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This note is a continuation of the author's work [6], describing the structure
of a finite group given some information about the distribution of the subnormal
subgroups in the lattice of all subgoups. The notation is that of [6], briefly as
follows:

DEFINITION. An upper chain of length n in the finite group G is a sequence
of subgroups of G; G = Go> Gt> ••• > Gn, such that for each i, G; is a maximal
subgroup of G;_!. Let h(G) = n if every upper chain in G of length n contains
a proper ( ^ G) subnormal entry, and there is at least one upper chain in G of
length (n — 1) which contains no proper subnormal entry.

Let fc(G) denote the derived length of G, | G | denote the order of G, n(G)
denote the number of distinct prime divisors of | G | , / ( G ) denote the Fitting
length of G, and co(G) denote the length of the longest upper chain in G. Note
that if G is solvable, co(G) is simply the number of prime factors of | G |.

We obtain the following theorem.

THEOREM. IfG is a finite solvable, non-nilpotent group, then

(1) k{G) ^ h(G)

(2) /(G) :g h(G) - n(G) + 2.

For reference we list a few lemmas, proven in [6], concerning the function h.
All groups under consideration are assumed to be finite.

LEMMA 1. IfN is a normal subgroup ofG, then h(G/N) ^ h(G).

LEMMA 2. IfH is a nonnormal maximal subgroup of G, then h(H) < h(G)~

LEMMA 3. IfG = HxK, where H is not nilpotent, then h(G) ^ h(H) + co(K).

LEMMA 4. IfN is a proper normal subgroup of G and h(G/N) = h(G), then
N is cyclic of prime power order.
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112 Armond E. Spencer [2]

In [6, Theorem 1] the author showed that for a solvable group G, /(G) ^ h(G).
We now prove a stronger result relating h{G) and k{G).

THEOREM 1. / / G is a finite solvable group such that 2 ^ h(G) g n, then
k(G) ^ n.

PROOF. The proof is by induction on n. For n = 2, the theorem follows from
[6, Theorem 5], so assume the theorem is true for all groups K satisfying
2 ^ h(K) ^ (n — 1), and is false for some group K satisfying h(K) = n. Among
such groups, let G be one of minimal order. We show that such a group G does
not exist. For such a group G we have:

(1) G has a proper non-nilpotent homomorphic image.

Suppose not and let N denote a minimal normal subgroup of G, and let L
denote a nonnormal maximal subgroup of G. Since h(G) 2: 2, such an L exists.
Since GjN is nilpotent, and L is nonnormal, N ^ L. Therefore LN = G, and
L n i V = { l } . L i s core free and nilpotent, so L does not contain a non trivial
subgroup subnormal in G. Thus h(G) ^ 1 + co(L). But then

1 + co(L) S KG) < k(G) ^ 1 + fc(L) ^ 1 + co(L),

which is a contradiction.

(2) If A is an abelian normal subroup of G and G\A is not nilpotent, then
h(G/A) = h(G).

In any case h(G/A) ^ h(G). If /i(G/A) < /i(G), we have by induction that
k(G/A) ^ h(G/A), so that k(G) ^ /<G). This contradicts the choice of G, so is
impossible.

(3) fc(G) = n + 1
Let 4̂ denote an abelian normal subgroup of G such that GjA is not nilpotent.

By (1), such an A exists. By (2), h{GjA) = n, so

n = h(G) < k(G) ^ k(G/A) + 1 = h(G/A) + 1 ^ n + 1.

