A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND STOCHASTIC MATRICES

RICHARD SINKHORN

1. Introduction. The author (2) has shown that corresponding to each positive square matrix A (i.e. every $a_{i j}>0$) is a unique doubly stochastic matrix of the form $D_{1} A D_{2}$, where the D_{i} are diagonal matrices with positive diagonals. This doubly stochastic matrix can be obtained as the limit of the iteration defined by alternately normalizing the rows and columns of A.

In this paper, it is shown that with a sacrifice of one diagonal D it is still possible to obtain a stochastic matrix. Of course, it is necessary to modify the iteration somewhat. More precisely, it is shown that corresponding to each positive square matrix A is a unique stochastic matrix of the form $D A D$ where D is a diagonal matrix with a positive diagonal. It is shown further how this stochastic matrix can be obtained as a limit to an iteration on A.

Immediate corollaries to this result are a theorem of Marcus and Newman (1), which states that if A is a positive symmetric matrix, then there exists a diagonal matrix D with a positive main diagonal such that $D A D$ is doubly stochastic, and its generalization, which states that if A is positive $N \times N$ and if p_{1}, \ldots, p_{N} are positive real numbers, then there exists a unique matrix of the form $D A D$ with row sums p_{1}, \ldots, p_{N} where D is a diagonal matrix with a positive diagonal.
2. Stochastic matrices and positive matrices. The main result is:

Theorem. Corresponding to each positive matrix A there exists a unique stochastic matrix of the form $D A D$ where D is a diagonal matrix with a positive diagonal.

The existence part of the proof is absorbed into three lemmas which follow.
Lemma 1. Let $V \subseteq E^{N} \times E^{N}$ consist of vector pairs (x, y) with positive components that satisfy

$$
\sum_{j=1}^{N} y_{i} a_{i j} x_{j}=1, \quad i=1, \ldots, N
$$

with $\|x\|=\max \left|x_{i}\right| \leqslant a^{-\frac{1}{2}}$ and $\|y\|=\max \left|y_{i}\right| \leqslant a^{-\frac{1}{2}}$ where a is the minimal element of the positive matrix $A=\left(a_{i j}\right)$. Then the function

$$
\phi(x, y)=\max _{i} \sum_{j=1}^{N} x_{i} a_{i j} y_{i}-\min _{i} \sum_{j=1}^{N} x_{i} a_{i j} y_{j}
$$

achieves a minimum of zero on V.
Received November 30, 1964.

Proof. Certainly V is not empty since it contains $\left(x^{0}, y^{0}\right)$ where

$$
x_{i, 0}=a^{-\frac{1}{2}}, \quad y_{i, 0}=\left(\sum_{j} a_{i j}\right)^{-1} a^{\frac{1}{2}}, \quad \text { for } i=1, \ldots, N .
$$

Note that

$$
\left|y_{i, 0}\right| \leqslant a^{\frac{1}{2}} / a_{i j} \leqslant a^{\frac{1}{2}} / a=a^{-\frac{1}{2}}
$$

for any i, j.
Construct a sequence $\left(x^{n}, y^{n}\right) \in V$ as follows. Let $\left(x^{0}, y^{0}\right)$ be as above and set

$$
x_{i, n+1}=M_{n}^{-1} a^{-\frac{1}{2}} \rho_{i, n}^{-1} x_{i, n}, \quad y_{j, n+1}=M_{n} a^{\frac{1}{2}} \delta_{j, n}^{-1} y_{j, n},
$$

where

$$
\begin{aligned}
& \rho_{i, n}=\sum_{j} x_{i, n} a_{i j} y_{j, n}, \quad \delta_{j, n}=\sum_{i} \rho_{i, n}^{-1} x_{i, n} a_{j i} y_{j, n}, \\
& M_{n}=\max _{i} \rho_{i, n}^{-1} x_{i, n} .
\end{aligned}
$$

It is easy to see that each $\left(x^{n}, y^{n}\right)$ lies in V, for certainly $\sum_{j} y_{i, n} a_{i j} x_{j, n}=1$ for all i. Since for all i, j, n,

$$
\delta_{j, n}^{-1} y_{j, n}=\left(\sum_{i} \rho_{i, n}^{-1} x_{i, n} a_{j i}\right)^{-1} \leqslant\left(\rho_{i, n}^{-1} x_{i, n} a_{j i}\right)^{-1} \leqslant a^{-1}\left(\rho_{i, n}^{-1} x_{i, n}\right)^{-1}
$$

in particular

$$
\delta_{j, n}^{-1} y_{j, n} \leqslant a^{-1} M_{n}^{-1}
$$

for all j and n. Thus

$$
y_{j, n+1} \leqslant M_{n} a^{\frac{1}{2}} a^{-1} M_{n}^{-1}=a^{-\frac{1}{2}} ;
$$

also

$$
x_{i, n+1} \leqslant M_{n}^{-1} a^{-\frac{1}{2}} M_{n}=a^{-\frac{1}{2}},
$$

and hence

$$
\left\|x^{n}\right\| \leqslant a^{-\frac{1}{2}} \quad \text { and } \quad\left\|y^{n}\right\| \leqslant a^{-\frac{1}{2}} \quad \text { for all } n
$$

