
A CRITERION FOR IRRATIONALITY 

R. F. CHURCHHOUSE 

1. Introduction. The question of the irrationality of functions defined 
by power series, for rational values of the variable, has attracted much attention 
for over a hundred years. Legendre, in generalizing Lambert's proof of the 
irrationality of tan x for rational #, proved an important theorem on the 
irrationality of continued fractions with integer elements. Here we use Legendre's 
theorem (Lemma 3) to prove that at least one of a certain pair of power series is 
irrational whenever the variable is rational and satisfies a further condition. 

We prove the following: 

THEOREM 1. Let \//(n) be any positive, integral-valued strictly increasing 
function of n. Let 

oo oo 

where ap is the number of partitions of p of the form 

p = yp{mx) + \p(m2) + . . . + ^(mk); mk > mk-X > . . . > mx = 1; 

mi+i — mt > 2; 

bo = 1, and for p > 1, bp is the number of partitions of p of the form 

p = yf/(mi) + \l/(m2) + . . . + \p(mk); mk > mk-X > . . . > mx > 2; 

mi+i — mt > 2. 

Let 
1 ft—i 

7 = liminf-r-rX) (~ 1)V(» - r). 

Then if r, s are positive integers such that (r, s) = 1 and r < sy, the number 

H(r/s) = F(r/s)/G(r/s) 

is irrational. 

2. Subsidiary results. 
LEMMA 1. F(x) and G(x) converge if\x\ < 1. 

Proof. Since \f/(n) is positive, integral-valued, and strictly increasing, 
^(1)' > 1, \//(2) > 2, . . . , \[/(n) > n. Hence an, bn < p(n) where p(n) denotes the 
number of partitions of n into the sum of positive integers. From Euler's 
product 

oo oo 

i + E p(n)xn = n (i - « T 1 
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for |x| < 1, it follows that F{x)1 G(x) converge if \x\ < 1. Henceforth we suppose 
that 0 < x < 1. 

LEMMA 2. The function H(x) = F(x)/G(x) has the continued fraction expan
sion 

-*(*> ^ 2 > jw 
* ( * ) - — _ _ _ _ . . . . 

Proof. Let pn(x)/qn(x) denote the nth convergent to the continued fraction. 
Then, for n > 3: 

a) 
subject to: 

(2) 

pn(x) = XHn)pn-2{x) + pn-l(x), 

qn(x) = x* (%_2(x) + qn-i(x), 

Pi(x) = p2(x) = xHl\ 

qi(x) = 1; q2(x) = 1 + x*(2). 

From (1) and (2) we see that pn(x) and qn(x) have no common factor. If 
aT>n denotes the coefficient of xT in pn(x) it follows from (1) that 

(3) ar>n = ar-+(n),n-2 + flr.n-l . 

Since the apt q are clearly non-negative, (3) implies that 

(4) arin > aT,n-i. 

On the other hand, if n\ is that positive integer defined uniquely by the 
inequality 
(5) *(»i) < r < iK»! + 1) , 

on using (3), with n\ + 1 in place of w, and noting that aSt7l = 0 if 5 < 0, we 
deduce that 

#r,rci+l 

and in fact that 

(6) 

Write 

dr.n < ar,n+l i « < Wi, 

r=0 

Repeated application of the recurrence formula (1) gives 

pn(x) = 0i(x) pi(x) + 02(x) p2(x) , 

where 0i(x), 62(x) are polynomials in x. Since, from (2), p\{x) = £2(x) = x*(1) 

it follows that x*(1) is a factor of pn(x). This and the recurrence formula show that 
ar>n is equal to the number of decompositions of r in the form 
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' = £ ^(w*) » 
where the mt are positive integers satisfying 

1 = nti < wit < . . . < mv < n, mi+i — mt > 2. 

Conversely, any decomposition of this type will contribute just to the coefficient 
of xr in pn(x) and so aTtTl is equal to the number of such decompositions. Then for 
n > n\ defined by (5), 

&r,ni — ^ r , » i + l — • • • &r,n aT, 

N 

£ 
r=M+l 

£ crx
T 

where ar is the coefficient of xr in F(x). Hence 
N M 

PnW = £ ^ r .n * ' = ^ dr X? + ^ flr,n * ' , 
r=0 r=0 

where M < N and Af —» <» as N —> <» ; and so 

\F(X) -pn(x)\ = 

where aT > cr > 0 since 0 < ar,n < aT. Consequently 
1 <x> 

\F(X) - Pn(x)\ < X ) a r * ' ~ > 0 

as itf —> 00, and so pn(x) —» F(x). Similarly 

limgn(x) = G(x). 