(4) G has a unique minimal normal subgroup.
If JV is a minimal normal subgroup of G, then either G/N is nilpotent or

k{GjN) S n, so clearly there are at most two minimal normal subgroups. Suppose
there are two, say A and B such that GjA is not nilpotent, and GIB is nilpotent.
Let L be a nonnormal maximal subgroup of G. Now B % L, so G = BL, and
B n L = { l } . Also h(G/A) = n, so fc(G/X) = n, and hence fc(G/B) = k(L)
= n + 1. Now G' ^ B, and G(n) = A ^ B, so let r be minimal with respect to
G(r) ^ 5 ,andG( r + 1 ) ^ B. G/G(r+1) is not nilpotent, and each nonnormal maximal
subgroup of G is a complement to B so without loss of generality we may assume
that G(r+1) S L. But since G(r+1)B = G(/-+1) x B = G(r), we have /c(G(r)) =
k(G(r+1)), which is a contradiction. Thus there is ust one minimal normal
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subgroup. Note that by the minimality of G, and (2) and (3), the unique minimal
normal subgroup is actually of prime order and is actually G(n).

(5) G does not contain a normal Sylow subgroup.

This follows from (2) and (4), and the fact that the next to last entry in an
/i-chain for G is cyclic, primary, and not subnormal. Here /j-chain refers to any
upper chain in G of length h(G) with only its terminal entry subnormal in G.

(6) For each r, h(GjG{r)) = r or 1.

This is certainly true for r = 1 and r = n, so suppose /2(G/G(r+1)) = r + 1,
and consider GlG(r). If /j(G/G(r)) # 1, then since k{GjG(r)) = r, /j(G/G{r)) ^ 1.
To show equality, we suppose that h(G/Gir)) > r, and let G = Ho > Ht > •Hr

> G(r) be an /j-chain for G/G(r\ Now Hr is not subnormal in G, and h(G[G(r+1))
= r + 1, so /7r/G

(r+1) is cyclic of prime power order. But then G(r)/G(r+x) is cyclic,
which implies that G w is cyclic, hence r = n. Thus (6) follows.

(7) G(3) g <P(G).

Certainly G(3) is in each normal maximal subgroup, so let L denote a non-
normal maximal subgroup. By lemma 1, h(L) ^ (n — 1), so by induction
fc(L) ^ (n — 1). By (4), G(n) is a minimal normal subgroup of G, so since fc(G)
k(G) = (n + 1), L ^ G(n). Now L £ G' so let s be minimal with respect to
G(s) $ L. We show that s = 2 . Certainly G(s)L = G, and G w n L ^ G(s+1), and
by (6), /i(G/G(s+1}) = s + 1. Let C denote the core of L in G. C O G(s) = L O G(s\
and fc(G/C) = s + 1, so h(G/C) = s + 1. Let

L = Lt> L2> ••• > Ls> ••• > C

be a composition series for L thru C. In the chain:

G = G0>Lt >L2- >LS

no proper entry is subnormal in G. However /i(G/G(s+1)) = s + 1, so Ls/G
(s+1) is

cyclic, and moreover L,/C is of prime order. Let D = C n G(s). Then C/D and
G(s)/£> are abelian, so CG(s)/£ is abelian. But since k(G/D) = s + 1, k(G/CGM) = s.
Hence fe(L/C) = s, but co(LjC) ^ s, and so s = 2.
(i) G has a Sylow tower.

G/G(3) is not nilpotent so by (6), /i(G/G(3)) = 3. By [6, Theorem 2, Theorem
3], G/GC3) has a Sylow tower. Hence by (7), G/cp(G) has a Sylow tower. Thus G
has a Sylow tower, which contradicts (5), and hence G does not exist, and the
theorem is proved.

Mann [5, Theorem 8] described the structure of a group G satisfying n(G) = n
and having each nth maximal subgroup subnormal. Some of the same structure
was noted by the author [6, Theorem 4] under the weaker hypothesis, h(G) = n.
To see that this is truly a weaker hypothesis, consider the group G given by
G = S3IZX. \GI = 72, and the Sylow-3-subgroup is a minimal normal subgroup.
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An h-chain for G must begin with a Sylow-2-subgroup, and thus h(G) = 4 . How-
ever there are subgroups of order 2 in G which are fourth maximal and not sub-
normal. In particular if Gt denotes the copy of S3 x S3 in G then a subgroup of
order 2 in Gl is not subnormal in Gt. Notice also that h(Gi) = 4 , showing in
general that the h function is not strictly decreasing on subgroups. We now show
that the rest of Theorem 8 in [5] follows from the hypothesis h(G) = n.