Then from $x_{i, n} \sum_{j} a_{i j} y_{j, n}=\rho_{i, n}$, it follows that

$$
\rho_{i, n}^{-1} x_{i, n}=\left(\sum_{j} a_{i j} y_{j, n}\right)^{-1} \geqslant a^{\frac{1}{2}}\left(\sum_{j} a_{i j}\right)^{-1} \geqslant R a^{\frac{1}{2}},
$$

where $R^{-1}=\max _{i} \sum_{j} a_{i j}$. Also

$$
y_{j, n}=\left(\sum_{i} x_{i, n} a_{j i}\right)^{-1} \geqslant a^{\frac{1}{2}}\left(\sum_{i} a_{j i}\right)^{-1} \geqslant R a^{\frac{1}{2}},
$$

and therefore, in particular,

$$
d_{n}=\min _{i, j} \rho_{i, n}^{-1} x_{i, n} a_{i j} y_{j, n} \geqslant R a^{\frac{1}{2}} a R a^{\frac{1}{2}}=R^{2} a^{2}=\mu>0 \quad \text { for all } n .
$$

Let

$$
\begin{aligned}
\rho_{i_{1}, n+1}=\min _{i} \rho_{i, n+1}, & \rho_{i_{2}, n+1}=\max _{i} \rho_{i, n+1}, \\
\delta_{j_{1}, n}=\min _{j} \delta_{j, n}, & \delta_{j_{2}, n}=\max _{j} \delta_{j, n} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\phi\left(x^{n+1}, y^{n+1}\right) & =\rho_{i_{2}, n+1}-\rho_{i_{1}, n+1} \\
& \leqslant\left[x_{i_{2}, n}^{-1} \rho_{i_{2}, n} a_{i_{2}, j_{2}} \delta_{j_{2}, n}^{-1} y_{j_{2}, n}+\delta_{j_{1}, n}^{-1}\left(1-x_{i_{2}, n} \rho_{i_{2}, n}^{-1} a_{i_{2} j_{2}} y_{j_{2}, n}\right)\right] \\
& -\left[x_{i_{1}, n} \rho_{i_{1}, n}^{-1} a_{i_{1}, j_{1}} \delta_{j_{1}, n}^{-1} y_{j_{1}, n}+\delta_{j_{2}, n}^{-1}\left(1-x_{i_{1}, n} \rho_{i_{1}, n}^{-1} a_{i_{1}, j_{1}} y_{j_{1}, n}\right)\right] \\
& \leqslant\left[\delta_{j_{2}, n}^{-1} d_{n}+\delta_{j_{1}, n}^{-1}\left(1-d_{n}\right)\right]-\left[\delta_{j_{1}, n}^{-1} d_{n}+\delta_{j_{2}, n}^{-1}\left(1-d_{n}\right)\right] \\
& =\left(1-2 d_{n}\right)\left(\delta_{j_{1}, n}^{-1}-\delta_{j_{2}, n}^{-1}\right) \leqslant\left(1-2 d_{n}\right)\left(\max _{i} \rho_{i, n}-\min _{i} \rho_{i, n}\right) \\
& =\left(1-2 d_{n}\right) \phi\left(x^{n}, y^{n}\right) \leqslant(1-2 \mu) \phi\left(x^{n}, y^{n}\right) .
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} \phi\left(x^{n}, y^{n}\right)=0 .
$$

Since V is bounded, the sequence $\left\{\left(x^{n}, y^{n}\right)\right\}$ has a limit point (\tilde{x}, \tilde{y}). It readily follows that $(\tilde{x}, \tilde{y}) \in V$ and $\phi(\tilde{x}, \tilde{y})=0$.

Lemma 2. For any positive matrix A, there exist diagonal matrices D_{1} and D_{2} with positive diagonals such that $D_{1} A D_{2}$ and $D_{2} A D_{1}$ are stochastic.

