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Absolute instability of plane incompressible jets
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In this paper, the possibility of absolute instability in a plane unidirectional jet is analysed.
We consider a parametrized family of velocity profiles with variable inflection point
location and shear layer thickness. Using the inviscid saddle-point analysis, we show that
absolute instability can occur in the case of a sufficiently low velocity at the inflection
point or a sufficiently thin shear layer. Then we proceed to the viscous analysis and find
the critical Reynolds numbers separating the zones of convective and absolute instability.
We obtained a minimum value Re = 315. As an independent verification of the theoretical
results, we conduct a direct numerical simulation of the evolution of a localized pulse
perturbation in the framework of the linearized Navier—Stokes equations. The calculated
absolute/convective instability boundary is in a good agreement with theoretical results of
the saddle-point analysis.
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1. Introduction

The development of instabilities in shear flows depends on whether the instability is
convective or absolute. In the case of a convective instability, small growing perturbations
travel downstream, and nonlinear effects, either secondary instability or transition to
turbulence, manifest themselves further downstream from the point where the instability
was initiated. Segments of such flows, even unstable ones, can be observed in reality, e.g.
plane Poiseuille flow and Blasius boundary layer, whose convective nature of instability
was proved by Deissler (1987) and Brevdo (1995) for moderate Re, and by lordanskii
& Kulikovskii (1966) for asymptotically large Re. If the instability is absolute, then
growing perturbations occupy region spreading both upstream and downstream, thus
making impossible the observation of the unstable flow in reality.

The instability nature of constant-density plane mixing layers was independently studied
first by Huerre & Monkewitz (1985) and Shikina (1987); they proved that the instability
can be absolute only in the presence of a certain amount of counter-flow, whereas a
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unidirectional shear layer is unstable convectively. Monkewitz & Sohn (1988) analysed
the instability of round compressible jets and showed that it can be absolute only if the
jet is sufficiently light, i.e. either the jet is hot, or it consists of a gas that is lighter than
the ambient medium so that their density ratio is smaller than a certain critical value.
Compressibility and viscosity effects can only decrease the critical density ratio (Lesshafft
& Huerre 2010). The local absolute instability yields the global instability of a spatially
developing low-density jet, as demonstrated by Coenen et al. (2017). The effect of velocity
profiles of jets flowing out of tubes of different lengths was studied by Coenen, Sevilla &
Séanchez (2008), and the critical density ratio is also less than unity in all cases. Jendoubi
& Strykowski (1994) analysed the instability nature of jets in the presence of external
flow; in particular, it was shown that the modes resulting in absolute instability in light jets
(Monkewitz & Sohn 1988), and in constant-density jets or shear layers with counter-flow
(Huerre & Monkewitz 1985; Shikina 1987), are actually two different modes. Further
analysis of two coaxial co-flowing jets, which have two shear layers and two interplaying
absolute instability modes, was performed by Balestra, Gloor & Kleiser (2015).

Experiments with low-density jets (Monkewitz et al. 1990; Kyle & Sreenivasan
1993; Strykowski, Krothapalli & Jendoubi 1996; Hallberg et al. 2007; Li & Juniper
2013) confirm that the jet dynamics is changed drastically when crossing the
absolute-versus-convective instability boundary: global jet oscillations and strong side jets
appear; further downstream, the flow blows up and does not even look like a jet. A recent
study of Demange, Chazot & Pinna (2020) considers realistic flow profiles observed in
plasma jets, and demonstrates a large portion of absolutely unstable flow, which explains
single-frequency oscillations observed in experiment.

It is interesting to note that in contrast to round jets, a plane unidirectional mixing layer
stays convectively unstable for moderate density ratios, as shown by Pavithran & Redekopp
(1989) and Jackson & Grosch (1990) (they assumed different temperature distributions),
and switches to absolute instability only at very small density ratios, much smaller than in
round jets (Caillol 2008, see his figure 3). The presence of a wake behind a splitter plate
in a plane mixing layer can also trigger the absolute instability, as shown by Lee & Morris
(1997).

A series of studies is devoted to the instability nature of wakes, motivated by the
explanation of the onset of the von Kdrmdn vortex street in the cylinder wake. Monkewitz
(1988) considered a family of wake profiles and performed a viscous analysis of the
instability nature. By matching the profile parameters with the wakes observed behind
a cylinder, he found that local absolute instability takes place at Re” > 25 (where Re” is
the Reynolds number based on the cylinder diameter and upstream velocity), i.e. before
the onset of the von Kdrmdn vortex street occurring at Re” > 47. The latter can be
interpreted as the evolution of a linear global mode that grows when the local absolute
instability region becomes sufficiently long (Pier 2002). Although the main implication
was the evolving wake behind a cylinder, in the context of the present study, we note that
Monkewitz (1988) demonstrated an absolute instability of a unidirectional wake (i.e. wake
without counter-flow) for Re > 11.3.

Delbende & Chomaz (1998) analysed the role of nonlinear effects by performing
fully nonlinear direct numerical simulations of the localized perturbation evolution to a
plane-parallel wake with the same velocity profile as considered by Monkewitz (1988).
They found that although the wave packet is rapidly saturated and the exponential growth
is limited by strong nonlinear terms, velocities of both upstream and downstream edges
of the nonlinear wave packet are still governed by the linear spatiotemporal instability
analysis.
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Juniper (2006, 2007) analysed plane jet/wake plug and piecewise-linear velocity
profiles, and studied the effect of the flow confinement. He showed that the confinement
yields the appearance of additional saddle points near the negative imaginary wavenumber
ray, which drive the absolute instability at specific parameters. Moreover, the change
of confinement ratio changes the governing saddle points. It is interesting that specific
confinement ratios enhance the absolute instability compared to the unconfined case.
In particular, the varicose mode of the constant-density unidirectional jet touches the
absolutely instability boundary at a certain confinement ratio. This analysis of plane flows
was extended to the axisymmetric configuration by Juniper (2008). Similar conclusions
were made for round jets/wakes: the absolute instability is enhanced for moderate
confinement ratios.

Further progress was made by Rees & Juniper (2010), who included smooth velocity
profiles and non-zero viscosity in the analysis. The touch of the absolute instability
boundary by the unidirectional plug jet profile (Juniper 2006) turns into the penetration
into the absolute instability region for a smooth unidirectional confined jet for specific
velocity distributions. That is, there exist unidirectional confined jets that are absolutely
unstable. When the viscosity is taken into account, the instability nature turns into
convective for Re < 1000.

Mathematical insight into the role of confinement was provided by Healey (2009), who
studied analytically the nature of instability of mixing layers. Namely, the clue is in the
behaviour of the complex wavenumber «-plane in the vicinity of a negative imaginary
ray. When the flow is unconfined (i.e. a decaying boundary condition is set as transverse
coordinate y — +00), this ray has no saddle points in its vicinity. The nature of the
instability is driven by a saddle point lying in the fourth quadrant of the «-plane: Re oy > 0,
Ime < 0. However, when the flow is confined, the decaying condition is substituted by
the free-slip condition at the walls, which yields the appearance of an infinite discrete set
of poles along the negative imaginary « ray. Near each pole, there exists a saddle point. For
specific confinements, the upper of those saddle points becomes dominating, i.e. governing
the instability nature. Moreover, this saddle point can stay dominating in the limit of weak
confinements: walls moving towards infinity. In other words, unconfined flow and the flow
confined by walls located arbitrarily far in the transverse direction have different absolute
instability criteria. This explains why absolute instability of jets and mixing layers, being
possible for the unconfined flow only in the presence of the counter-flow, exists for the
confined flow even in the unidirectional flow case.