THEOREM 2. IfG is a finite solvable group such that h(G) = n(G) ^ 2, then
G = NH where N is a normal nilpotent Hall subgroup with elementary abelian
Sylow subgroups, H is a complement to N, H is cyclic, and if n(H) ^ 2, then
[if | is square free.

PROOF. Let JV be the product of all normal Sylow subgroups of G and let
H be a complement to N. By [6, Theorem 4], N has the required structure, and if
n(H) 2: 2, then | H | is square free. All that remains to be shown is that in the case
n(H) ^ 2, H is cyclic. Let Q denote a nonnormal Sylow subgroup of G, and let
P denote a normal Sylow subgroup of G, Then Q either centralizes P or acts in
a fixed point free manner on P. To see this, consider an upper chain from G thru
N(Q) to Q. Since this chain has at least n{G) — 1 entries, none of which is sub-
normal in G, and h(G) = n(G), each entry is a Sylow complement in its predecessor.
Let S > T be the link in this chain such that [S:T] = | p | . If S ^ N(Q) then
P and Q commute elementwise. If S ^ N(Q) then N(Q) n P = {1}, and so Q
acts in a fixed point free manner on P since P is a minimal normal subgroup of S.
Moreover if Q centralizes P, then P is cyclic of prime order. We see this by looking
at a chain thru N(Q) and PQ to Q. From [6, Theorem 4] it follows that if n(H) ^ 2,
then | H | is square free, so it remains to show that H is abelian. We consider two
cases:

Case 1. JV is cyclic. In this case H is isomorphic to a subgroup of Aut(JV)
and is thus abelian.

Case 2. N is not cyclic. In this case let P denote a non cyclic Sylow subgroup
of JV. Let R and Q denote non isomorphic Sylow subgroups of H. Then R and
Q each act in a fixed point free manner on P, but by Burnside [1, p. 335] this
implies that RQ is cyclic. Since R and Q were arbitrary, H is abelian.

Mann pointed out that groups of this very special structure actually do satisfy
the condition that every nth maximal subgroup is subnormal.

In [6, Theorem 1] it was noted that /(G) rg h(G), and later in the same paper
it was remarked that in case h(G) — n(G) = 0, l(G) ^ 3. Theorem 2 above shows
that in this case /(G) g 2. We now give a better bound on /(G).

THEOREM 3. It G is a finite solvable non-nilpotent group then l(G) ^ h(G)
- n(G) + 2.
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PROOF. The theorem is true for groups of small order so let G be a counter
example of minimal order. We show that G does not exist. Such a group G must
satisfy:

(1) 0(G) = 1
This follows since l(G/<f>(G))=l(G),h(G/0(G)) ^ h(G), and n(G/0(G)) = n(G).

(2) Each minimal normal subgroup of G is a Sylow subgroup.

Let M denote a minimal normal subgroup. If GjM is nilpotent, then /(G) = 2
and since h(G)~ n(G) ^ 0, the theorem follows. So G/M is not nilpotent. Suppose
M is not a Sylow subgroup. Certainly l(G/M) g /(G). If l(G/M) = l(G) then

/(G) ^ h(G/M) - n(G/M) + 2 ^ *(G) -n(G) + 2,

and the theorem is true. So suppose l(G/M) < l(G). In this case let L denote a
complement to M in G. By (1) such a complement exists. Then l(L) = l(G) — 1
so L-?SG, and so by Lemma 2, h(L) < h(G) and so by the minimality of G,

/(G) = /(L) + 1 £ h(L) - n(L) + 3 | h(G) - TC(G) + 2.

This contradiction shows that M is a Sylow subgroup.

(3) G has a unique minimal normal subgroup.