Proof. Pick $(\tilde{x}, \tilde{y}) \in V$, which minimizes $\phi(x, y)$. Then $\sum_{j} \tilde{y}_{i} a_{i j} \tilde{x}_{j}=1$ for all i while $\sum_{j} \tilde{x}_{i} a_{i j} \tilde{y}_{j}=k$, a constant, for all i. It readily follows that k and 1 are each maximal eigenvalues for $D_{1} A D_{2}$. Thus $k=1$.

Lemma 3. If A is positive and if $D_{1} A D_{2}$ and $D_{2} A D_{1}$ are both stochastic where D_{1} and D_{2} are diagonal with positive diagonals, then $D_{2}=p D_{1}$ for some number $p>0$.

Proof. Let $D_{1}=\operatorname{dg}\left(x_{1}, \ldots, x_{N}\right)$ and $D_{2}=\operatorname{dg}\left(y_{1}, \ldots, y_{N}\right)$ and set $p_{j}=y_{j} / x_{j}$. If p_{j} is not constant, then

$$
\begin{array}{r}
\max _{j} p_{j}=p_{i 0}=\left(\sum_{j} x_{i_{0}} a_{i_{0} j} x_{j}\right)^{-1}=\left(\sum_{j} x_{i_{0}} a_{i_{0} j} x_{j} p_{j}\right)\left(\sum_{j} x_{i_{0}} a_{i_{0} j} x_{j}\right)^{-1} \\
<\max _{j} p_{j}
\end{array}
$$

a contradiction.
Proof of the theorem. From Lemmas 2 and 3, there is a diagonal matrix D_{1} with positive diagonal and a positive number p such that $p D_{1} A D_{1}$ is stochastic. The existence part of the theorem follows by taking $D=p^{\frac{1}{2}} D_{1}$.

Suppose D and C are diagonal matrices with positive diagonals such that $D A D$ and $C A C$ are stochastic. Then $C A C=\mathrm{B}=\left(b_{i j}\right)$ and $D C^{-1} B C^{-1} D$ are both stochastic. If $D C^{-1}=\operatorname{dg}\left(z_{1}, \ldots, z_{N}\right)$,

$$
\max _{j} z_{j}=z_{i_{0}}=\left(\sum_{j} b_{i_{0} j} z_{j}\right)^{-1} \leqslant\left(\sum_{j} b_{i_{0} j}\right)^{-1}\left(\min _{j} z_{j}\right)^{-1}=\left(\min _{j} z_{j}\right)^{-1}
$$

and similarly $\min _{j} z_{j} \geqslant\left(\max _{j} z_{j}\right)^{-1}$, with equality possible in each case only if z_{j} is constant for all j. It follows that $z_{j}=1, j=1, \ldots, N$, and therefore that $D=C$.

Corollary 1 (Marcus and Newman 1). If A is symmetric and has positive entries, there exists a diagonal matrix D with positive main diagonal entries such that DAD is doubly stochastic.

Proof. This follows at once since $D A D$ is symmetric when A is symmetric.
Corollary 2. Corresponding to each positive $N \times N$ matrix A and each set of positive real numbers p_{1}, \ldots, p_{N} there is a unique matrix of the form $D A D$ with row sums p_{1}, \ldots, p_{N} where D is a diagonal matrix with a positive main diagonal.

Proof. Let $D_{0}=\operatorname{dg}\left(p_{1}, \ldots, p_{N}\right)$ and set $B=D_{0}{ }^{-1} A$. There is a diagonal matrix D with a positive main diagonal such that $S=D B D$ is stochastic. Then $D_{0} S=D A D$ has the appropriate row sums. We have used the fact that $D_{0} D=D D_{0}$.

In the proof of Lemma 1 a method is suggested for determining the matrix $D A D$ of the theorem from A by an iterative scheme.

Define diagonal matric sequences $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ such that

$$
\begin{gathered}
X_{0}=I, \quad Y_{0}=\operatorname{dg}\left[\left(\sum_{j} a_{1 j}\right)^{-1}, \ldots,\left(\sum_{j} a_{N j}\right)^{-1}\right], \\
X_{n+1}=D_{1, n} X_{n}, Y_{n+1}=D_{2, n} Y_{n},
\end{gathered}
$$

where $D_{1, n}$ and $D_{2, n}$ are diagonal matrices such that

$$
D_{1, n}^{-1} u=X_{n} A Y_{n} u \quad \text { and } \quad D_{2, n}^{-1} u=Y_{n} A X_{n+1} u ;
$$

here u denotes the N-dimensional vector all of whose components equal one. Then $X_{n} A Y_{n} \rightarrow D A D$.

References

1. M. Marcus and M. Newman, The permanent of a symmetric matrix, Amer. Math. Soc. Not., 8 (1961), 595.
2. R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 35 (1964), 876-879.

University of Houston