This behaviour resembles the analogous situation with the stability criterion of
arbitrarily long but finite-length systems (Kulikovskii 1966, 2006), which (in general)
differs from the stability criterion for an infinitely long system. Physically, in both cases
the difference between the asymptotic bounded problem and the unbounded problem is
in the reflection of waves from the walls in the bounded case that admits eigenmodes
non-existing in the unbounded case.

It should be noted that the co-flow absolute instability of the confined jets and mixing
layers is associated with non-decaying behaviour of perturbations in the transverse
direction. In real flows, which are always limited in length, the absolutely unstable mode
will need for realization an axial length much longer than the transverse distance between
walls. It is natural to expect that the laminar flow will break up at sufficiently large axial
distance so that the absolutely unstable mode will also be destroyed. In other words, if
the confinement is weak, then only such modes can be realized that satisfy the decaying
condition. In this sense, there is no hope that the absolute instability of weakly confined
jets or mixing layers can be observed in reality.
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Biancofiore & Gallaire (2011) included the confinement in the wake profiles considered
before by Monkewitz (1988) in the unconfined case. They removed the gap between
Monkewitz (1988), who predicted absolute instability of specific smooth unconfined
co-flow wakes, and Juniper (2006, 2007), who obtained convective instability of plug
and piecewise-linear co-flow wakes (both unconfined and weakly confined). Namely,
Biancofiore & Gallaire (2011) showed how the change of the profile parameter switches
absolute instability to convective for a weakly confined wake. However, the most
effective enhancement of the absolute instability obtained by Juniper (2006, 2007) at the
confinement ratio & & 1 is observed for all considered smooth velocity profiles, i.e. it is
not affected by the inclusion of a shear layer into the velocity profile.

A tougher test of the confinement effect was performed by Biancofiore, Gallaire
& Pasquetti (2011), who analysed global oscillations in a realistic, spatially evolving,
finite-length viscous confined wake. Base flow was calculated as a solution of
Navier—Stokes equations with incoming plug velocity profile. After introduction of
a random perturbation, its evolution was calculated by direct numerical simulations.
Depending on the confinement and velocity ratios, the perturbation was either carried away
by the flow, or transformed into global oscillations. For Re = 100, the range of parameters
where global oscillations were set was qualitatively similar to those obtained by Juniper
(2006) as the region of local absolute instability. In particular, the largest enhancement
of the absolute instability, as well as of global oscillations, occurred at the confinement
ratio 1 ~ 1. However, for Re = 500, Biancofiore et al. (2011) also found a different type
of global oscillations, called a ‘front vacillation instability’, which has no relation to local
instability nature.

As follows from the reviewed studies, for constant-density unconfined non-swirling
round jets or plane mixing layers with classical velocity profiles without counter-flow,
the instability is convective. However, recently, based on inviscid-flow analysis, it was
shown independently by Lesshafft & Marquet (2010), Balestra et al. (2015) and Vedeneev
& Zayko (2018) that for specific, non-classical velocity profiles, the instability can be
absolute even for the constant-density unconfined jets without counter-flow. Namely, such
profiles should have sufficiently small velocity and large velocity slope at the inflection
point. Physically, these conditions provide small phase speed and large growth rate of the
growing mode, which are necessary for the onset of absolute instability.

In the present study, we consider the case of two-dimensional plane jets of
incompressible fluid. To make sure that the interacting spatial waves are selected correctly,
in §2 we start with the inviscid analysis of the classical shear layer studied before
by Huerre & Monkewitz (1985) and Shikina (1987), and use saddle-point analysis to
determine the nature of the instability (Briggs 1964; Bers 1983). Next, after switching
to the case of jets, in § 3 we consider the family of two-parameter smooth velocity profiles.
We show that similarly to round jets, the instability becomes absolute when at the inflection
point either the velocity is small, or its slope is large. We detect critical parameter values
corresponding to the switch between absolute and convective instability. In § 4, we perform
viscous analysis of the profiles that are absolutely unstable in the inviscid limit, and
calculate the values of the Reynolds number corresponding to the switch between absolute
and convective instability. To perform an independent verification of the saddle-point
analysis, in § 5 we conduct direct numerical calculations of the growth of a localized
perturbation in the framework of linearized Navier—Stokes equations. Our calculations
are similar to those of Delbende, Chomaz & Huerre (1998), where the development of
an impulse perturbation in a Batchelor vortex was investigated. Using Fourier and Hilbert
transformations, Delbende et al. (1998) were able to determine the growth rate and the
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dominant values of the wavenumber and frequency of perturbation along each of the
rays in the spatiotemporal plane, depending on the value of the rotation parameter and
the magnitude of the external flow. As we are interested only in the absolute/convective
instability, in this paper we limit ourselves to determination of the perturbation growth
rate at a fixed spatial point. We show that the back edge of the perturbation travels
downstream for subcritical Re, and upstream for supercritical Re, thus confirming results
of the saddle-point analysis. Finally, in § 6, we discuss possible applications of the present
findings and conclude the paper.

2. The inviscid instability of the classical velocity profile and of its parametrized
approximation

2.1. Governing equations and boundary conditions

We analyse hydrodynamic stability of a two-dimensional (plane) shear flow with velocity
distribution (U, V), with U = U(y), V = 0. The problem is non-dimensionalized with
maximum positive velocity and shear layer thickness, or half the jet width, taken as
velocity and length scales. By considering perturbation dependence on x and ¢ in
the travelling-wave form, ~ e'®*~®) and substituting into linearized Navier—Stokes
equations, a well known Orr—Sommerfeld equation for the amplitude of y-perturbation
component v(y) is obtained:

1 d* d? d d dUu
Vol i) =S (-0 v 2w -, @D
dy dy dy

where « and w are the wavenumber and frequency, and ¢ = w/« is the phase speed.

To consider eigenmodes of the shear flow, we must impose a decaying boundary
condition, i.e. v(y) — 0 as y — Z£o00. For the purpose of the numerical analysis, it is
convenient to transfer this asymptotic boundary condition to sufficiently remote stations
y = L_, Ly in the following manner. For large |y|, the base velocity is U(y) ~ Uy, and
the Orr—Sommerfeld equation is rewritten as an equation with constant coefficients:

2 2 2
L) v e v (5 —e?)v=0. 2.2)
iRex dy2 dy2

Hence its general solution is
4
v(y) =Y Gy, (2.3)
j=1

where

2

) —av _ - o
V] :ea)’ V) =¢ 0‘)’ U3:e/ly’ V4 =¢€ /ly’ /l:q/—lRe\/a)—Ulima—?.
1Kxe

(2.4a-d)
Assuming, without loss of generality, that Reo > 0, Re 4 > 0, we eliminate exponentially
growing components by setting C; =C3 =0 as y — +oo, and C, =C4 =0 as
y — —oo. Among the two remaining decaying exponents, say va(y) and v4(y) for
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y — +00, the first one is leading, because they are rated as

Y exp (—\/Re @ Jlin® y) , (2.5)

v 2

which is an exponentially small number as y — +o00. Hence we may ignore v4 and put,
with a negligible error,

v(y) ~e Y, y—> 4o, v(y) ~e¥, y > —o. (2.6a,b)

Next, we substitute the decaying boundary conditions with the condition of matching with
the exponential solution (2.6a,b) aty = L_, L, :

dv 0 d?v dv 0 L dv n 0 d%v n dv 0 L

— — Qv =V, —F —o—=U,y=L_, —_— av =00, — oa—=0,y= .

dy dy? dy Y dy dy? dy 4 +
2.7a,b)

Values L must satisfy the condition VRe |[L+| > 1 (so the ratio (2.5) is small) and should
be determined by a convergence study.