If N is any minimal normal subgroup of G and T is a complement to JV,
then by Lemma 2 or Lemma 4, /i(r) < fc(G). In either case l(T) ^ A(G) - n(G) + 2
If there are two minimal normal subgroups say Nt and Nx, then l(G/N{) ^ /i(G)
- n(G) + 2 so

/(G) = /(G/N! n JV2) ^ h(G) - 7t(G) + 2.

This contradicts the choice of G, so there is only one minimal normal subgroup.
For the remainder of the proof let M denote the unique minimal normal

subgroup of G, and let L denote a complement to M. Since M is unique, L is
core free and so h(G) ^ 1 +a>(L).

(4) h(L) = h(G) - 1 = (o{L).

As in (3), h(L) g h(G) - 1. If h(L) ^ h(G) - 2, then

l(G) g /(L) + 1 S KG) - n(G) + 2.

This is a contradiction hence (4) follows.
(5) /(L) ^ 3

This follows from Theorem 2. If l(L) = 2, h(L) - n(L) = 0 and so
fc(G) - ?r(G) = 0 and from Theorem 2, /(G) ^ 2.

(6) Each normal prime power subgroup of L is either a Sylow subgroup of L
(hence of G) or is cyclic.

Let JV denote a normal prime power subgroup of L. By (5) L/N is not nil-
potent. Since l(L/N) = /(L) - 1 we have
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h(L) - h(LIN) g n(L) - n(

Thus if JV is not a Sylow subgroup, h(L) - h(L/N) g 1. However from (4),
h(L) = co(L) so that co(JV) = 1. In fact if JV is a Sylow subgroup we still have
h(L) - h(L/N) ^ 2 so that cu(JV) g 2. If l(L/N) = 1{L), then

h(L) - n(L) + 2S KLIN) - n(L/IV) + 2

so that 0 < n(L) — n(L/N) ^ 1, and thus JV is a Sylow subgroup.
To recap: Let JV denote a prime power normal subgroup of L. If [(L/N = /(L)

then JV is a cyclic Sylow subgroup, and if /(L/JV) < /(L) then JV is either a Sylow
subgroup or is cyclic, and in any case co(JV) <; 2.

(7) The Fitting subgroup of L contains a Sylow subgroup of L.
Let F denote the Fitting subgroup of L. Since l(LjF) + 1 = /(L),

h(L) - h(L/F) ^ n(L) - n{LjF) + 1.

If F does not contain a Sylow subgroup of L we have h(L) - h{L/F) = 1. But
by (4), h(L) = co(L), so that co(F) = 1. But then F < Z(P) for some Sylow sub-
group P. This is impossible so F contains a Sylow subgroup of L.

(8) Using the same notation as in (7), F is a Hall subgroup of L.
Suppose not and let T be a Sylow subgroup of F such that T is Sylow sub-

group of L. By (6), T is cyclic. By (7) T =£ F so let K<iF such that K is a Sylow
subgroup of L. Again by (7), /(L) = l(LIT) + 1, so /(L/K) = /(L) and so K is
of prime order. Thus the Sylow subgroups of F are cyclic, and so F is cyclic.
But then LjF is abelian, contrary to (5).

(9) Let H be the next to last entry in an /i-chain for L, (i.e. H can be joined to
L by an upper chain of length h(L)—2 with no entry in the chain subnormal in
L.) Then H acts irreducibly on M.

The chain G = LM > L1M > ••• > HM, where the {Lt} from an upper chain
from L to H, is /i(G) — 2 entries long and has no entry subnormal in G. If H
normalized a subgroup Mx of M, then since H is not subnormal in L, HMX is
not subnormal in G and is (/i(G) — l)th maximal and is hence cyclic. But M is
a Sylow subgroup so this is impossible.

(10) Let H be as in (9). If T is a subgroup of Fitt(L) of prime order such that
H normalizes T then H centralizes T.

Consider the group MHT. MT -=a MHT and if H does not centralize T,
H acts in a fixed point free manner on MT. But then MT is nilpotent, which is
contrary to the fact that L is core free.