We now enunciate Legendre's theorem [5]: 

LEMMA 3. If mi, m^ . . . , and ni,n2,. . . are positive integers and 0 < w</n< 
< 1 for i > io, /Â6 continued fraction 

m\ m2 W3 

is irrational. 
»i + ^2 + w3 + 

For a proof of this see, for example, [3]. This result has been improved upon, 
in particular by Bernstein and Szasz [1] who deduced the irrationality of the 
Jacobi theta series 

£o \s) \n ) 

when r, s,m,n are positive integers 5 > 2 and 0 < r3 < s. In the present paper 
we only make use of the result in its original form as no improvement is obtained 
by using any of the stronger forms. 

3. Proof of Theorem 1. Let r, s be positive integers such that (r, s) = 1 
and r < s. By Lemma 2, 

F(x) 
H(x) = 

„ * ( » v*(2) „*<3> 
Jv %\s Jv 

G(x) 1+ 1+ ! + •••• 
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Put x = r/s. Then from the well-known equivalence 

61 hi b% C\ b\ C\ C2 hi C2 Cz 63 

dl + #2 + «3 + * ' ' Cidi + C2 #2 + C3 «3 + 

we deduce, on taking 
/ \ * ( n ) 

On = 1, 6n = I 1 J , Ci = / ( 1 ) , 

and for n > 1, 

that 

r r _ c*(n+l) 
^n ^n+l ^ » 

(d * 0) 

Vs/ S"' + 5 a "+ ••• s" + • • ' • 

The successive exponents an satisfy 

ai = iKl), <*n = iK») - «»-i (n > 2 ) . 

so that 

« » = £ ( - 1)>(» - r). 

Now Lemma 3 is applicable if, for say n > w0, 

0 < rHn) < sa\ that is, 0 < r < sy\ 

where 

yn = «„/*(«) = ^ y g (- 1)V(» " 0 • 
Let 

1 n~~* 

7 = liminf ——J^ ( - 1/iK» - r) . 

Evidently 7 < 1. Then r < 5Tn for n > nQ if r < sy and so 

(r/sy*)Hn) < 1. 

This proves Theorem 1. 

If \i/(n) — \l/(n — 1) is an increasing function we can prove that 7 > | . 
For if 0(») = yp(n) - $(n - 1) (n > 2) and 0(1) = ^(1), then 

Now 

lim inf 1 ^ / r 
7 = — ^wS ( _ 1 ) ^" r ) ' 

and so 

r • r <K») + »(w - 2) + »(» - 4) + . . . r . -
7 = hm inf . , v . ,/ tv , , , ^ r n , . n x = hm inf 7», 

*-*» # W + 0(» - 1) + <t>(n ~ 2) + . . . + 0(1) n^ 
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say, the last term in the numerator being 0(2) or 0(1) according as n is even 
or odd. Since <t>(n) is an increasing function of n, 

<t>(n) + 0(» - 2) + 0(n - 4) + . . . > 0(n - 1) + <t>(n - 3) + 0(n - 5) + . . . 

and so 7n > | for 
n 2*<rc- l 2 * < n - 2 

Z *(0 = E *(» ~ 2É) + È *(» - 2k - I), 
that is, 

w 2fc<w— 1 

Z *(') < 2 E *(» - 24). 
r = l ifc>0 

Hence 
7 = lim inf 7n > è . 

W-40O 

4. Applications. The most interesting application is obtained by taking 
\f/(n) = n. In this case we have 

1 1 2 3 

C?\ 1 _J_ _*_ _£_ JL_ 
U ; l + f f ( x ) 1 + 1 + 1 + 1 + ' • • 
which is the Rogers-Ramanujan continued fraction [6; 7]. Now 

(8) 7 = lim inf i l ) ( - l ) r(n - r) - i . 
n->oo ™ r = 0 

The Rogers-Ramanujan identities give 

(to 1 1 r,tr\ f W l - * 6 " + 2 ) ( l - * 6 " + 3 ) 
(9) l+h(x) - i i ( 1 _ x ^ i ) ( 1 _»*+«) 
and from Theorem 1 we have at once: 

THEOREM 2. If r, s are positive integers satisfying (r, s) = 1, r* < s, the 
product 

00 / 5n+2 5n+2 \ / 5n+3 ^6w+3v 

/ 5n+ l 5 n + l w 5n+4 „,5n+4x 

is irrational. 