To start our analysis with a previously studied case of inviscid instability of the classical
shear layer (Huerre & Monkewitz 1985; Shikina 1987), first we will also consider inviscid
stability analysis. In this case, taking the limit Re — oo in (2.1), we obtain the Rayleigh
equation
dU(y)

dy

As this equation is of second order, it needs only two boundary conditions:

di ((U(y) —0) v_, ) —a*(U(y) —c)v = 0. (2.8)
y dy

dv dv
— —av=0,y=L_, —4av=0,y=L,. (2.9a,b)
dy dy

2.2. Numerical solution of the eigenvalue problem

To perform the spatial instability analysis, for each complex frequency w, we find
eigenvalue o (w) and eigenmode v(y) that satisfy (2.1) and boundary conditions (2.7a,b)
for the viscous case, or (2.8) and (2.9a,b) for the inviscid case.

For the inviscid case, the boundary condition at y = L_ selects one of two linearly
independent solutions of (2.8). Consider a particular solution in the form

vi(Lo) =1, vi(Lo) =« (2.10a,b)

Treating these as initial conditions, we integrate the Rayleigh equation (2.8) fromy = L_
to y = L by the Runge—Kutta method, and calculate the function

g(@) = v|(Ly) +avi(Ly). 2.11)

Zeros of g are the eigenvalues of the problem (2.8)—(2.9a,b), because both the equation
and boundary conditions are satisfied. They are found iteratively by the secant method.

A similar reduction of the eigenvalue problem to iterative solutions of initial value
problems is used in the viscous case. The differences are as follows. First, boundary
conditions at y = L_ select two linearly independent solutions, vi(y) and v2(y), and
both are integrated up to y = L. Second, during the integrations, because of the small
parameter at the leading-order derivative in (2.1), the use of an orthonormalization
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Figure 1. (a) Classical and (b) spline-defined velocity profiles of the shear layer for R = 1.0, 1.5, oco.

technique is necessary (Shmidt & Hennigson 2001, Appendix A.2). Finally, to satisfy the
boundary conditions at y = L, we consider linear combination c¢; v1(y) + ¢2 v2(y), and
the requirement of non-zero cy, ¢; yields

viLy) taviLy)  vy(Ly) +ava(ly)]

=0. 2.12
V(L) +av(Ly) vY(Ly) +av)(L) 12

gla) =

The solution of this equation is found by the secant method without changes with respect
to the inviscid case.

Based on a convergence study, the spatial step size of the Runge—Kutta method was set
equal to 1/300 in both the inviscid and viscous cases.

For large L., g(«) becomes small due to the smallness of v'(L;) and v(L;.), even if the
matching conditions (2.7a,b) are not satisfied. To improve the numerical accuracy, g(«) in
(2.12) can be normalized by dividing by vi(L+) v2(L+), and the eigenvalues are searched
as zeros of the normalized function.

2.3. Classical velocity profile

We start our analysis with a shear layer profile analysed by Huerre & Monkewitz (1985)
and Shikina (1987):

1 —R+2RUq(y)

Ua(y) = s f]cl(y) =

1 — tanh(4(y — 1/2))
1+R ’

> (2.13a.,b)

where f]cl( y) is a unidirectional velocity profile (0 < Uu < 1), and the parameter R
defines the added counter-flow. Namely, as y — —oo, the velocity U(y) tends to 1, and
the velocity limit as y — 400 depends on R. If R = 1, then U(+00) = 0 (unidirectional
flow), and if R — 400, then U(400) = —1 (symmetrical flow), as shown in figure 1(a).
For 1 < R < 400, the parameter defines the relative counter-flow velocity:

UHoo) 1-R
U(-o00) 1+R

(2.14)
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Note that the notation R for the counter-flow parameter is established in the literature (e.g.
Huerre & Monkewitz 1985), and should not be confused with the Reynolds number Re.

To perform the inviscid absolute instability analysis, we calculate the curves a(w) in
the complex «-plane for real frequencies w € R. For R = 1, two curves corresponding
to two distinct eigenvalues « are found (figure 2a). The one located in the quadrant
Rea > 0, Ima < 0 corresponds to the growing downstream-travelling mode, which is a
usual Kelvin—Helmholtz mode; the other, located in the quadrant Reo < 0,Im« < 0, is an
upstream-travelling decaying mode. When R is increasing, the two curves approach each
other and generate a saddle point w () at R = R, = 1.315, which signifies the transition
from convective to absolute instability, according to the absolute instability criterion
(Briggs 1964; Bers 1983). For R > R, the curves are switched, and the instability stays
absolute for any larger R. Note that as R — +o00, the absolute character of the instability
is evident from the base flow symmetry.

The critical value R, = 1.315 was calculated previously independently by Huerre &
Monkewitz (1985) and Shikina (1987); coincidence of our results validates the present
analysis and selects two particular o(w) modes, whose collision yields the absolute
instability. Note that even in the inviscid case, there exist other o (w) modes, which can also
experience saddle-point interaction, but they do not drive the character of the instability
and are not considered in this study.

2.4. Spline-defined velocity profiles

Below, we will move from the classical velocity profile (2.13a,b) to its approximation,
which will allow us first to switch from shear layer to jet flow, and second to continuously
deform the velocity profile. In this subsection, we consider the first step. To ensure the
correctness of the Orr—Sommerfeld problem, the velocity profiles must have continuous
derivatives up to second order. Also, we will require that the profile has one inflection
point at a specified point y = yg. A two-segment fifth-degree spline function is employed

to describe such profiles. Namely, the velocity profile Us( y) is defined at y € [0, 1], such
that

f(y», 0=<y=<yo,

Us(y) = 2.15
) {g(y), yo<y<=1, .15

where both f(y) and g(y) are polynomials of fifth degree, which have 12 coefficients
in total. We require that this profile will approximate the classical profile for R =1
(unidirectional flow), and also that the boundary conditions

fO) =1, fO)=f"0)=0, gl)=g1)=¢"(1)=0, (2.16a—c)
and smoothness conditions
Fo) =g(yo), () =8¢0, f"(yo)=4g"(). (2.17a—c)

are satisfied to ensure that the profile is smooth and connects points U(0) =1 and
ua)=0.

In general, we set the velocity & and its slope 7 at the inflection point. As the inflection
point is located at y = yy, this yields the last three equations:

fo) =& fo=n f"(y) =0. (2.18a—)

This system of 12 linear equations uniquely defines 12 coefficients of the polynomials
f(y) and g(y), thus providing the spline-defined smooth velocity profile with controllable
velocity and its slope at the inflection point (explicit formulas are provided in Appendix A).
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Figure 2. Images of the Im w = 0 line in the complex «-plane, and transition between absolute and convective
instability at increasing R. (a) Classical shear layer, (b) spline approximation of the shear layer, (¢) symmetric
mode of the jet, and (d) antisymmetric mode of the jet.

To have the velocity profile Us( y) be close to the classical profile Uq( y), we specify
yv=1/2, &=1/2, n=-2. (2.19a—c)

The comparison with the classical profile at R = 1 is shown in figure 3.
To get the approximation for any desired counter-flow, the spline-approximated profile
is defined as

1 —R+2RU(y)

, 2.20
l+R (220)

Us(y) =

similarly to the the classical profile (2.13a). The velocity profile at different R is shown in
figure 1(b), and its proximity to classical profiles in figure 1(a) is seen clearly.
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Figure 3. Comparison of classical (thick curve) and spline-defined (thin curve) velocity profiles for R = 1.

