normal nilpotent Hall subgroup with elementary abelian Sylow subgroups, H is a complement to N, H is cyclic, and if $\pi(H) \geqq 2$, then $|H|$ is square free.

Proof. Let N be the product of all normal Sylow subgroups of G and let H be a complement to N. By [6 , Theorem 4], N has the required structure, and if $\pi(H) \geqq 2$, then $|H|$ is square free. All that remains to be shown is that in the case $\pi(H) \geqq 2, H$ is cyclic. Let Q denote a nonnormal Sylow subgroup of G, and let P denote a normal Sylow subgroup of G, Then Q either centralizes P or acts in a fixed point free manner on P. To see this, consider an upper chain from G thru $N(Q)$ to Q. Since this chain has at least $\pi(G)-1$ entries, none of which is subnormal in G, and $h(G)=\pi(G)$, each entry is a Sylow complement in its predecessor. Let $S>T$ be the link in this chain such that $[S: T]=|P|$. If $S \leqq N(Q)$ then P and Q commute elementwise. If $S \neq N(Q)$ then $N(Q) \cap P=\{1\}$, and so Q acts in a fixed point free manner on P since P is a minimal normal subgroup of S. Moreover if Q centralizes P, then P is cyclic of prime order. We see this by looking at a chain thru $N(Q)$ and $P Q$ to Q. From [6, Theorem 4] it follows that if $\pi(H) \geqq 2$, then $|H|$ is square free, so it remains to show that H is abelian. We consider two cases:

Case 1. N is cyclic. In this case H is isomorphic to a subgroup of $\operatorname{Aut}(N)$ and is thus abelian.

Case 2. N is not cyclic. In this case let P denote a non cyclic Sylow subgroup of N. Let R and Q denote non isomorphic Sylow subgroups of H. Then R and Q each act in a fixed point free manner on P, but by Burnside [1, p. 335] this implies that $R Q$ is cyclic. Since R and Q were arbitrary, H is abelian.

Mann pointed out that groups of this very special structure actually do satisfy the condition that every nth maximal subgroup is subnormal.

In [6, Theorem 1] it was noted that $l(G) \leqq h(G)$, and later in the same paper it was remarked that in case $h(G)-\pi(G)=0, l(G) \leqq 3$. Theorem 2 above shows that in this case $l(G) \leqq 2$. We now give a better bound on $l(G)$.

Theorem 3. It G is a finite solvable non-nilpotent group then $l(G) \leqq h(G)$ $-\pi(G)+2$.

Proof. The theorem is true for groups of small order so let G be a counter example of minimal order. We show that G does not exist. Such a group G must satisfy:
(1) $\Phi(G)=1$

This follows since $l(G / \phi(G))=l(G), h(G / \Phi(G)) \leqq h(G)$, and $\pi(G / \Phi(G))=\pi(G)$.
(2) Each minimal normal subgroup of G is a Sylow subgroup.

Let M denote a minimal normal subgroup. If G / M is nilpotent, then $l(G)=2$ and since $h(G)-\pi(G) \geqq 0$, the theorem follows. So G / M is not nilpotent. Suppose M is not a Sylow subgroup. Certainly $l(G / M) \leqq l(G)$. If $l(G / M)=l(G)$ then

$$
l(G) \leqq h(G / M)-\pi(G / M)+2 \leqq h(G)-\pi(G)+2
$$

and the theorem is true. So suppose $l(G / M)<l(G)$. In this case let L denote a complement to M in G. By (1) such a complement exists. Then $l(L)=l(G)-1$ so $L \nrightarrow G$, and so by Lemma $2, h(L)<h(G)$ and so by the minimality of G,

$$
l(G)=l(L)+1 \leqq h(L)-\pi(L)+3 \leqq h(G)-\pi(G)+2 .
$$

This contradiction shows that M is a Sylow subgroup.
(3) G has a unique minimal normal subgroup.

If N is any minimal normal subgroup of G and T is a complement to N, then by Lemma 2 or Lemma $4, h(T)<h(G)$. In either case $l(T) \leqq h(G)-\pi(G)+2$ If there are two minimal normal subgroups say N_{1} and N_{x}, then $l\left(G / N_{i}\right) \leqq h(G)$ $-\pi(G)+2$ so

$$
l(G)=l\left(G / N_{1} \cap N_{2}\right) \leqq h(G)-\pi(G)+2
$$

This contradicts the choice of G, so there is only one minimal normal subgroup.
For the remainder of the proof let M denote the unique minimal normal subgroup of G, and let L denote a complement to M. Since M is unique, L is core free and so $h(G) \geqq 1+\omega(L)$.
(4) $h(L)=h(G)-1=\omega(L)$.

