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Abstract
Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet is inversely associated with type 2 diabetes mellitus (T2DM) risk.
Metabolic changes due to DASH adherence and their potential relationship with incident T2DM have not been described. The objective is
to determine metabolite clusters associated with adherence to a DASH-like diet in the Insulin Resistance Atherosclerosis Study cohort
and explore if the clusters predicted 5-year incidence of T2DM. The current study included 570 non-diabetic multi-ethnic participants aged
40–69 years. Adherence to a DASH-like diet was determined a priori through an eighty-point scale for absolute intakes of the eight DASH food
groups. Quantitative measurements of eighty-seven metabolites (acylcarnitines, amino acids, bile acids, sterols and fatty acids) were obtained at
baseline. Metabolite clusters related to DASH adherence were determined through partial least squares (PLS) analysis using R. Multivariable-
adjusted logistic regression was used to explore the associations between metabolite clusters and incident T2DM. A group of acylcarnitines and
fatty acids loaded strongly on the two components retained under PLS. Among strongly loading metabolites, a select group of acylcarnitines had
over 50 %of their individual variance explained by the PLSmodel. Component 2was inversely associatedwith incident T2DM (OR: 0·89; (95 %CI
0·80, 0·99), P-value= 0·043) after adjustment for demographic and metabolic covariates. Component 1 was not associated with T2DM risk (OR:
1·02; (95 % CI 0·88, 1·19), P-value= 0·74). Adherence to a DASH-type diet may contribute to reduced T2DM risk in part through modulations in
acylcarnitine and fatty acid physiology.
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Identification of modifiable lifestyle risk factors has become a
pressing challenge given the rapidly increasing global
prevalence of type 2 diabetes mellitus (T2DM)(1,2). Previous
research has established strong links between specific
nutrients, foods and food groups with T2DM and its underly-
ing abnormalities (3,4). For example, avoiding the consumption
of excessive amounts of refined grains, sugar-sweetened bev-
erages, red and processed meat and alcohol while emphasis-
ing whole-grain cereals, vegetables, dairy, legumes and nuts

can alter body weight, improve insulin resistance and contrib-
ute to T2DM prevention(4). However, research approaches
that focus on individual foods and nutrients may be limited
by not considering metabolic alterations that may occur in
response to the complex food, nutrient and food matrix inter-
actions that are characteristic of the consumption of mixed
meals. In addition, physiologic effects of untested or
unknown nutrients that may contribute to a diet–disease rela-
tionship are omitted in the study of individual dietary
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components(5). By analysing dietary patterns as opposed to
single nutrients or foods, a more comprehensive nutritional
profile is captured, which may be more indicative of disease
risk(5).

The Dietary Approaches to Stop Hypertension (DASH) diet,
designed initially as a hypertension intervention, has been sug-
gested to have broader benefits, including reducing the risk of
CVD(5–7). The diet’s high content of fibre, antioxidants, unsatu-
rated fatty acids and low-fat dairy may also ameliorate insulin
resistance and hyperglycaemia(8). A meta-analysis of six large pro-
spective studies established an inverse association between
adherence to a DASH-like diet and risk of T2DM incidence
(overall risk ratio: 0·81 (95 % CI 0·72, 0·92))(9). However,
underlying mechanisms involved in the connection between
DASH adherence and diabetes risk are not fully understood.
Novel approaches to understanding metabolic variations in
response to DASH diet adherence would increase our com-
prehension of its link with T2DM.

Metabolomics, a set of technologies used to comprehensively
characterise a wide range of molecules present within a biologi-
cal sample, can be particularly informative in the context of
T2DM aetiology because the condition is characterised by an
extended period of progressive declines in insulin sensitivity
and/or insulin secretion before the clinical onset of overt dis-
ease(10). Metabolomics can be similarly informative in identifying
metabolite profiles characterising adherence to different dietary
patterns(11,12). However, to date information regarding the
metabolomic signature of DASH adherence is sparse as, to our
knowledge, only a limited number of previous studies have
determinedmetabolite profiles associated with adherence to this
dietary pattern in human subjects(13–16).

Thus, there is currently an important knowledge gap regard-
ing the metabolomic profile of DASH diet adherence in free-
living, multiethnic and disease-free populations. Additionally,
the potential association between metabolite profiles arising
fromDASH adherencewith incident T2DM is currently unknown.
Therefore, additional studies evaluating these questions are
needed. We hypothesise that unique metabolite signatures asso-
ciated with DASH adherence will provide insight into the mech-
anisms through which this diet pattern reduces the risk of T2DM.