We now give another form of this result. Write 
CD CO 

F(x) = J > n x n , G(x) = £ è „ x B 

where an is the number of partitions of n with least element 1 and minimal 
difference 2; b0 = 1, and for n > 1, Z?w is the number of partitions of n with 
least element not less than 2 and minimal difference 2. Then 

CO 

F(*)+G(«) = 2>nxn, 
n = 0 

say, where cQ = 1 and, forn > 1, cn is the number of partitions of n with minimal 
difference 2. Now it is a consequence of the Rogers-Ramanujan identities [4] 
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that the number of such partitions is equal to the number of partitions of n 
into parts of the forms 5m + 1 and 5m + 4 and so 

oo oo 

(io) F(X) + G(X) = S c » / = H ( i - x ^ r ' a - ^6n+4)-1. 
Now, from (9) 

nn ft ( l - * 5 * + 2 ) ( i - * w ) _ - , m . _ F(*) + G(x) 
( 1 1 ) i i (1 - *5n+1)(l - x5n+4) " l + H{X) - G(x) 
so that (10) and (11) enable us to determine F(x) and G(x) in terms of infinite 
products, namely, 

oo 

G{X) = n (i - « ^ v a - x***)-1, 
n=0 

oo oo 

F(X) = n (i - x**1)-1^ - x5^4)-1 - n a - x6n+2r\i - x6^3)-1. 
W=0 n=0 

Next we note that (9) may be written in the form 
(12) 1+H(x) = ft (1 - xn)(l - x"TLÛ (1 ~ xon+1y2(l - xbn+iy\ 

71=1 71=0 

and since the left side of (12) is irrational when x = r/s, (r, 5) = 1, r2 < 5 at 
least one of the factors 

00 00 00 

n (i - **), n (i - x-), n a - *6n+ir2(i - *6n+4r2 
71=1 71=1 71=0 

is irrational. The product 

na-x") 
7 1 = 1 

is of importance in the theory of elliptic functions; it was considered by Euler 
[2] who proved that 

n a -xn) = É (- i)v(3n+i)/2. 
ra=l n=—00 

We see then that if we write pf (n) to denote the number of partitions of n into 
parts of the forms 5m + 1 and 5m + 4 we have the following alternative to 
Theorem 2: 

THEOREM 3. If x = r/s where r, s are positive integers satisfying (r, s) = 1, 
r2 < s then at least one of the numbers 

00 00 00 

2>'(»)«*. E ( - i)V(3re+1)/2, £ ( _ i)V<3*+1)/2 

ra=l n=—00 w=—00 

w irrational. 

Two other cases of interest are given by 
(i) *(«) = 2 - 1 , 

00 {*(»)} = {1,1, 2, 4, 6, 10, . . .} , where ^(» + 1) = ^{n) + xP(n - 1) 
for n > 4. 
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In case (i) F(x) = xG{x2) and since 

7 = H m i n f X ; ( - l ) r 2 - r = 32 

we obtain the following: 

THEOREM 4. If G(x) is the function defined in Theorem 1 when \f/(n) = 2n~l 

and r, s are positive integers satisfying (r, s) = 1, r3 < s2 then at least one of the 
numbers G(r/s), G(r2/s2) is irrational. 

In case (ii), F(x) = x/(l — x2) and so is rational for rational x. It follows 
from Theorem 1 that G(x) and also F(x) + G(x) is irrational when x = r/s, 
(r, s) = 1, r < sy. As is easily seen, 

Hn) = A{an~l - rl) (».>3) 

where 2a = 1 + V5, 2/3 = 1 - V5, 24" 1 = V5. Hence 

* - 4oS (~ 1 ) V (* -r) 

(a*-1 - qw~2 + a'" - . • • ) - (fl»"1 - gn"2 + §TZ - . . . ) 

Divide throughout by aw_1, then since \f$\ < a, we have 

7n —> 1 — ~ + "5 3 + - . . = T—;— as w —> oo 
a a a I -j- a 

and so 7 = a / ( l + a) = — /3. Now 
oo oo 

F(x) + G(x) = X (aP + W xP = S ^ ^ 

where Co = 1, and for p > 1, e„ is equal to the number of ways of expressing p 
as the sum of elements of the sequence 1, 1,2, 4, 6, 10, 16, . . . without repetitions 
and with no two consecutive elements occurring in the same decomposition. 
From Theorem 1 we have at once: 

THEOREM 5. If 

K(x) = ^ cpx
p 

p=0 

is the power series just defined and r, s are positive integers satisfying (r, s) = 1, 
r2 < 5V5_1 then the number K{r/s) is irrational. 

The details of the proofs of Theorems 4 and 5 are straightforward and I omit 
them. 

I am indebted to Prof. L. J. Mordell and Prof. R. A. Rankin for their advice 
and criticism, and to the Department of Scientific and Industrial Research for a 
research grant. 
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