
The Profession
...

Software Citations in Political Science
Vincent Arel-Bundock, Université de Montréal, Canada

Joshua McCrain, University of Utah, USA

ABSTRACT Political scientists rely on complex software to conduct research, andmuch of the
software they use is written and distributed for free by other researchers. This article
contends that creating and maintaining these public goods is costly for individual software
developers but that it is not adequately incentivized by the academic community. We
demonstrate that statistical software is used widely but rarely cited in political science, and
we highlight a partial solution to this problem: software bibliographies. To facilitate their
creation, we introduce softbib, an R package that scans analysis scripts, detects the
software used in those scripts, and automatically creates bibliographies. We hope that
recognizing the contribution of software developers to science will encourage more
scholars to create public goods, which could yield important downstream benefits.

Political scientists rely on complex software to con-
duct research, and much of the software they use is
written and distributed for free by other researchers.
This software enables efficient data collection,
manipulation, visualization, and analysis using

cutting-edge methodologies. Without software, the work of most
political scientists would be much more difficult or outright
impossible.

Research software makes major contributions to the advance-
ment of knowledge in political science, but those contributions
usually go unacknowledged; software almost never is cited in our
field, even if it is used widely. In a review of 804 articles published
by American Political Science Review between 2010 and 2021, we
found that more than 40%make nomention of any software. Only
23% of the articles that we surveyed included a formal citation of
software in their bibliography (McCrain and Arel-Bundock 2023).

Undercitation of software creates a host of problems for the
discipline. First—and most obvious—there is little incentive for
academics to create free software without the reward of citation.
Unless software is cited formally in a bibliography, it can be difficult
for authors to convey the importance of their contributions to
science to hiring committees, tenure letter writers, and promotion
committees. Second, without professional incentives, existing soft-
ware is less likely to be maintained or updated following new

methodological advancements. Third, the underprovision of this
public good increases the costs and fragility of research. It forces
many researchers to constantly “reinvent the wheel” by writing
error-prone code to execute the same common tasks.

We propose a partial solution to this problem: journal editors
should require the inclusion of a software bibliography in every
article that they agree to publish.1 To facilitate this, we introduce
softbib, an R package that can scan analysis scripts, detect the
software used in those scripts, and automatically create bibliogra-
phies.2 We hope that recognizing the contribution of software
developers to science will encouragemore scholars to create public
goods, which could yield important downstream benefits. We also
suggest other improvements to the status quo that when com-
bined with requiring citations to software could ameliorate the
problems documented in this article.

BENEFITS OF RESEARCH SOFTWARE

In our view, most political scientists should seek to limit the
number of lines of code they write for many of their research
projects. Instead, they should use (and contribute to) open-source,
publicly accessible, well-tested, and well-documented research
software. Using such code has many benefits.3

First, research software can improve the reliability of our
scientific findings. A common source of errors in research is
programming mistakes made by a researcher.4 This is not surpris-
ing: any nontrivial software will include mistakes, and scientists
are not necessarily programmers by profession. To be sure,
research software is not immune to bugs either. However, when
many researchers use the same code, there are more opportunities

© The Author(s), 2023. Published by Cambridge University Press on behalf of the
American Political Science Association. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

Vincent Arel-Bundock is an associate professor of political science at the Université
de Montréal. He can be reached at Vincent.arel-bundock@umontreal.ca.
JoshuaMcCrain is an assistant professor of political science at the University of Utah.
He can be reached at Joshua.mccrain@utah.edu.

398 PS • July 2023 doi:10.1017/S1049096523000239

https://doi.org/10.1017/S1049096523000239 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0003-0386-2549
https://doi.org/10.1017/S1049096523000239
https://doi.org/10.1017/S1049096523000239

to detect and correct problems. This is doubly true in the case of
open-source software, in which the code can be inspected freely.
Moreover, good-quality software tends to be developed with
extensive unit tests and detailed documentation. Research soft-
ware thus can mitigate some of the scientific errors caused by the
inadvertent but unavoidable coding mistakes found in almost any
complex bespoke code base.

Second, research software is convenient, and it makes us more
efficient. Many packages are simply tools that permit easy access
to complex, difficult-to-use datasets—or just simple functionality

that allows users to not re-download a commonly used dataset
every time they want to use it. Producing tables and figures is
similarly valuable: it allows us to iterate over several complex
analyses and to produce aesthetically pleasing reports quickly
while avoiding transcription errors. Producing tools to format
results into common formats, without extensive programming
knowledge, greatly accelerates the production of research.