Materials and methods

The Insulin Resistance Atherosclerosis Study

Insulin Resistance Atherosclerosis Study (IRAS) was established
to prospectively study the associations between insulin resis-
tance, CVD risk factors and behaviours in a large multiethnic
cohort in the USA. IRAS enrolled 1625 men and women ranging
from 40 to 69 years of age between 1992 and 1994(17). The final
sample recruited had a distribution of 38 % non-Hispanic white
(n 613), 34 % Hispanic (n 548) and 28 % African-American
(n 464)(17). About 56 % of participants were women, and the dis-
tribution of glucose tolerance was 44 % normal glucose toler-
ance, 23 % impaired glucose tolerance and 33 % T2DM (but
not taking insulin)(17).

Baseline measurements were completed during two separate
examinations of 4 h each separated by approximately 1 week.

Participants were asked to fast for 12 h, to abstain from alcohol
or heavy exercise for 24 h and to abstain from smoking themorn-
ing before the examinations. During the first visit, an oral glucose
tolerance test was administered in compliance with the WHO
criteria(18). On the second visit, insulin sensitivity and β-cell func-
tion were assessed by the frequently sampled intravenous glu-
cose tolerance test(17). Glucose and insulin values from the
frequently sampled intravenous glucose tolerance test were
used to calculate insulin sensitivity (SI) and acute insulin
response using the MINMOD program(17). The disposition index
(DI), a measure of β-cell function accounting for background
insulin sensitivity, was calculated as the product of acute insulin
response and SI(19).

Ethnicity was determined by self-report(17). Nutrient intake
was assessed at the baseline examination using a semi-quantita-
tive 114-item FFQ modified from the National Cancer Institute
Health Habits and History Questionnaire to include regional
and ethnic food choices(17). These additional foods were
selected based on existing data from the four IRAS clinical
centres and the experience of nutritionists in the respective local-
ities(20). Food intakes were measured using nine frequency-type
responses ranging from ‘never or less than once/month’ up to ‘2
or more times/d’. For beverages, frequency type responses
ranged from ‘never or less than once/month’ to ‘6 or more
times/d’. Responses were used in conjunction with portion size
questions such as ‘small, medium or large, compared with other
men/women about your age’. Nutrient intake was then calcu-
lated using the DIETSYS database for age- and sex-specific
portion sizes. Finally, the dose and frequency of nutritional sup-
plements were reported if intake was at least once/week or
greater(20). The FFQ was validated against average intake esti-
mates from eight 24-h dietary recalls collected over a 1-year
period in a sample of 186 women who were part of the IRAS
cohort(20).

Follow-up examinations occurred on average 5·2 years later,
between 1998 and 1999(21). In total, 1313 participants (80·1 %) of
the original cohort of 1625 IRAS participants were included for
examinations at follow-up(21). For the current study, those with
known T2DM at baseline (n 537) and those who did not return
for a 5-year follow-up (n 347) were excluded from analyses (on-
line Supplementary Fig. 1)(22).

Dietary approaches to stop hypertension diet adherence
scoring

For the current study, an index developed by Günther et al.
(2008) was used to assess DASH diet adherence(23). This index
provides improvements over other existing indices by adjusting
intake thresholds based on energy intake(24). Previous literature
has utilised Günther’s index in both cross-sectional and prospec-
tive studies to evaluate the association of DASH diet adherence
with T2DM(25–28). This includes a study evaluating this associa-
tion within the IRAS cohort, where the highest DASH adherence
tertile compared with the lowest tertile of DASH adherence was
inversely associated with T2DM in the non-Hispanic white eth-
nic group (OR: 0·31 (95 % CI 0·13, 0·75))(26). Participants were
scored a priori through Günther’s eighty-point index for abso-
lute intakes of ten DASH food groups. Günther’s scoring index
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was adjusted for energy intake with thresholds for absolute
intake calculated using guidelines from the National Heart,
Lung, and Blood Institute and formulas for lower and upper
thresholds of each energetic bracket, using the approach
described in Günther et al. (2008)(23,29). The scoring methodol-
ogy and dietary components included are described in
Supplementary Table 1.