Outside the segment y € [0, 1], the base velocity is defined as U(y) = (1 — R)/(1 + R),
y > 1,and

Uy=1 1y<0. (2.21)

Note that since the velocity profile Ug(y) has zero first and second derivatives at y = 0,
not only the shear layer, but also a smooth symmetric jet can be defined with the same
distribution at y € [0, 1] by setting, instead of (2.21),

Uly) =U(=y). y<0. (2.22)

Boundary conditions for the jet perturbations at y = L4 remain the same as in the shear
layer. The only change is in the boundary conditions at y = 0. It is easy to show that for
a symmetric velocity profile, the jet always has a symmetric and antisymmetric mode.
Hence for the case of the jet, we may specify boundary conditions as

dv n 0 d%v n dv 0 I
—4av=0, — 4+a— =0, =L,
dy \ dy2 dy Y +
d d-
o , —13) =0, y=0, symmetric mode, (2.23)
dy dy
d%v ) )
v=0, — = 0, y=0, antisymmetric mode.
dy

The second condition at y = 0, L, is applicable only in the viscous analysis.

As the velocity for y < O and y > 1 is exactly constant, the boundary conditions (2.9a,b)
in the inviscid case are set at Ly = 1 and L_ = 0. In the viscous analysis of jet flows, based
on a convergence study, we set the boundary conditions (2.23) at Ly = 2, which provides
well-converged results for all values of the Reynolds number considered in this study.

Results of the inviscid absolute instability analysis for the spline-defined velocity
distribution are shown in figure 2(b) for the shear flow, and in figures 2(c,d) for the two
modes of the jet flow. The qualitative behaviour of the «(w) curves is similar in all cases.
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Flow type Rer

Classical shear layer 1.315
Spline-defined shear layer 1.185
Spline-defined jet, symmetric mode 1.280
Spline-defined jet, antisymmetric mode 1.135

Table 1. Critical R values.

Results for critical R values are summarized in table 1. In all cases, R, > 1, i.e. a certain
degree of the counter-flow is necessary for the onset of absolute instability.

As we have now parametrized velocity profile, we can deform it continuously and
observe the change in the a(w) curves for w € R, which drive the nature of instability.
For the case of the shear layer, we did not get the absolute instability without counter-flow
even with parameters yo, &, n (2.18) different from (2.19). However, the case of the jet is
different, and will be considered below; in what follows, we will restrict ourselves to the
case of unidirectional jet flow with R = 1.

3. Modified base profiles and their inviscid absolute instability analyses
3.1. Modifications of the spline-defined velocity profile

We have seen that in the case of classical and spline-defined velocity profiles, the absolute
instability occurs due to merging of two spatial modes, o, (®w) = oy(w), because the
saddle point of the w(«) function is a branch point of the reversed function «(w). One
of the modes is a growing downstream-travelling mode, and the second is a damped
upstream-travelling mode (the direction of motion is detected by the sign of Im o (w) as
Imw — +00). There is a range of real frequencies @ at which the upstream-travelling
mode is reversed by the bulk flow (the real part of the phase speed becomes positive)
and slowly travels downstream. If the phase speed of the growing downstream-travelling
mode is sufficiently small, then the two modes will travel with the same speed, providing
the possibility of the merging. Note that the phase speed of the growing mode is governed
mostly by the velocity at the inflection point of the velocity profile: for a neutral mode, they
are exactly equal, ¢ = U(yp), where yg is the inflection point (Drazin & Reid 2004), but
they also stay close for the growing modes. This mechanism yields the absolute instability
when the parameter R is increased: the velocity at the inflection point is decreased from
1/2 down to 0, the growing mode travels downstream more slowly, and at the critical value
of R, it merges with the reversed upstream-travelling mode, giving rise to the absolute
instability.

However, it is clear that the counter-flow is not necessary for lowering the velocity at
the inflection point. Namely, we will consider modifications of the spline-defined velocity
profile, driven by two parameters, £ and ¢. Parameter £ governs the inflection point: we set
the velocity at inflection point U(yg) = & and put yg = 1 — &. For ¢ = 1, the slope at the
inflection point is kept constant so that n = —2. With this definition, £ is the governing
parameter of the velocity profile, and the resulting plots are shown in figure 4(a).

A different perspective of the effect of & is shown in figure 5(a), where the curves
corresponding to upstream- and downstream-travelling modes are shown in the complex
phase speed plane ¢ = w/«. When lowering the velocity at the inflection point, we move
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Figure 4. Modifications of velocity profiles: (@) € <0.5,¢ =1;(b)§ =05, > 1;(c)§ <0.5,¢ > 1. Red
circles denote the inflection point.
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Figure 5. Expected change in (a) c(w) curves for lowering the inflection point location (decreasing &), and
(b) a(w) curves for the thinning shear layer (increasing ¢).

the neutral phase speed (shown by a circle), from which the growing mode originates, to
the left. This will drag the whole curve to the left, thus providing the possibility for the
merging of two modes, c¢,(w) = c4(w), which is equivalent to o, (@) = ag(w).

A different method for the velocity profile modification, which is driven by the second
parameter, ¢, consists in the increase of the velocity gradient in the inflection point,
by decreasing the shear layer thickness of the jet, as shown in figure 4(b). The idea of
this modification is shown in figure 5(b). Consider the plane of the wavenumber . A
favourable condition for coalescence is not only in the lowering phase speed, but also
in increasing growth rate of the growing mode. The growth rate is controlled by the
characteristic length scale, i.e. the thickness of the shear layer, in the inverse proportion.
The smaller the thickness, the larger the growth rate, i.e. the corresponding «;(w) curve
moves down, providing a better condition for the coalescence with the upstream-travelling
mode, as shown in figure 5(b).

The change of the shear layer thickness is performed by transformation of the
y-coordinate. We define the spline function y(y) for 0 < y < 1 similar to (2.15):

p(y), 0=<y<yo, G.1)

Yo = v(y), yo<y=l,
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Figure 6. Transformation of coordinate (3.1) for changing shear layer thickness at £ = 0.25 and ¢ = 1.0, 1.5,
2.0,2.5.

satisfying the conditions

yO0) =0, y(yo)=yo, y(1)=1,
YOy =v, V(o) =¢ Yd)=v, (3.2)
y'(0)=0, ¥(y) =0, y(1)=0,

where yq is the inflection point of the velocity profile, ¢ > 1 is a control parameter, and
v = 1/¢2. This set of conditions is satisfied by two-segment fifth-order spline function
y(y) (figure 6). After the transformation of coordinates, the modified velocity profile is

U(y) = UsG(y), (3.3)

where Uj is the original spline-defined profile.

The set of two parameters & < 0.5 and ¢ > 1 combines two transformations: after
shifting the inflection point, we decrease the shear layer thickness, as shown in figure 4(c).
The resulting profile is governed by parameters &, controlling the location of the inflection
point, and ¢, controlling the shear layer thickness.