As in (3), $h(L) \leqq h(G)-1$. If $h(L) \leqq h(G)-2$, then

$$
l(G) \leqq l(L)+1 \leqq h(G)-\pi(G)+2
$$

This is a contradiction hence (4) follows.
(5) $l(L) \geqq 3$

This follows from Theorem 2. If $l(L)=2, h(L)-\pi(L)=0$ and so $h(G)-\pi(G)=0$ and from Theorem $2, l(G) \leqq 2$.
(6) Each normal prime power subgroup of L is either a Sylow subgroup of L (hence of G) or is cyclic.

Let N denote a normal prime power subgroup of L. By (5) L / N is not nilpotent. Since $l(L / N)=l(L)-1$ we have

$$
h(L)-h(L / N) \leqq \pi(L)-\pi(L / N)+1
$$

Thus if N is not a Sylow subgroup, $h(L)-h(L / N) \leqq 1$. However from (4), $h(L)=\omega(L)$ so that $\omega(N)=1$. In fact if N is a Sylow subgroup we still have $h(L)-h(L / N) \leqq 2$ so that $\omega(N) \leqq 2$. If $l(L / N)=l(L)$, then

$$
h(L)-\pi(L)+2 \leqq h(L / N)-\pi(L / N)+2
$$

so that $0<\pi(L)-\pi(L / N) \leqq 1$, and thus N is a Sylow subgroup.
To recap: Let N denote a prime power normal subgroup of L. If $l(L / N=l(L)$ then N is a cyclic Sylow subgroup, and if $l(L / N)<l(L)$ then N is either a Sylow subgroup or is cyclic, and in any case $\omega(N) \leqq 2$.
(7) The Fitting subgroup of L contains a Sylow subgroup of L.

Let F denote the Fitting subgroup of L. Since $l(L / F)+1=l(L)$,

$$
h(L)-h(L / F) \leqq \pi(L)-\pi(L / F)+1
$$

If F does not contain a Sylow subgroup of L we have $h(L)-h(L / F)=1$. But by (4), $h(L)=\omega(L)$, so that $\omega(F)=1$. But then $F \leq Z(P)$ for some Sylow subgroup P. This is impossible so F contains a Sylow subgroup of L.
(8) Using the same notation as in (7), F is a Hall subgroup of L.

Suppose not and let T be a Sylow subgroup of F such that T is Sylow subgroup of L. By (6), T is cyclic. By (7) $T \neq F$ so let $K \triangleleft F$ such that K is a Sylow subgroup of L. Again by (7), $l(L)=l(L / T)+1$, so $l(L / K)=l(L)$ and so K is of prime order. Thus the Sylow subgroups of F are cyclic, and so F is cyclic. But then L / F is abelian, contrary to (5).
(9) Let H be the next to last entry in an h-chain for L, (i.e. H can be joined to L by an upper chain of length $h(L)-2$ with no entry in the chain subnormal in L.) Then H acts irreducibly on M.

The chain $G=L M>L_{1} M>\cdots>H M$, where the $\left\{L_{i}\right\}$ from an upper chain from L to H, is $h(G)-2$ entries long and has no entry subnormal in G. If H normalized a subgroup M_{1} of M, then since H is not subnormal in $L, H M_{1}$ is not subnormal in G and is $(h(G)-1)$ th maximal and is hence cyclic. But M is a Sylow subgroup so this is impossible.
(10) Let H be as in (9). If T is a subgroup of $\operatorname{Fitt}(L)$ of prime order such that H normalizes T then H centralizes T.

Consider the group $M H T . M T \triangleleft M H T$ and if H does not centralize T, H acts in a fixed point free manner on $M T$. But then $M T$ is nilpotent, which is contrary to the fact that L is core free.
(11) Let H be as in (9), then H centralizes $F=\operatorname{Fitt}(L)$.

From (10) H centralizes the cyclic Sylow subgroups of F. By (6), $|F|$ is a cube free, so let X denote a Sylow subgroup of F of order q^{2}, q a prime. $X \triangleleft L$ and since the h-chain for L thru H has each entry of prime index in its predecessor,
H normalizes a subgroup X_{1} of X of prime order. But then by (10) H centralizes X_{1}, and by [3, Theorem 3.3.2] $X=X_{1} \times X_{2}$ with $X_{2} H$-invariant. Again by (10) H centralizes X_{2}, hence H centralizes X.

We have shown that H centralizes F, but $C_{L}(F)=F \nexists H$. This contradiction shows that G does not exist, and so the theorem follows.