FFQ questions included in the calculation of average food
group servings were determined by SY and AD. For the whole
grains food group, FFQ items were selected based on Masters
et al. (2010)(30). FFQ items and multiplication factors for FFQ
items are detailed in Supplementary Table 2.

Metabolite measurements

Blood sampleswere collected formetabolite analysis at the same
visit as the dietary assessments. The TrueMass® analysis platform
was employed for quantitative measurements of ninety-two
metabolites in plasma(31–35). Acylcarnitines, amino-acids, bile
acids and sterols were analysed using mass spectrometry(31–37).
Plasmawas initially mixedwith deuterium-labelled internal stan-
dards(31–35). Depending on the class of metabolite, the mixture
was then injected onto a specific column. Acylcarnitines were
injected onto an Atlantis HILIC Column connected to a Waters
Xevo triple quadrupole mass spectrometer(34). Sterols and amino
acids were injected onto a 6890/5975 GC/MS (Agilent Tech-
nologies, CA) with a DB-5MS UI column (Agilent Technologies,
CA) and 7890/5975 GC/MS (Agilent Technologies, CA) with a
ZB-50 column (Phenomenex, CA), respectively, both with helium
as the carrier gas(31,33). Samples of bile acids were injected onto an
Agilent Stable Bond C18 reverse phase column connected to an
Applied Biosystems 4000 QTRAP(32). Fatty acids were separated
and quantified by capillary gas chromatography (Agilent Tech-
nologies model 6890) equipped with a 30 m HP-88 capillary col-
umn (Agilent Technologies) and a flame-ionisation detector(35).
Concentrations of thesemetaboliteswere then determined by com-
paring their peaks to the relevant internal standard(31–35).

Statistical analysis

All statistical analyseswere conducted using R statistical software
(version i386 3.5.1)(38). For deriving formulas to compute scores
for the a priori defined DASH indices, simple linear regression
was used to determine the intercept and slope between the pre-
dictor (the average servings of a given food group per day) and
the response (the corresponding DASH food group adherence
score). DASH adherence scores and baseline characteristics
were stratified by incident T2DM at 5-year follow-up (online
Supplementary Table 3). Participant baseline characteristics were
also stratified by tertiles of DASH adherence scores. For testing
differences across tertiles of DASH adherence scores, Pearson’s
χ2 test was used for categorical variables, and Spearman correla-
tions were used for continuous data. Metabolite measurements
were non-normally distributed and were thus scaled to a standard
deviation of 1 and centred at a mean of 0.

To determine metabolite signatures associated with DASH
adherence, the partial least squares (PLS) method was used(39).
PLS is a data reduction technique that derives new explanatory
variables, also referred to as latent variables or clusters,

underlying a set of predictor variables conditioned by a
response variable(40,41). Although PLS is frequently used to
derive dietary patterns a posteriori, in the current study, it
was used to analyse the link between an a priori dietary pat-
tern as the response variable (in this case, the DASH diet) and
altered metabolites from the IRAS serum metabolomics panel
as the predictor variables. PLS is a technique requiring com-
plete data sets absent of missing data points. The current data
set of metabolites was examined, andmetabolites with excessive
missingness (> 10 %) were excluded from analysis (online
Supplementary Fig. 2). After exclusion of these metabolites,
the data set was further processed prior to PLS analysis to
exclude all subjects with one or more missing metabolite mea-
surements from the analysis. The results of a sensitivity analysis
using imputed data are available in the supplementary material
(online Supplementary Figs. 2–4 and Supplementary Tables 4–7).
PLS models were generated (Statistical Methods Appendix), and
metabolite clusterswere identified throughexamination of loadings
(≥|0·2|) of individualmetabolites in each retainedPLS component.
Relationships between retained component scores and DASH
adherence scores, baseline characteristics and measures related
to insulin resistance and β-cell dysfunction were calculated using
the Spearman method. To reduce positive skewness, SI was trans-
formed by ln (SIþ 1), and DI was transformed by ln (DI).