3.2. Absolute instability analysis

Results of the absolute instability analysis of the jets with & < 0.5 and ¢ = 1 are shown in
figures 7 and 8 (x(w) and c(w) curves for w € R). As can be seen, lowering the velocity
at the inflection point does not change the convective character of the instability of the
symmetric mode, but it does change it to absolute for the antisymmetric mode. Namely,
the saddle point in the a-plane occurs at § = &, = 0.341, so the instability is absolute for
§ <&

Similar results for & = 0.5 and ¢ > 1 are shown in figure 9 for the antisymmetric mode.
The symmetric mode stays convectively unstable for all considered shear layer thicknesses,

but the antisymmetric mode becomes absolutely unstable for ¢ > 2.3.
The combination of both parameters, i.e. simultaneous lowering of the inflection point
and thinning the shear layer, yields, for sufficiently small & or sufficiently large ¢, absolute
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Figure 7. Effect of the lowering of the inflection point: lines Im w = 0 in the complex «-plane for £ =0.5,
0.4, 0.341 (bold), 0.3, 0.2, 0.1, and ¢ = 1. (a) Symmetric and (b) antisymmetric modes.
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Figure 8. Effect of lowering of the inflection point: lines Im w = 0 in the complex c-plane for & =0.5, 0.4,
0.341 (bold), 0.3, 0.2, 0.1, and ¢ = 1. (@) Symmetric and (b) antisymmetric modes.

instability in the antisymmetric mode. Figure 10 shows the absolute—convectiveinstability
boundary in the £—¢ plane. For the symmetric mode, the absolute instability was not
detected in all cases considered in this study.

A better predisposition of the antisymmetric mode to the absolute instability, compared
to the symmetric mode, can be traced in the o(w) curves of the original velocity profile
(figures 2c¢,d). As seen, the curve corresponding to the upstream-travelling antisymmetric
jet mode is located significantly higher than the other three configurations, and closer to
the downstream-travelling growing mode. The saddle point in the o-plane is also located
higher than in other cases. Due to a smaller distance between the curves in the original
velocity profile, it is natural that R, for the antisymmetric mode is smaller (table 1), so that
less counter-flow is required for the onset of the absolute instability. It is therefore natural
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Figure 9. Effect of decreasing shear layer thickness: lines Im @ = 0 in the complex «-plane for £ = 0.5,
¢=1.0, 1.5, 2.0, 2.3, 2.5. Antisymmetric mode.
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Figure 10. Boundary of the inviscid absolute instability in the §-¢ plane.

that deformation of the velocity profile without counter-flow also yields the absolute
instability of antisymmetric rather than symmetric mode.

4. Viscous absolute instability analysis

The absolute instability analysis performed above was based on the inviscid Rayleigh
equation, similarly to the work of Huerre & Monkewitz (1985) and Shikina (1987). It
is well known that lowering the Reynolds number depresses inflectional-point inviscid
instability, and it is obvious that prior to the stabilization of the flow, the instability
character will change from absolute to convective. Hence an important question that must
be addressed is how small can be the critical Reynolds number corresponding to the change
of the instability character?

Figure 11 shows the change in @ (w) curves for the antisymmetric mode of the velocity
profile with £ = 0.3, ¢ = 1. For large Re, viscous analysis is not distinguishable from
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Figure 11. Analysis of the velocity profile with & = 0.3 and ¢ = 1.0, complex «-plane, Re = oo (inviscid
analysis), 10000, 5000, 2000, and Re., = 1150, 1000, 500, 250, 100 (viscous analysis).
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Figure 12. Critical Re versus & for ¢ = 1.0.

the inviscid analysis. As expected, lowering the Reynolds number yields the saddle-point
interaction at Re., = 1150, and the change of the instability character to convective for
Re < Re,,.

For different locations of the inflection point, the critical Reynolds number values (in
what follows, ‘critical” will refer to the change of the instability character, but not to the
stability boundary) versus driving parameter £ are shown in figure 12. As & — 0.341, Re.,
tends to infinity, because for £ > 0.341, the instability becomes convective in the inviscid
case. The decrease of & yields a monotonic decrease of Re,,.

For jets with unchanged location of the inflection point (§ = 0.5) but with thin shear
layer, Re., is significantly larger than for the lowered inflection point: Re., = 26 000 for
the largest considered { = 2.5.

Figure 13 shows Re., with both £ < 0.5 and ¢ > 1. It is seen that thinning of the shear
layer first yields a slight decrease of the critical Reynolds number, but then its growth.
This growth, as well as very large Re. = 26000 for £ = 0.5, { = 2.5, is explained by
the following. The viscosity tends to damp the growing downstream-travelling mode and
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Figure 13. Critical Re versus ¢ at (a) £ = 0.15 and (b) £ = 0.25.
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Figure 14. Critical Re on the £-¢ plane. The bold line shows the inviscid absolute instability boundary.

to prevent its collision with the upstream-travelling mode, i.e. to make the flow, which
is absolutely unstable in inviscid approximation, convectively unstable. The thinner the
shear layer, the larger the velocity gradient; consequently, less viscosity is needed for
the same action compared to thicker shear layer. As large ¢ significantly decreases shear
layer thickness, larger Reynolds number corresponds to the absolute—convective instability
transition.

Distribution of critical Reynolds number values on the £—¢ plane is shown in figure 14.
It is seen that the lowest Re., = 315 is reached at £ = 0.05 and ¢ = 1, i.e. for the lowest
considered location of the inflection point and for moderate shear layer thickness. As
explained above, the increase of either ¢ or & yields the growth (although non-monotonic)
of Re.,: the increase of ¢ intensifies the damping effect of viscosity, while the increase of
& accelerates the travelling speed of the growing mode, thus worsening conditions for the
absolute instability.
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We conclude that specific unidirectional velocity profiles stay absolutely unstable for
quite low Reynolds number values, Re < 1000 or even Re < 500, which can be reproduced
in both experiments and direct numerical simulations. The next section is devoted to direct
transient analysis of perturbation development in a jet, as an independent validation of the
saddle-point analysis results.

5. Direct numerical simulation of impulse perturbation evolution

This section presents the results of numerical simulation of the development of pulsed
(given at the initial moment of time) localized in space small perturbations in plane flows,
considered in the previous sections. The two-dimensional motion of an incompressible
fluid in an infinite space x = (x,y) € R? is considered. Here, x,y are Cartesian
coordinates. The x- and y-axes are directed along and across the flow, respectively. The
stationary and non-developing downstream base flow is described by the velocity vector
U = (U(y),0). A small perturbation # = (u, v) localized in space (in the vicinity of
the point (x,y) = (0, 0)) is introduced into the flow at the initial moment of time. The
further evolution of the perturbation is determined from the solution of the Navier—Stokes
equations linearized around the base flow:

du 1 )

—=—-U-VVu—u-VYU—-Vp+ —V-u, V.u=0, (5.1)

at Re
where p is the pressure perturbation. All quantities are reduced to dimensionless form, as
defined in § 2.1.

The main purpose of this study is to determine the nature of the development of
perturbations in unstable flows. Impulse perturbation, even growing with time, can be
carried away by the flow, so that |u| — 0 at + — oo at any fixed point in space. In this
case, the main flow is convectively unstable. Alternatively, evolution leads to an increase
in the perturbation at all points in space, which means absolute instability of the main flow.

The numerical solution of the problem is carried out in a bounded region |x| < X,
ly] < Y. On the ‘upper’ and ‘lower’ boundaries y = +Y,,, the impermeability and
free-slip conditions are imposed: du/dy =0, v = 0. Periodicity conditions are used
in the x-direction. During the evolution, the disturbed region expands in space. The
calculation continues until the length of the perturbation is compared with the length of
the computational domain.

Equations (5.1) are solved by the method of Nikitin (2006), which combines a
finite-difference conservative discretization method in space and a semi-implicit time
integration scheme with the automatic time step control.