Third, research software is empowering. Only a small propor-
tion of political scientists have the technical skills to implement
cutting-edge methods. When researchers do implement such
methods, they risk making errors that may be subtle, difficult to
check, and impossible to detect during peer review. Most
researchers do not need to understand the exact programming
concepts that underlie the implementation of the statistical
method they need to use. In fact, some of the skills needed to
develop well-tested, documented, and user-friendly software are
orthogonal to the actual statistical knowledge needed to develop
or apply statistical techniques. Therefore, empowering scientists
to use cutting-edge methods must be viewed as part of a true
community effort, involving those who invent statistical tech-
niques, those who implement them, and those who apply them.

UNDERACKNOWLEDGMENT OF RESEARCH SOFTWARE

Although there are clear benefits to using research software, there
also are few incentives for its creation. Those who choose to create
these public goods face high costs through development, testing,
documenting, bug triage, feature request implementation, and
user support. Whereas the costs of production are high, the
rewards for software contributors remain very low.

Indeed, the current norm in political science is to largely ignore
the work of those who create the tools that make research possible.
To illustrate this, we conducted full-text searches in all articles
published in American Political Science Review between 2010 and
2021.5 We used the readtext package to read individual articles
in PDF format and the quanteda package for R to extract all
sentences that matched one of the following case-insensitive
expressions: CRAN, github, library, package, SAS, software, SPSS,

Stata, R Core Team, R Foundation (Benoit and Obeng 2021;
Benoit et al. 2018; R Core Team 2022). A human coder then read
each sentence to cull false positives and to classify software
references as “in text” or “in bibliography.” A second coder
reviewed all classification and exclusion decisions.

We found that of the 804 articles in our sample, less than 25%
gave credit to software developers by formally citing them in the
bibliography. Among these papers, the majority included refer-
ences to only one or two pieces of software—and a considerable
proportion of those were self-citations. A substantial percentage of

articles (35%) mentioned the name of a software package in the
text without formal attribution in the bibliography. This included
many generic mentions of R, Stata, and Python, among others.
Finally, more than 40% of authors did not even mention the
software they had used.6

It is difficult to obtain reliable data on the popularity of
different software packages because download statistics are a
flawed measure of use and usefulness.7 Nevertheless, it is easy to
find examples of packages developed by political scientists,
which are popular and downloaded often but rarely cited:
panelView, with zero citations (Liu, Xu, and Xu 2018); inter-
plot, with three citations (Solt, Hu, and Kenkel 2021); and
countrycode, a popular tool in international relations and
comparative politics that was cited 65 times but only once in a
political science peer-reviewed journal (Arel-Bundock, Enevold-
sen, and Yetman 2018).8

Anecdotally, we found that software that tends to generate an
appreciable number of citations usually accompanies new statis-
tical methodology papers or is used in disciplines other than
political science, in which norms around attribution are friendlier
to software developers. For example, consider the mediation

package (Tingley et al. 2014), with more than 2,200 citations, and
the text-analysis packages stm (Roberts, Stewart, and Tingley
2019) and quanteda (Benoit et al. 2018), which have generated
more than 1,000 and 700 citations, respectively. These success
stories are encouraging, but we want to see more (and different
types of) software be recognized by our community: that is, code
that helps us to access data, manipulate it, estimate models, and
communicate results.

Of course, not every piece of code deserves to be cited; much
software is published but never used. As with other research
output, we should expect the distribution of software citations
to be skewed and right tailed. Nevertheless, our exploration of
citation patterns in a flagship journal shows that the current
norms in the discipline are problematic, and it suggests that they
could lead to the underprovision of an important public good.

…journal editors should require the inclusion of a software bibliography in every article
that they agree to publish.

…the current norm in political science is to largely ignore the work of those who create the
tools that make research possible. To illustrate this, we conducted full-text searches in all
articles published in American Political Science Review between 2010 and 2021.

...

PS • July 2023 399
https://doi.org/10.1017/S1049096523000239 Published online by Cambridge University Press

https://doi.org/10.1017/S1049096523000239

MANDATORY SOFTWARE BIBLIOGRAPHIES

A partial solution to this problem is to leverage the existing
incentive structure of academia and to ensure that researchers
who write software receive proper credit for their contributions to
science (i.e., software citations). Specifically, journals editors should
make itmandatory for authors to include a software bibliography in
every article that is accepted for publication. By including a full list
of references for the primary software and its dependencies, authors
would properly give credit to the contributions that all categories of
software make to the different stages of the research process. In
addition to giving credit for public-goods provision, these software
bibliographies could play a useful role in promoting the reproduc-
ibility of research by consigning a permanent record of software
versions used in a given project. This could complement more
comprehensive strategies, such as containerization.