The association of metabolite clusters identified using PLS
with the 5-year incidence of T2DM was examined using multi-
variable-adjusted logistic regression analysis. PLS-derived scores
were used as the primary predictor variableswith a binomial out-
come variable of 5-year incident T2DM. Odds ratios for inci-
dence of T2DM were generated from multivariable-adjusted
logistic regression using threemodels for each of the PLS-derived
scores. Model 1 did not control for covariates. Model 2 controlled
for covariates of age (years), sex (male or female), ethnicity
(Hispanic, Non-Hispanic White or African American), glucose
tolerance status (normal glucose tolerance or impaired glucose
tolerance), family history of diabetes (yes or no), education level
(secondary school, undergraduate, graduate), smoking status
(never, past or current), energy intake (kcal) and total energy
expenditure (kcal) as these variables are plausible confounders
for our exposure–outcome associations and have frequently
been adjusted for in studies assessing associations of diet and
diabetes(42–44). Model 3 controlled for all covariates in model 2
plus BMI at baseline (kg/m2). All covariates included in themulti-
variable-adjusted logistic regression models were selected a pri-
ori and sex, ethnicity, oral glucose tolerance test status, smoking
status and BMI were tested for interaction with the component
scores.

Results

In the current sample of 570 IRAS participants, themeanGünther
DASH adherence score was 51·6with a range of 25·1 to 76·8. The
distribution of adherence scores is shown in Fig. 1.

Supplementary Table 3 describes baseline characteristics of
study participants according to T2DM status at 5-year follow-
up. Of the included sample of 570 IRAS participants, ninety nine
converted to T2DM by follow-up. Converters were significantly
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older, had a higher BMI and waist circumference and were more
likely to be smokers (all P< 0·05).

Baseline characteristics and DASH score food group con-
sumption were stratified by tertiles of DASH scores (Table 1).
Ethnicity, sex and smoking status showed significant differences
across tertiles of DASH scores. The only continuous baseline
characteristic to have a significant positive correlation with
increasing DASH scores was age (r= 0·17, P-value< 0·0001).
Total energy expenditure and total energy intake were both
not correlated with increases in DASH scores.

Intake in servings per day for each food group included in the
DASH index was significantly correlated with the DASH index
scores. Total grains, high-fibre grains, vegetables, fruits, total
dairy, low-fat dairy and nuts were positively correlated, while
meat, fats and sweets were negatively correlated with DASH
scores (Table 1).

The PLS algorithm requires that the data be absent of any
missing data points. Supplementary Fig. 2 shows a graphical rep-
resentation of the percentage of missing data points for each
metabolite. Metabolites with over 10 % of missingmeasurements
were excluded from the analysis. The excluded metabolites
were docosadienoic acid (22:2 (n-6)), stearidonic acid (18:4
(n-3)), lithocholic acid, γ-butyrobetaine and lauric acid (12:0).
IRAS participants with missing metabolite measurements for
the remaining eighty-seven metabolites were excluded from
analysis (n 147).

The PLS-generated model conditioned on Günther’s DASH
adherence score showed a local minimum for the root mean
squared error of prediction at two components (online
Supplementary Fig. 3). Thus, this test indicated that the number
of components to be retained in the PLS model for optimal pre-
diction while avoiding overfitting should be two(45).

The metabolites with the strongest loadings (≥ 0·2) on the
PLS model are presented in Table 2. The first component was
characterised by a cluster of metabolites comprising mainly

acylcarnitines of short, medium and long length as well as
L-carnitine all loading negatively and eicosapentaenoic acid
(20:5 (n-3)) loading positively. Component 2 in this PLS model
was also largely characterised by strong and positive loadings
from acylcarnitines. Seven of these acylcarnitines and eicosa-
pentaenoic acid (20:5 (n-3)) were in common with those
strongly loading on component 1 but loading in the opposite
direction. In addition, decanoylcarnitine AC10:0, hexanoylcarni-
tine AC6:0, docosapentaenoic acid (22:5 (n-3)) and docosahex-
aenoic acid (22:6 (n-3)) also loaded strongly on component 2.

Circle plots generated from the PLS models identified
metabolites with large explained variance by the components
in the PLS models. The circle plot derived from the PLS model
conditioned on Günther’s DASH adherence score showed
the explained variance of the two retained components
(Component 1:5·1 % variance explained, Component 2:4·6 %
variance explained). Also shown in the circle plot is a group of
acylcarnitines with over 50 % of variance explained by the two
retained components: AC18:1 (n-9), AC16:0, AC14:0, AC12:0
andAC6:0 (Fig. 2).