5.1. Free shear layer

Consider a family of flows with a velocity profile U(y) of the form (2.13a,b), considered
earlier in Huerre & Monkewitz (1985) and Shikina (1987). For the convenience of
numerical solution, we normalize the main flow by the value Ay = U(oco) — U(—o0) and
transfer the point of maximum shear to the point y = 0. As a result, we get
1

© 2R’

The range of velocity variation in this flow is Ay = 1, and the average velocity is
determined by the value of the second term in (5.2): Up = 1/(2R). Thus the R parameter
retains the same meaning, R = Ay /(2Up), as in Huerre & Monkewitz (1985). It is obvious
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that flows with a velocity profile (5.2), (2.13a,b) and U = 1 + Rtanh(0.5y) (Huerre &
Monkewitz 1985) have the same character of stability (convective/absolute) for equal
values of the parameter R.

For definiteness, we will assume that U, > 0. For Uj, > % which corresponds to R < 1,
the flow (5.2) is unidirectional: U(y) > O for all y. At R > 1, a negative velocity zone
appears in the velocity profile. At U, = 0 (R = 00), the velocity profile is symmetric:
U(—y) = —U(y). Obviously, the evolution of the perturbation from the point of view
of an observer moving along the flow with velocity Uj, coincides with the evolution
of the perturbation against the background of the symmetric velocity profile Uy(y) =
0.5 tanh4y. Thus to determine the behaviour of perturbations at different values of the
parameter Uy, it is sufficient to investigate the flow with a symmetric velocity profile

Uo(y).

5.2. Evolution of an impulse perturbation in a flow with a symmetric velocity profile

Most of the calculations were carried out in a computational domain 100 x 12 (X,,, = 50,
Y, = 6)on a2048 x 128 grid. Mesh nodes are condensed in the y-direction in the vicinity
of y = 0; the grid step in the x-direction is constant. To check the quality of the results,
calculations were carried out in a larger computational domain and on a finer grid. No
noticeable differences were found.

The initial perturbation was set to be localized in the vicinity of the point (x, y) = (0, 0).
It was found that after a short period of development, the evolution of the perturbation
does not depend on a specific initial form. In what follows, the results are obtained for the
Reynolds number Re = 10° for the case when the initial perturbation was specified in the
form

u=0dy/dy, v=—0dy/ox,

by = PA—F =L 2y <L, (5.3)
’ 0, Xy =1

Over time, the perturbation takes the form of a wave packet u(z, x, y) = A(¢, x, y) cos(kyx —
¢(t,y)) with amplitude A > 0 and wavelength 27 /k, =~ 3.6 in the x-direction. The
maximum value of the perturbation amplitude A, () grows exponentially, A, (f) ~
exp At, with the exponent A &~ 0.341 (see figure 15). The size of the wave packet in the
y-direction, determined by the relation A/A,,,x = const., remains constant, and its length
in the x-direction increases with time (figure 16). The rate of expansion of the region
occupied by the perturbation determines the occurrence of absolute instability. Figure 17
shows the plots of |u(t, x,y = 0)| as a function of the coordinate x at several points in
time. The velocity distribution along the coordinate x at each moment of time includes
an oscillating core u(t, x,y = 0) = A(t, x, y = 0) cos(kyx) in the central part of the flow
region, surrounded by exponentially decaying tails. The tails are displaced as the amplitude
increases and the core expands. The amplitude of the perturbation in the central core varies
along x according to a law close to

At X,y = 0) = Apax (1) exp[—(x/0 (1))*]. (5.4

When (5.4) is fulfilled, the maxima of the function —x2 /log(Ju(t, x,y = 0)|/Apnay) in the
central part of the flow region must be at a constant level equal to o2(r). The plots of
this function at four points in time are shown in figure 18. Indeed, the values of the local
maxima in the middle part of the computational domain are approximately constant at
each moment of time. Their values are given in the plots.
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Figure 15. The exponential growth of the perturbation amplitude A, ~ exp(0.3417).
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Figure 16. Distributions of the x-component of the perturbation velocity u(z, x, ¥) /Ay (f) at different times:
(a)t =20, (b) t =40, (c)t = 60, (d) t = 80.
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Figure 17. Distributions of the x-component of the perturbation velocity |u(t, x, y = 0)|/A4x(2) at different
times: (a) t = 20, (b) t = 40, (¢) t = 60, (d) t = 80.

To determine the functional form of the dependence of o (f), we take into account the
following considerations. The behaviour of the perturbation amplitude in the asymmetric
shear layer (Up #0) is similar to (5.4), with the only difference that the maximum
amplitude is attained at the point x = Upt. The distribution of the perturbation amplitude
along x is described in this case by the expression

A(t, %,y = 0) = Apar (1) expl—((x — Upt) /o (1))°]. (5.5

We assume that for a fixed x, the value A(z, x,y = 0) decays as t — oo (the case of
convective instability) or increases (the case of absolute instability) depending on the
value of Up. The first factor on the right-hand side (5.5) ~ exp(Ar), therefore, the change
in the behaviour of A(z, x, y = 0) for a fixed x and varying U, is possible only if o2 (r) ~ ¢
for large ¢. The values shown in figure 18 confirm this assumption and give an estimate
o2 = a*t with a® ~ 0.41.

In this case, the behaviour of the perturbation amplitude at a fixed point x for large ¢
is determined by the expression A ~ exp[(1 — Ui /a*)t], and the absolute instability of
the flow occurs for the condition A — Ui Ja* > 0, or U, < v/a?A (recall that the average

speed Uy, is considered non-negative). With the found estimates A ~ 0.341, a®> ~ 0.41, we
obtain U, < 0.374 and, accordingly, R > 1.34 as a condition for the occurrence of absolute
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Figure 18. Distributions of —xz/ log(Ju(t, x, y = 0)|/Amax) at different times: (a) t = 20, (b) t = 40,
(¢)t =60, (d) t = 80.

instability of the shear layer. The obtained value for the critical value of the parameter R,
is in reasonable agreement with the theoretical value R, = 1.315 (U, = 0.38), obtained
within the framework of the inviscid theory in Huerre & Monkewitz (1985) and Shikina

(1987). Recall that our estimates were obtained for a finite Reynolds number Re = 103. 1t
can be assumed that the growth rate of perturbations A increases with an increase in Re, so
the estimate for the critical value U, will increase, and the estimate for the critical value
of the parameter R will decrease with increasing Re.

5.3. Evolution of an impulse perturbation in flows with an asymmetric velocity profile

The estimate of the critical value of the parameter R, for the onset of absolute instability
of the shear layer made in the previous subsection is based on several incompletely
substantiated assumptions, such as the shape of the dependence of the perturbation
amplitude on the coordinate x (5.4), the law of variation of the length of the wave packet
with time o2(f) = a’t, and also a rather crude method of determining the coefficient
a® in the last expression. The consequence of these assumptions is, in particular, an
exponential change in A(¢, x, y = 0) for a fixed x, whereas according to the asymptotic
theory, the amplitude of the disturbance at large ¢ should change as ~ exp(qt) /+/t (Huerre
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& Monkewitz 1990). Nevertheless, the obtained estimate R.. & 1.34 is in reasonable
agreement with the known theoretical data. To refine the critical values of the occurrence
of absolute instability in the shear layer flow with a non-zero average velocity, a series
of calculations of the evolution of perturbations was performed for different values of the
parameters Uy and R in (5.2). The evolution of the perturbation for U, # 0 is completely
analogous to the case U, = 0, except that the wave packet of the perturbation moves in
the positive direction x with the velocity Uj. Observing the change in the amplitude of the
perturbation at a fixed point in space ((x, y) = (0, 0) is chosen as such a point) at large ¢,
we can estimate the asymptotic behaviour (growth/decay) of the perturbation as t — oo.