Two objections to our proposal may be that software bibliog-
raphies would constrain the word-count limits imposed on print
articles and that preparing them would impose undue costs on
authors and copyeditors. We address each concern in turn.

First, publishers may be concerned that including a complete
software bibliographywould increase theword count of articles. In
principle, this constraint should apply only to the print versions of
articles; however, given the current state of academic publishing,
the length of the bibliography may be a concern for some pub-
lishers. When the constraint is binding, we recommend a simple
three-step approach: (1) include a limited number of references to
the primary tools in the main bibliography (i.e., a subjective call
by the researcher); (2) archive a full software bibliography along
with the article’s data-replication package; and (3) include the full
software bibliography in the primary PDF ofmanuscripts archived
on preprint servers (e.g., arXiv and the Open Science Framework).
This approach involves a judgment call by researchers, but would
move in the direction of more recognition for software contribu-
tions. Archiving the full list of software used in a preprint repos-
itory also would allow Google Scholar to crawl the full
bibliography and count citations.

The second potential objection to a mandatory software bibli-
ography is that it takes time to prepare. Of course, the time it takes
to add a few references to a bibliography typically is shorter than
the time the software has saved for researchers; however, this
observation does not invalidate the concern. To address the
problem more directly, the next section introduces softbib, an
R package that automates the creation of software bibliographies.9

SOFTBIB: AUTOMATED SOFTWARE BIBLIOGRAPHIES IN R

softbib is an R package that combines commands from other
existing packages to automate the production of software bibliog-
raphies.10softbibworks in three steps. First, the renv package is

used to scan the contents of a project directory to identify which
software is used in the analysis scripts (Ushey 2022). Second, the
bibtex package parses and formats the bibliographic entries for
each package in use (Francois 2020). Third, the rmarkdown pack-
age creates bibliographies in several formats (Allaire et al. 2022).

By typing nine characters in their R session—softbib()—
authors can automatically obtain bibliographies in PDF,Microsoft
Word, RMarkdown, and BibTeX formats. softbib also sup-
ports the Citation Style Language (CSL) standard, which means
that bibliographies can be formatted in thousands of different
styles.11 This solution is almost costless for researchers, reviewers,
and publishers.

COMPLEMENTARY REFORMS

Mandatory software bibliographies are by no means a panacea to
the problem of undercitation that we documented. We believe that
facilitating and requiring software bibliographies will improve the
status quo, but we also recommend complementary reforms. First,
many political science journals already require a listing of basic
software used in the replication stage.12 A possible addition to this
process is that the replication officer determines that software is
cited appropriately in either the main list of references or the
supplementary information. This is not dissimilar to, for instance,
journals checking for Institutional Review Board documentation or
information on funding sources.13 We envision two primary issues
with this reform. First, there is still some subjectivity (as mentioned
previously) in which software must be cited—and, at this stage, the
replication officer would be responsible. However, given the tech-
nical skills needed by replication officers to do their primary task,
we also suggest that they may be best positioned to know which
software must be cited. Second, this reform might marginally
increase the duration of the replication process. We cannot state
definitively the degree towhich this is a concern, but journalswould
have to make adjustments after implementation.

Next—and, again, complementary to requiring software bibli-
ographies—is journals offering flexibility in how bibliographies
are counted toward article length and word counts. On the one
hand, authors already are attentive to not overciting existing
literature due to these binding constraints at many journals. Thus,
requiring authors to also include citations to key software used in
their work is not that different than strategically citing the most
important literature on which their research builds. In other
words, there is no inherent reason to think that citing relevant
literature is any more or less important than citing the tools used
to conduct the analyses. On the other hand, we recognize that
enforcing authors to limit citations due to length constraints has
negative externalities on the discipline (e.g., Dion, Sumner, and
Mitchell 2018). For this reason, it may be strictly better for
journals, for instance, to not count bibliography length toward
article length. Ultimately, however, we suggest that a net improve-
ment would be to require the software citations at the very least in
the online materials submitted for publication—similar to the
supplemental information and/or pre-analysis plans.14

CONCLUSION

This article contends that the contribution of software to polit-
ical science is underrecognized and that this situation likely
leads to an underprovision of public goods. Political scientists
should use research software. Political scientists should

Political scientists should use research software. Political scientists should write research
software. Political scientists should cite research software.