The two retained componentswere positively correlatedwith
the DASH adherence score. Component 1 had a correlation of
0·32 (P-value< 0·001) and component 2 had a correlation of
0·19 (P-value< 0·001) (Fig. 3). These positive correlations indi-
cate that higher (or lower) levels of the identifiedweighted linear
combinations of the metabolites are correlated with higher
DASH adherence scores.

Correlations of extracted component scores with baseline
characteristics and measures of insulin metabolism are pre-
sented in Table 3. Significant positive correlations were found
between the DASH score and both components. Component
2 of the PLS model was also significantly correlated with age,
SI, DI, BMI, waist circumference and energetic intake. The pos-
itive correlations with SIand DI suggest an association between
higher levels of identified metabolites and improved insulin

Fig. 1. Distribution of Günther’s dietary approaches to stop hypertension (DASH) diet score in current IRAS sample.
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sensitivity and β-cell function. These correlations also suggest
that these metabolites are associated with lower BMI, waist
circumference and energy intake. We further explored the
univariate associations of the components with SI and DI using
multivariate linear regression adjusted for covariates. These
models indicated significant and positive associations of com-
ponent 2 with SI (β-coefficient= 0·03, (95 % CI: 0·02, 0·05),
P-value< 0·001), but not DI (Table 4).

Using the PLS model component scores as primary exposure
variables, multivariable-adjusted logistic regressionwas runwith
5-year incident T2DM as the outcome variable (Table 5).
Component 1 was not significantly associated with incident
T2DM prior to or after adjustment for multiple covariates.
Component 2was significantly inversely associatedwith the inci-
dence of T2DM. The three models had significant odds ratios,
with adjustment of several covariates including BMI at baseline

(OR: 0·89, (95 % CI 0·80, 1·00), P-value= 0·043). There were no
significant interactions by sex, ethnicity, impaired glucose toler-
ance status, smoking or BMI (all P> 0·05).

Sensitivity analysis using imputed values for missing
metabolite variables yielded results that were not materially
different from the primary analysis. Specifically, the PLS clus-
ters were similar, as were the direction and magnitude of the
associations of these components with SI, DI and incident
T2DM (online Supplementary Tables 4–7). Sensitivity analy-
ses were also conducted adjusting for lipid and blood pressure
medications and excluding energy intakes at the extremes of
the distribution (top and bottom 1 % of energy intakes were
excluded) to take into account dietary misreporting (online
Supplementary Tables 8 and 9). The OR from these sensitivity
analyses were not materially changed in direction, magnitude
or significance.

Table 1. Baseline characteristics andGünther’s dietary approaches to stop hypertension (DASH) score food groups across tertiles of Günther’s DASH score
(Numbers and percentages; median values and interquartile ranges)