Figure 19 shows the plots of changes in |u(z, 0, 0)| /7 obtained for several values of
the parameter R in (5.2) from R = 1.30 to R = 1.40, and Reynolds number Re = 103.
In all cases, the amplitude of |u| /7 changes exponentially at large ¢, which confirms
the qualitative agreement of numerical calculations with the asymptotic theory. For the
largest of the presented R values, R = 1.40, an exponential increase in |u| +/7, and thus the
increase in the amplitude of perturbation oscillations at the point under consideration, is
observed clearly for large values of . At R = 1.30, asymptotic decay is observed clearly.
At R = 1.33 and R = 1.34, the asymptotic behaviour of the perturbation amplitude is less
obvious; most likely, in the second case, there is weak growth, and in the first, weak
damping. A clearer idea of the behaviour of the amplitude of perturbation oscillations
at the point under consideration is given by the plots of the growth coefficient g(7),
determined at the moments ¢ = #; at which |u(z, 0, 0)| /¢ reaches local maxima. The
growth rate at the time #; is defined as the rate of exponential change in the amplitude
for one period of oscillation, and is calculated by the formula

o2 lu(te, 0, 0)| /1
k—t—2 = |u(t—2,0,0)| /Tr—2

(5.6)

q(t) =

Positive values of ¢ correspond to an increase in the perturbation, and negative ones to
attenuation. The g(#;) plots for the cases considered in figure 19 are shown in figure 20.
The behaviour of ¢(#) in the presented cases confirms the conclusions drawn from the
analysis of the fluctuations in |u(t, 0, 0)| /7 shown in figure 19. For the largest and smallest
values of the parameter R, the growth coefficient reaches asymptotic positive and negative
values, respectively. On going from R = 1.33 to R = 1.34, the growth coefficient changes
sign from negative to positive, although the fact of reaching asymptotic behaviour in these
cases is less obvious.

To obtain a more definite conclusion, it is necessary to monitor the behaviour of
the perturbation at a selected control point at larger times. However, the situation is
complicated by the fact that for t > 80, the maximum perturbation amplitude A,,,x exceeds
101 lu(z, 0,0)|, so when using double precision (real*8) for the representation of real
numbers, the value |u(z, 0, 0)|/A;qc becomes less than the round-off error, and further
monitoring of |u(z, 0, 0)| becomes impossible. Thus the time interval of observation is
limited by ¢ < 80, which is not always sufficient to determine the nature of the asymptotic
behaviour of the perturbation at the control point as + — oo. To solve this problem in
doubtful cases, calculations were carried out using an increased, quadruple precision
(real*16) representation of real numbers, which allows more than doubling the duration
of the observation time interval. In these calculations, the length of the computational
domain was doubled (X,,, = 100) with a proportional increase in the number of grid nodes
in the x-direction.
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Figure 19. Evolution of |u(z, 0, 0)| 4/7 for several values of the parameter R in (5.2), for Re = 103.
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Figure 20. Growth coefficient g(f;) (5.6) for several values of the parameter R in (5.2), for Re = 103.

The plots of g(¢) obtained with R = 1.33, 1.34, calculated with increased accuracy of
the representation of real numbers, are shown in figure 21. The growth coefficient is
definitely negative at R = 1.33 and definitely positive at R = 1.34, which was unclear
in figure 20. Based on the linear approximation of the limit values of g(R) at R = 1.33 and
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Figure 22. Growth coefficient ¢(#x) (5.6) at (@) R = 1.31 and (b) R = 1.32, calculated with increased
precision (real*16) of the representation of real numbers, for Re = 10*.

1.34, we obtain R, = 1.333 for the critical value of the occurrence of absolute instability

at Re = 103, which is close to the estimate R, ~ 1.34 made on the basis of an analysis of
the perturbation evolution in the flow with symmetric velocity profile.

The obtained value of R., at the Reynolds number Re = 10° slightly exceeds the
theoretical value R, = 1.315 obtained by Huerre & Monkewitz (1985) and Shikina (1987)
within the framework of the inviscid theory. Figure 22 shows the results of calculations
performed at a larger value of the Reynolds number, Re = 10*. As expected, the critical
value of the parameter R, at which the convective character of the instability changes to
the absolute one, decreases with increasing Re. For Re = 10, the perturbation growth
coefficient g(¢) at large times has a definitely negative value for R = 1.31 (figure 22a),
but a positive value for R = 1.32 (figure 22b). That is, the critical value for this Reynolds
number is close to 1.315, which is in good agreement with the result of the inviscid theory,
R = 1.315.

5.4. Development of an impulse perturbation in a flow with a jet velocity profile

The onset of absolute instability in a shear layer flow requires both positive and negative
velocities of the main flow. In this regard, the results of Lesshafft & Marquet (2010),
Balestra et al. (2015) and Vedeneev & Zayko (2018), where the occurrence of absolute
instability in the unidirectional jet flow is predicted, look interesting. Absolute instability
may arise in the case when the inflection point in the velocity profile is close to the flow
periphery, but the velocity gradient at this point is large enough. In this subsection, we
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check this possibility numerically for a jet velocity profile shown to be absolutely unstable
in § 4.

The investigated jet velocity profile is shown in figure 23 and corresponds to parameters
& =0.25, ¢ = 2.0. It is characterized by the presence of a wide flat area in the centre and
two symmetrical areas of velocity drop at the periphery. The inflection points are located at
distance £0.75 from the axis of symmetry. The velocity value at these points is U = 0.25.

In accordance with the conclusions of § 3, the absolute instability of the considered jet
flow can arise only with respect to perturbations, the y-component of the velocity of which
is antisymmetric with respect to y = 0. Therefore, just as in the shear layer flow, the initial
perturbation was specified in the form (5.3), which provides the required symmetry.

The distributions of u(z, x, y) at several successive times, obtained for Re = 1000, are
shown in figure 24. Figure 25 shows the distributions of |u(t, x, y.)|/Amax along the line
y =y, = 0.75, at which the maximum shear of the main flow velocity is achieved. The
evolution of the perturbation at the initial stage leads to the formation of two wave packets
located symmetrically from the axis of symmetry y = 0. Each of the packets develops
similarly to the development of a perturbation in the shear layer. Their characteristic size in
the longitudinal direction increases with time, while in the transverse direction it remains
constant. The maximum perturbation amplitude A,,,, grows exponentially with the rate
~exp(0.613r), and is reached at distance approximately y = £0.7, which is somewhat
closer to the symmetry line than the location of the inflection points in the velocity profile.
Perturbations are carried away by the flow at the velocity of the main flow at these points,
cr = U(£0.7) = 0.4.

To determine the nature of the emerging instability, the perturbation oscillations were
monitored at the control point (x, y) = (0, y. = 0.75) at different values of the Reynolds
number. The growth rate of perturbations in the jet flow is noticeably higher than in the
shear layer flow considered above: for Re = 1000, the maximum amplitude increases in
the jet as exp(0.6137), while in the shear layer the rate is exp(0.341¢). As a result, when
performing calculations with double precision of the representation of real numbers,
the amplitude of the perturbation at the control point turns out to be below the level
of round-off errors already starting from ¢ = 50. This interval of observation is usually
insufficient to establish the asymptotic behaviour of the perturbation. Therefore, all
calculations were carried out with an increased quadruple precision of the representation
of real numbers (real*16). In this case, the duration of the observation period is doubled,
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Figure 24. Distributions of the x-component of the perturbation velocity u(t, x, y) /A;qx () at different times:
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up to t = 100. As in the case of the shear layer, the calculations were carried out in
a computational domain with size 200 x 12 (X, = 100, Y, = 6) on a grid with size
4096 x 128.