(11) Let H be as in (9), then H centralizes F = Fitt(L).
From (10) H centralizes the cyclic Sylow subgroups of F. By (6), \F\ is a

cube free, so let X denote a Sylow subgroup of F of order q2, q a prime. X -< L
and since the /i-chain for L thru H has each entry of prime index in its predecessor,
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H normalizes a subgroup Xx of X of prime order. But then by (10) H centralizes
Z x , and by [3, Theorem 3.3.2] X = Xx xX2 with X2 //-invariant. Again by (10)
H centralizes X2, hence H centralizes X.

We have shown that H centralizes F, but CL(F) = F ^ H. This contradiction
shows that G does not exist, and so the theorem follows.

It was noted [6, Theorem 6] that if h(G) ^ 3 then G is solvable, while the
simple group A5 has h(A5) = 4. Janko [4] described the groups with each fourth
maximal subgroup normal. We now show that these results follow from the
hypothesis h(G) = 4 .

THEOREM 4. If G is a finite non-solvable group with h(G) — 4 , then G is
isomorphic SL(2, 5) or LF(2, p) where p = 5 or p is a prime such that (p — 1)
and (p + 1) are products of at most 3 primes and p = ± 3 or = 13 (mod 40).

PROOF. If G is simple and h{G) = 4 then each fourth maximal subgroup is
trivial and this is just Janko's theorem. So suppose G is non-solvable and non-
simple group with h(G) = 4. Then G must satisfy the following:

(1) Each non-normal maximal subgroup of G is solvable. This follows from
Lemma 2 and [6, Theorem 6].

(2) If N «a G then either N or GjN is solvable, and in particular if GjN is not
solvable, N is cyclic of prime power order.

This follows from Lemma 4 and [6, Theorem 6].

(3) If S is a solvable normal subgroup of G then S <i_ 4>(G).
Suppose not and let L be a maximal subgroup of G such that L ^ S. GjS is

not solvable so L is not solvable hence by (1) L<i G. Now LjL n S is not solvable
hence h(L/L n S) ^ 4. Then by Lemma 3, h(G/L n S) ^ 4 + co(SI(L n S ) ) > 4
which is impossible.

(4) h(Gj0(G)) = 4, and <p{G) is a cyclic p-group. This follows from [6, Theorem 6]
and Lemma 4.

(5) G/&(G) has a cube free order.
Let SI<P(G) denote a Sylow subgroup of G/0(G). Consider an upper chain

G> Gt ^ ••• N(S) ^ ••• S >-&(G). Since all subnormal solvable subgroups of
G lie in 0(G) no entry in this chain properly containing 0(G) is subnormal in G.
Also since /z(GJ g 3, Gx is solvable, and so o){GJ0{G)) g 3. If Gt = S then
(o{Glj0(G)) = 3 so that GJ0(G) is nilpotent of class ^ 2 , and by a theorem of
Deskins [2, Theorem 1] Gj0{G) is solvable. This is impossible, thus S % GX and
so co(S) ^ 2 .

(6) Gj0{G) is simple.
Let N/0(G) denote a proper minimal normal subgroup of Gj0{G). By (3)

N/0(G) is not solvable, so since | G/0(G) | is cube free, N/0(G) is simple. Notice
that 4 | | N/0G | and | G/N | is odd so G/N is solvable. Let Tj0{G) denote a Sylow
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2-subgroup of N/0(G). Consider a chain

G > N(T) > N(T) n N ^ T > 7\ > &(G).

Since 7\ is not subnormal in G, this chain does not contain a subnormal entry
properly containing </>(G), so T is second maximal in this chain, i.e. T = N(T) n N.
But then by Burnside's theorem N is solvable. This contradiction shows N does
not exist.

Since GI(j)(G) is simple G does not have a normal maximal subgroup, and so
by (1) all maximal subgroups of G are solvable. Since each upper chain of length
4 in G contains in a solvable subgroup, each fourth maximal subgroup of G is
normal. Janko's theorem [4, Theorem 3] yields the desired result.
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