Tertiles of Günther’s DASH score

Correlation P-value

1 2 3

Median Interquartile range Median Interquartile range Median Interquartile range

n 190 190 190
Sex 0·00018*
Male

n 105 65 82
% 55·3 34·2 43·2

Ethnicity 0·080*
Black

n 59 43 40
% 31·1 22·6 21·1

Hispanic
n 61 66 57
% 32·1 34·7 30·0

White
n 70 81 93
% 36·8 42·6 48·9

Smoking status 0·00013*
Never

n 82 86 98
% 43·2 45·3 51·6

Past
n 64 74 81
% 33·7 38·9 42·6

Current
n 44 30 11
% 23·2 15·8 5·8

Age (years) 52·40 46·73, 60·67 54·34 47·97, 62·39 57·46 48·74, 64·37 0·17 < 0·0001
Total energy expenditure (kcal/d) 1967·52 1840·88, 2230·66 2019·52 1883·04, 2265·80 2027·04 1872·19, 2254·89 0·06 0·179
Total energy intake (kcal) 1809·59 1281·17, 2481·29 1759·89 1228·18, 2328·91 1670·18 1306·63, 2177·25 −0·09 0·0414
Günther’s score 42·20 37·85, 45·30 51·88 49·89, 54·00 60·75 58·39, 64·11 1 < 0·0001
Food groups (servings/d)
Total grains 2·34 1·65, 3·56 2·80 1·90, 3·85 3·00 2·31, 3·66 0·17 < 0·0001
High-fibre grains 0·30 0·08, 0·75 0·64 0·29, 1·04 1·04 0·61, 1·54 0·48 < 0·0001
Vegetables 2·08 1·46, 3·01 3·30 2·22, 4·55 3·62 2·72, 4·73 0·41 < 0·0001
Fruits 1·13 0·57, 1·78 1·90 1·24, 2·61 2·94 2·15, 4·07 0·57 < 0·0001
Total dairy 0·76 0·40, 1·22 0·92 0·59, 1·39 1·07 0·59, 1·50 0·18 < 0·0001
Low-fat dairy 0·00 0·00, 0·14 0·08 0·00, 0·29 0·40 0·07, 0·64 0·39 < 0·0001
Meat, poultry, eggs, fish 1·81 1·01, 2·89 1·60 1·06, 2·38 1·47 1·03, 1·92 −0·18 < 0·0001
Nuts, seeds, legumes 0·18 0·07, 0·32 0·29 0·12, 0·57 0·46 0·24, 0·73 0·37 < 0·0001
Fats 1·57 0·97, 2·44 1·36 0·87, 2·03 1·17 0·73, 1·74 −0·19 < 0·0001
Sweets 1·42 0·71, 2·21 0·83 0·44, 1·36 0·58 0·28, 0·99 −0·40 < 0·0001

* Pearson’s χ2 test.Correlation and P-value calculating using Spearman correlation.
Intakes presented as median [Interquartile range].
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Discussion

The two main findings of the present paper are (1) the identifi-
cation of novel clusters of metabolites that include a broad panel
of acylcarnitines and PUFA which underlie adherence to a
DASH-like diet and (2) a significant negative association
between one of the identified metabolite clusters and inci-
dent T2DM.

PLS is an established and widely used technique for con-
structing predictive models of data with high dimensionality(46).
This multivariate statistical approach allowed us to identify
unique clusters of metabolites that reflect a metabolic signature
of adherence to a DASH-like diet. From Fig. 2, a group of acyl-
carnitines had over 50 % of its variance explained by these PLS-
derived clusters. Specifically regarding acylcarnitines, there was
a negative loading for the first component and positive loadings
for the second component from the PLS model.

Acylcarnitines are intermediate oxidativemetabolites inmito-
chondrial fatty acid metabolism(47). Currently, there is no known
physiological role of acylcarnitine efflux to the plasma; however,
it may indicate a greater lipid oxidation rate(48). Additionally, the
presence of acylcarnitines in urine and bile suggests that acylcar-
nitine effluxmay be due to a detoxification process(49). The efflux
of acylcarnitines has allowed for their use to screen for fatty acid
oxidation dysregulation in blood samples(50). In the context of
insulin resistance, lipid overload can lead to fatty acid oxidation
outpacing TCA flux, causing incomplete fatty acid oxidation and
acylcarnitine accumulation(49). Elevated circulating levels of free
carnitine and several medium-chain and long-chain acylcarni-
tines have been reported in cases of T2DM(51–53). However, there
is inconsistency in the literature as some studies have reported
increases in either uniquely long-chain acylcarnitines or
uniquely medium-chain acylcarnitines in individuals with
T2DM(52,54). The literature has indicated that more studies are
required to determine if they are reflecting or causing insulin re-
sistance(49). Regarding short-chain acylcarnitines, C4-OH-carni-
tine has been proposed to cause insulin resistance in both rat
and human studies through increased demands on carnitine

stores and subsequent inhibition of glucose oxidation(49).
Acetylcarnitine, on the other hand, may illustrate metabolic flex-
ibility(49). Mitochondrial enzymes have been shown to convert
acetyl-CoA into acetylcarnitine that prevents the excess accumu-
lation which would inhibit pyruvate dehydrogenase(49). It is gen-
erally perceived that short-chain acylcarnitines may reflect
higher lipid fluxes, but at present, no direct relation with insulin
resistance has been established. While most of the evidence
points to a positive association between acylcarnitines and insu-
lin resistance and T2DM, the literature to date is limited in dem-
onstrating physiologic mechanisms. In addition, L-carnitine has
been shown to improve insulin sensitivity in diabetic patients as
well as increase glucose oxidation(55).

In addition to the acylcarnitines, the n-3, n-6 and n-9 PUFA
were among the strongest loading metabolites in the present
analysis. While these PUFA have been shown in trials to improve
glycaemic control in type 2 diabetic participants(56), a systematic
review and meta-analysis of prospective studies and a review of
clinical trials have not shown significant reductions in incident
type 2 diabetes(57,58).