Figure 26 shows the oscillations of |u(t, 0, y.)| +/t for several values of the Reynolds
number from Re = 800 to Re = 1100. For the two smallest Re values, the amplitude of
the perturbation at the control point decreases, while for the two largest, a weak increase
is observed. In figure 27, the results of the same calculations are presented in the form
of plots of the perturbation growth rate g(#;) in (5.6). The graphs in figure 27 show that
the evolution of perturbations at large 7 is close to asymptotic behaviour. The closest to
the critical value is Re = 1000. Interpolation of the limit values of g(Re) gives an estimate
Re., = 974 for the critical value of the Reynolds number, at which there is a transition from
convective to absolute type of instability in the flow under consideration. This estimate
differs by only 1.5 % from the theoretical value Re., = 960 obtained in § 4 through the
saddle-point analysis (figure 13b).

In general, the results obtained on the behaviour of the perturbation at a fixed point
in space give a positive answer to the fundamental question of the possibility of the
occurrence of absolute instability in a jet flow with a unidirectional velocity, which
confirms the conclusions of Lesshafft & Marquet (2010), Balestra er al. (2015) and
Vedeneev & Zayko (2018) for round jets.
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6. Conclusions

In this study, we considered a two-parameter family of plane jet velocity profiles (which
includes a close-to-classical jet) and showed, by saddle-point analysis, that unconfined
plane jets of inviscid incompressible fluid can be absolutely unstable without the presence
of counter-flow. Such jets have specific properties of velocity distribution, similar to round
jets studied by Lesshafft & Marquet (2010), Balestra et al. (2015) and Vedeneev & Zayko
(2018). Namely, at the inflection point, the velocity should be sufficiently small, and the
velocity gradient sufficiently large. The first feature guarantees a small phase speed of
the growing mode, and the second feature guarantees a large growth rate; both properties
provide favourable conditions for coupling between growing downstream-travelling mode
and damped upstream-travelling mode that results in absolute instability.

Next, we performed viscous analysis and determined critical Reynolds number values,
below which the jet flow, being absolutely unstable in inviscid formulation, becomes
convectively unstable. Lowering the inflection point location and a mild thinning of the
shear layer yields Re., less than 500, which is quite a small value that can be achieved in
experiments and analysed in direct numerical simulation. However, excessive thinning of
the shear layer results in rapid growth of Re., due to stronger effects of viscosity, which
tends to damp the growing mode and to prevent its coupling with the upstream-travelling
mode.
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To confirm the results of the theoretical analysis, numerical simulations of the
development of small impulse localized perturbations in the shear layer and jet flow were
carried out. It is shown that after a short period of development, the perturbation takes
the form of a wave packet localized in space, carried by the main flow at a constant
velocity. The amplitude of the perturbation in the packet grows exponentially, and its
size in the direction of the flow increases linearly with time. Thus the type of instability
(convective/absolute) is determined by the ratio of two velocities: the rate of drift of the
perturbation, and the rate of expansion of the region occupied by the perturbation. The
rapid growth of the perturbation amplitude limits the possible observation time for the
evolution of the perturbation at a fixed point; therefore it is difficult to determine accurately
the critical parameters at which the convective instability in the considered flows is
replaced by the absolute one. Nevertheless, using calculations with quadruple precision,
an estimate was obtained for the condition of occurrence of absolute instability in the shear
layer, which coincides with good accuracy with the theoretical results obtained in Huerre
& Monkewitz (1985) and Shikina (1987). It is shown that the nature of the instability of
the jet flow constructed in § 4 of the present work changes from convective to absolute as
the Reynolds number increases. An estimate of the critical Reynolds number Re., = 974 is
obtained, which is in excellent agreement with the theoretical result Re.,, = 960 obtained
in § 4.

A question may arise on how jets with non-classical velocity profiles, with shifted
inflection point and thinned shear layer, can be produced. For round jets, co-flowing
(Hallberg et al. 2007) or counter-flowing (Strykowski et al. 1996) streams can be used for
this purpose. Although such facilities were used for light jets, they can also be employed
for the jets of constant density. Another example of apparatus is demonstrated by Zayko
et al. (2018) and Gareev et al. (2022): a rapidly expanding diffuser covered by a metal
grid. A similar method can be used for producing plane jets. Preliminary experiments
with plane jets performed by our group demonstrate that the shape of the diffuser wall
effectively drives the velocity profile and, in particular, the position, velocity and gradient
in the inflection point.

It is expected that organization of absolutely unstable jets can be useful in numerous
technologies that employ turbulent jets. As a rule, transition to turbulence does not occur
immediately, and a laminar portion, typically of the order of one diameter in length, is
present even for very large Reynolds number values due to the convective nature of the
instability. In the case of an absolutely unstable jet, the back edge of growing perturbations
travels upstream and occupies all the jet length, yielding either secondary transient flow, or
turbulization of the jet starting immediately from the orifice. Also, experimental studies of
absolutely unstable hot jets (Monkewitz et al. 1990; Hallberg et al. 2007; Li & Juniper
2013) demonstrate that the structure of the resulting turbulent jets is complemented,
compared to ‘regular’ turbulent jets, by strong side jets and global oscillations of the
flow that enhance entrainment of surrounding fluid and, consequently, mixing and heat
exchange. Thus we expect that the use of absolutely unstable jets can drastically improve
turbulent mixing.
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Appendix A. Explicit formulas for velocity profiles
Velocity profiles approximating a classical shear layer and those with shifted inflection
point location (§ < 0.5, ¢ = 1) are given by (2.15) with the following relations:

f(y) = asy’ +agy* + a3y’ + 1,

Al
g(y) = bs(y — 1) +bs(y — D* + b3(y — 1)3, (A

where a; and b; are the solutions of the linear systems of equations
asyy + asyg + azyy =& — 1,
Sasyy + 4asyg + 3azyg = n, (A2)
20615)’(3) + 12a4y(2) + 6azyp = 0,
bs(yo —1)° +ba(yo — D* +b3(yo — 1 =&,
5bs(yo — )* +4ba(yo — 1)* +3b3(yo — )* =1, (A3)
20b5(y0 — 1)? + 12b4(yo — 1)* + 6b3(yo — 1) =0,
withn = —-2andyg=1-&.
The thickness of the shear layer (¢ > 1) is changed by the transformation (3.1), in which
9(y) = asy’ + agy* + a3y’ + vy,
Y =Bs(y =17 +Ba(y— D+ B3y — 1 +v(y— D +1,

where «; and B; are the solutions of linear systems of equations

(A4)

asyy + aay + azyg = yo(1 — v),
Sasyg + daayy + 3o3yg = £ — v, (AS)
20asyp + 1204y% + 6a3y0 = 0,

Bs(yo — 1) + Ba(yo — D* + B3(yo — D3 = (yo — D(1 —v),

5B5(yo — D* +4Ba(yo — D +3B3(y0 — D2 =¢ — v, (A6)
20B85(yo — 1)* 4+ 12B4(yo — 1)> + 6B3(y0 — 1) = 0,
with v = 1/¢2.
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