It was noted [6, Theorem 6] that if $h(G) \leqq 3$ then G is solvable, while the simple group A_{5} has $h\left(A_{5}\right)=4$. Janko [4] described the groups with each fourth maximal subgroup normal. We now show that these results follow from the hypothesis $h(G)=4$.

Theorem 4. If G is a finite non-solvable group with $h(G)=4$, then G is isomorphic $S L(2,5)$ or $L F(2, p)$ where $p=5$ or p is a prime such that $(p-1)$ and $(p+1)$ are products of at most 3 primes and $p \equiv \pm 3$ or $\equiv 13(\bmod 40)$.

Proof. If G is simple and $h(G)=4$ then each fourth maximal subgroup is trivial and this is just Janko's theorem. So suppose G is non-solvable and nonsimple group with $h(G)=4$. Then G must satisfy the following:
(1) Each non-normal maximal subgroup of G is solvable. This follows from Lemma 2 and [6, Theorem 6].
(2) If $N \triangleleft G$ then either N or G / N is solvable, and in particular if G / N is not solvable, N is cyclic of prime power order.

This follows from Lemma 4 and [6, Theorem 6].
(3) If S is a solvable normal subgroup of G then $S \unlhd \phi(G)$.

Suppose not and let L be a maximal subgroup of G such that $L \nsupseteq S . G / S$ is not solvable so L is not solvable hence by (1) $L \triangleleft G$. Now $L / L \cap S$ is not solvable hence $h(L / L \cap S) \geqq 4$. Then by Lemma 3, $h(G / L \cap S) \geqq 4+\omega(S /(L \cap S))>4$ which is impossible.
(4) $h(G / \Phi(G))=4$, and $\phi(G)$ is a cyclic p-group. This follows from [6, Theorem 6] and Lemma 4.
(5) $G / \Phi(G)$ has a cube free order.

Let $S / \Phi(G)$ denote a Sylow subgroup of $G / \Phi(G)$. Consider an upper chain $G>G_{1} \geqq \cdots N(S) \geqq \cdots S>\cdots \Phi(G)$. Since all subnormal solvable subgroups of G lie in $\Phi(G)$ no entry in this chain properly containing $\Phi(G)$ is subnormal in G. Also since $h\left(G_{1}\right) \leqq 3, G_{1}$ is solvable, and so $\omega\left(G_{1} / \Phi(G)\right) \leqq 3$. If $G_{1}=S$ then $\omega\left(G_{1} / \Phi(G)\right)=3$ so that $G_{1} / \Phi(G)$ is nilpotent of class $\leqq 2$, and by a theorem of Deskins [2, Theorem 1] $G / \Phi(G)$ is solvable. This is impossible, thus $S \not G_{1}$ and so $\omega(S) \leqq 2$.
(6) $G / \Phi(G)$ is simple.

Let $N / \Phi(G)$ denote a proper minimal normal subgroup of $G / \Phi(G)$. By (3) $N / \Phi(G)$ is not solvable, so since $|G / \Phi(G)|$ is cube free, $N / \Phi(G)$ is simple. Notice that $4||N / \Phi G|$ and $| G / N \mid$ is odd so G / N is solvable. Let $T / \Phi(G)$ denote a Sylow

2-subgroup of $N / \Phi(G)$. Consider a chain

$$
G>N(T)>N(T) \cap N \geqq T>T_{1}>\Phi(G)
$$

Since T_{1} is not subnormal in G, this chain does not contain a subnormal entry properly containing $\phi(G)$, so T is second maximal in this chain. i.e. $T=N(T) \cap N$. But then by Burnside's theorem N is solvable. This contradiction shows N does not exist.

Since $G / \phi(G)$ is simple G does not have a normal maximal subgroup, and so by (1) all maximal subgroups of G are solvable. Since each upper chain of length 4 in G contains in a solvable subgroup, each fourth maximal subgroup of G is normal. Janko's theorem [4, Theorem 3] yields the desired result.

References

[1] W. Burnside, Theory of groups of finite order, 2nd ed. (Dover, New York, 1955).
[2] W. E. Deskins, 'A condition for the solvability of a finite group', Illinois J. Math. 2 (1961), 306-313.
[3] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
[4] Z. Janko, 'Finite groups with invariant fourth maximal subgroups', Math. Zeit. 82 (1963), 82-89.
[5] H. Mann, 'Finite groups whose n-maximal subgroups are subnormal', Trans. Amer. Math. Soc. 2 (1968), 395-409.
[6] A. Spencer, 'Maximal nonnormal chains in finite groups', Pacific J. Math. 27 (1968), 167-173.

State University of New York
Potsdam, New York, 13676
U.S.A.