In the current study, we have shown that adherence to a
DASH-like diet is associated with elevated levels of a unique
cluster of acylcarnitines and PUFA. Therefore, an individual acyl-
carnitine included in the cluster cannot be assumed to have a
negative association with T2DM risk. Rather, it is the specific
weighted combination of these metabolites identified in our
analysis that appears to be inversely related to T2DM risk. In
addition to the significant association of component 2 with inci-
dent T2DM, this component was also independently associated
with insulin sensitivity. Further studies should aim to investigate
physiologic pathways through which this unique cluster of
metabolites may improve insulin sensitivity and decrease the
incidence of T2DM.

To our knowledge, no other study has investigated the
metabolomics of the DASH diet in a large multiethnic cohort free
of major health outcomes at baseline. A trial investigated the
metabolomics of the DASH diet in a sample of thirteen adults
who had a history of hypertension and stable hypertensive heart
failure with preserved ejection fraction(14,59). The principal find-
ing was an increase in short-chain acetyl, butyryl, propionyl car-
nitines and L-carnitine after administration of the DASH diet(14).
The results are consistent with the present study in the identifi-
cation of acylcarnitines of varying lengths underlying adherence
to a DASH-like diet. Another study used serum samples from the
original DASH trial(5) to conduct untargeted metabolomic profil-
ing of the DASH diet(13). Participants followed either a DASH diet
(n 110), fruits and vegetables diet (n 111) or a control diet (n
108)(13). Forty-four knownmetabolites that differed between diet
patterns were identified(13). Part of the identified metabolites
were six acylcarnitines, all of which were lower among those
randomly assigned to the DASH diet. Among these, three were
in common with those with strong loadings in the present study:
stearoylcarnitine (AC18:0), palmitoylcarnitine (AC16:0) andmyr-
istoylcarnitine (AC14:0). Reasons for the differences between the
cited study and the current analysis may be attributed to the cur-
rent study capturing adherence to a DASH-like diet in a large
free-living cohort consuming foods in a non-interventional set-
ting, as opposed to an 8 week controlled feeding trial(13). One

Table 2. Table of metabolites with strongest loadings (≥ 0·2) on components
1 and 2 of the partial least squares (PLS) model conditioned on Günther’s
dietary approaches to stop hypertension (DASH) scores

Component 1 Component 2

Oleoylcarnitine AC18:1 (n-9) –0·35 0·22
Stearoylcarnitine AC18:0 –0·34
Palmitoylcarnitine AC16:0 –0·32 0·30
Hexanoylcarnitine AC6:0 –0·30
Myristoylcarnitine AC14:0 –0·30 0·39
Dodecanoylcarnitine AC12:0 –0·28 0·38
Linoleoylcarnitine AC18:2 (n-6) –0·28 0·25
L-carnitine (L-carn) –0·27
Acetylcarnitine AC2:0 –0·25 0·25
Valerylcarnitine AC5:0 –0·24
Octanoylcarnitine AC8:0 –0·22 0·35
Decanoylcarnitine AC10:0 –0·22
Eicosapentaenoic acid 20:5 (n-3) 0·21 0·31
Decanoylcarnitine AC10:0 0·36
Hexanoylcarnitine AC6:0 0·35
Docosapentaenoic acid 22:5 (n-3) 0·27
Docosahexaenoic acid 22:6 (n-3) 0·24

492 S. Yashpal et al.

https://doi.org/10.1017/S0007114521003561  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114521003561


trial identified compounds from the urine analysis of partici-
pants on a controlled DASH-style diet(15). However, this study
focused on compounds from individual foods, rather than
metabolites or physiological biomarkers, and the study ana-
lysed urine rather than plasma or serum. In addition, the study
included a relatively small sample of nineteen participants(15).
A separate study identified the proteomic and metabolomic
signature of the DASH diet(16). This included an eighty-three
protein signature which enriched pathways involved in cellu-
lar metabolism, hypoxia, inflammation and atherosclerosis(16).
The metabolite signature included forty-three biomarkers
mainly consisting of lipids (55 %) with long-chain fatty acids(16).
However, as is highlighted by this study, additional work is
required to identify determinants of dietary correlates and exam-
ine how theymay relate to the progression of modifiable chronic
disease(16). It should also be noted that this study was cross-
sectional with no linking to disease outcomes. Our study is
the first to our knowledge that examined the metabolite profile
of the DASH diet in a multiethnic population not receiving a
dietary intervention.

The current study has potential limitations to be considered
when interpreting the results. First, the observational design of
the study means that causality cannot be established and there
may be residual confounding not controlled for. However,
extensive precautions were taken to identify and adjust
for potential confounders. Second, the metabolite panel
employed was relatively small (ninety-two metabolites) com-
pared with more recently developed panels that capture a
greater number of metabolites from a range of different path-
ways. Despite the limitations of the assay, however, it captures
many species in families of metabolites that are currently of
substantial interest in the literature, including acylcarnitines,
amino acids, bile acids, sterols and fatty acids. Therefore,
despite the limited number of metabolites available from this
assay, we believe our work is novel and informative and pro-
vides a basis for future studies to extend these findings with
larger metabolite panels. Third, having longitudinal informa-
tion about dietary intake information and blood draws would
have allowed for observation of the evolution of the metabo-
lomic profile over time and may have provided additional

Fig. 2. Circle plot from partial least squares (PLS) model showing the clustering of metabolites conditioned on Günther’s dietary approaches to stop hypertension
(DASH) score. The percent explained variance of the complete metabolite data set by each component is shown in brackets on each axis. The solid circular line
represents an explained variance of 100 % for a metabolite by a component, while the dashed line represents an explained variance of 50 %. Metabolites between
these lines represent variables that strongly explain the underlying structure of the data. Category: , Acylcarnitines; , amino acids; , bile acid; , fatty acid;
, sterols.
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granularity regarding whether particular metabolites play a
key role in the progression to T2DM. Finally, external valida-
tion or replication of the current study in a similar cohort
would allow for further verification of the identified metabo-
lite clusters and their association with incident T2DM.

Our study has several notable strengths, including the evalu-
ation of a multiethnic cohort, the thorough characterisation of

participants through metabolic, anthropometric, dietary and
behavioural measures, fully quantitative metabolite measure-
ments that included families of biomarkers with potential rel-
evance to T2DM etiology, as well as assessment of incident
diabetes after 5 years using oral glucose tolerance testing. We
also had extremely well-phenotyped measures of insulin sensi-
tivity and β-cell function. Finally, metabolite clusters were iden-
tified using PLS, which takes advantage of the multidimensional
nature of the data to provide novel insights into underlying met-
abolic trends not identifiable through traditional statistical meth-
ods that focus on single variables.

Conclusion

In summary, this study identified metabolite clusters charac-
teristic of adherence to a DASH-like diet in a large multiethnic
cohort. In addition, one metabolite cluster was independently
inversely associated with incident T2DM. This study is the first
to create a metabolite profile of the DASH diet and examine its
associations with T2DM and risk factors for T2DM in a large
multiethnic cohort. The results suggest that modulations of
specific metabolites, including short-, medium- and long-
chain acylcarnitines and n-3 polyunsaturated fatty acids,
may account in part for previously established associations
between adherence to a DASH-like diet and reduced risk
of T2DM.

Fig. 3. Association of partial least squares (PLS) model generated component 1 (A) and 2 (B) with Günther’s PLS scores. Line represents a fitted linear regression
model with its equation and coefficient of determination presented on the top left of the graph area. Shaded area indicates 95% confidence interval. A: y= 51·6þ 0·781 x;
R2= 0·037; correlation = 0·32. B: y= 51·6þ 1·65 x; R2= 0·1; correlation = 0·19.

Table 3. Correlation between extracted Günther component scores and
baseline characteristics

Correlation

Component 1 Component 2

Günther’s dash diet score 0·32§§§ 0·19§§§
Age (years) −0·05 −0·10§§
Si (min−1·μu−1·ml−1) 0·03 0·29§§§
Disposition index −0·07 0·12§§
BMI (kg/m2) −0·01 −0·21§§§
Waist circumference (cm) −0·10§ −0·28§§§
Total energy expenditure (kcal/d) −0·06 −0·04
Energetic intake (kcal/d) −0·19§§§ −0·11§§
Alcohol intake (g/d) 0·04 0·05

§ P< 0 05.
§§ P< 0 01.
§§§ P< 0 0001.Correlations and P-values were calculated using the Spearman

method.
SI was transformed by ln (SIþ 1).
DI was calculated by AIR * SI and then transformed by ln (DI).
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