The Pro fes s i on : So f twa r e C i t a t i o n s
...

400 PS • July 2023
https://doi.org/10.1017/S1049096523000239 Published online by Cambridge University Press

https://doi.org/10.1017/S1049096523000239

write research software. Political scientists should cite research
software.

This article focuses on software bibliographies as a partial
solution to the problem of attribution and credit claiming, but
this is only a first step. As a discipline, we also should consider
other more institutional mechanisms to encourage our colleagues
to write and publish more free software. For instance, we could
create more prizes like the Statistical Software Award of the
Society for Political Methodology15; encourage hiring, tenure,
and promotion committees to recognize the importance of soft-
ware contributions; and establish new sources of funding to hire
research-software professionals. Ultimately, we recognize that our
proposed solution, including the developed package, is not going
to fully solve this problem. There still will be subjectivity, and
journals will need to flexibly adjust their policies. We believe that
policies along the lines that we are recommending, facilitated
by the accompanying package, are a net improvement toward
increasing incentives for the creation of public goods.

ACKNOWLEDGMENTS

We thank Gabrielle Boyer for research assistance and Marco
Mendoza Aviña, Ryan Briggs, and Arthur Spirling for helpful
comments. We are grateful to three anonymous reviewers
and the editor, Justin Esarey, for thoughtful comments and
suggestions.

DATA AVAILABILITY STATEMENT

Research documentation and data that support the findings of this
study are openly available at the PS: Political Science & Politics
Harvard Dataverse at https://doi.org/10.7910/DVN/PYKIUN.

CONFLICTS OF INTEREST

The authors declare that there are no ethical issues or conflicts of
interest in this research.▪

NOTES

1. A second-best solution includes a software bibliography in supplementary
materials as well as in preprint manuscripts archived by public repositories such
as arxiv.org and osf.io. Because preprints typically are indexed by Google Scholar,
references would be counted in that site’s citation metrics. A downside of this
approach is that software citations still would not be counted by other providers
of citation statistics.

2. See https://github.com/vincentarelbundock/softbib.

3. Researchers must remember that a tradeoff comes with using libraries instead of
hand-coding procedures: this increases code dependencies and may hamper
reproducibility in the long run.

4. Famous examples include Reinhardt and Rogoff, https://academic.oup.com/cje/
articleabstract/38/2/257/1714018, and Excel autocorrect error in genomics. “Auto-
correct errors in Excel still creating genomics headache: 30% of published papers
contain mangled gene names in supplementary data.” See www.nature.com/
articles/d41586-021-02211-4.

5. The sample also includes articles that were published online as “First View” at the
time of data collection.

6. There are many software packages designed for qualitative scholars, such as QCA
(Thiem and Dusa 2013) and corporaexplorer (Gjerde 2019).

7. In the R world, for example, the RStudio company publishes download statistics
for packages published on the CRAN repository. However, the published statis-
tics consider only the downloads from a small subset of CRAN servers
(i.e., mirrors), and they do not allow us to identify individual users, users who

have reinstalled a package multiple times, or automated installations made in the
context of continuous integration testing frameworks.

8. Citation statistics were obtained from Google Scholar on September 29, 2022.

9. Currently, the software that we developed supports only the creation of bibliog-
raphies for researchers who use R. Similar software solutions could be developed
relatively easily for other programming environments, such as Stata, SPSS, and
Python.

10. softbib is free and open source. See https://github.com/vincentarelbundock/
softbib.

11. CSL-style files can be downloaded freely from the Zotero Style Repository. See
www.zotero.org/styles.

12. These requirements are highly idiosyncratic to a specific journal’s replication
process and often do not include the listing of specific packages. Furthermore, we
are not aware of any replication guidelines that require the citations to the
software and/or packages used in the replication archive.

13. We are grateful to the editor for this idea.

14. According to its own documentation, Google Scholar is most likely to pick up a
bibliography of software citations when it is included in the main paper.
However, Google Scholar indexes any formatted citations that are provided in
standard formats and linked fromwebsites—exactly what happens when journals
provide direct links to online information on the pages of the published articles.
For more detail, see https://scholar.google.com/intl/en/scholar/inclusion.
html#overview. A separate but important question beyond the scope of this
article is the degree to which our profession relies on Google Scholar.

15. See https://polmeth.org/statistical-software-award.

REFERENCES

Allaire, Joseph J., Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey,
Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard
Iannone. 2022. RMarkdown: Dynamic Documents for R. R Package Version 2.16.
https://github.com/rstudio/rmarkdown.

Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman. 2018. “Countrycode: An R
Package to Convert Country Names and Country Codes.” Journal of Open Source
Software 3 (28): 848. https://doi.org/10.21105/joss.00848.

Benoit, Kenneth, and Adam Obeng. 2021. readtext: Import and Handling for Plain and
Formatted Text Files. R Package Version 0.81. https://github.com/quanteda/
readtext.

Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan
Müller, and Akitaka Matsuo. 2018. “quanteda: An R Package for the Quantitative
Analysis of Textual Data.” Journal of Open Source Software 3 (30): 774. https://
quanteda.io.

Dion, Michelle L., Jane Lawrence Sumner, and Sara McLaughlin Mitchell. 2018.
“Gendered Citation Patterns Across Political Science and Social Science
Methodology Fields.” Political Analysis 26 (3): 312–27.

Francois, Romain. 2020. BibTeX: BibTeX Parser. R Package Version 0.4.2.3. https://
github.com/romainfrancois/bibtex.

Gjerde, Kristian Lundby. 2019. “corporaexplorer: An R Package for Dynamic
Exploration of Text Collections.” Journal of Open Source Software 4 (38):
1342.

Liu, Licheng, Yiqing Xu, and Maintainer Yiqing Xu. 2018. “Package ‘PanelView.’”
https://cran.r-project.org/web/packages/panelView/index.html.

McCrain, Joshua, and Vincent Arel-Bundock. 2023. “Replication Data for ‘Software
Citations in Political Science.’” PS: Political Science & Politics. DOI:10.7910/DVN/
PYKIUN.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. www.R-project.org.

Roberts, Margaret E., Brandon M. Stewart, and Dustin Tingley. 2019. “stm: An R
Package for Structural Topic Models.” Journal of Statistical Software 91:1–40.

Solt, Frederick, Yue Hu, and Brenton Kenkel. 2021. “Package ‘InterPlot.’” https://
cran.r-project.org/web/packages/interplot/vignettes/interplot-vignette.html.

Thiem, Alrik, and Adrian Dusa. 2013. “QCA: A Package for Qualitative Comparative
Analysis.” The R Journal 5 (1): 87. DOI:10.32614/RJ-2013-009.

Tingley, Dustin, Teppei Yamamoto, Kentaro Hirose, Luke Keele, and Kosuke Imai.
2014. “Mediation: R Package for Causal Mediation Analysis.”

Ushey, Kevin. 2022. renv: Project Environments. R Package Version 0.15.5. https://
rstudio.github.io/renv.

...

PS • July 2023 401
https://doi.org/10.1017/S1049096523000239 Published online by Cambridge University Press

https://doi.org/10.7910/DVN/PYKIUN
https://github.com/vincentarelbundock/softbib
https://academic.oup.com/cje/articleabstract/38/2/257/1714018
https://academic.oup.com/cje/articleabstract/38/2/257/1714018
http://www.nature.com/articles/d41586-021-02211-4
http://www.nature.com/articles/d41586-021-02211-4
https://github.com/vincentarelbundock/softbib
https://github.com/vincentarelbundock/softbib
http://www.zotero.org/styles
https://scholar.google.com/intl/en/scholar/inclusion.html#overview
https://scholar.google.com/intl/en/scholar/inclusion.html#overview
https://polmeth.org/statistical-software-award
https://github.com/rstudio/rmarkdown
https://doi.org/10.21105/joss.00848
https://github.com/quanteda/readtext
https://github.com/quanteda/readtext
https://quanteda.io
https://quanteda.io
https://github.com/romainfrancois/bibtex
https://github.com/romainfrancois/bibtex
https://cran.r-project.org/web/packages/panelView/index.html
https://doi.org/10.7910/DVN/PYKIUN
https://doi.org/10.7910/DVN/PYKIUN
http://www.R-project.org
https://cran.r-project.org/web/packages/interplot/vignettes/interplot-vignette.html
https://cran.r-project.org/web/packages/interplot/vignettes/interplot-vignette.html
https://doi.org/10.32614/RJ-2013-009
https://rstudio.github.io/renv
https://rstudio.github.io/renv
https://doi.org/10.1017/S1049096523000239

	Software Citations in Political Science
	BENEFITS OF RESEARCH SOFTWARE
	UNDERACKNOWLEDGMENT OF RESEARCH SOFTWARE
	MANDATORY SOFTWARE BIBLIOGRAPHIES
	SOFTBIB: AUTOMATED SOFTWARE BIBLIOGRAPHIES IN R
	COMPLEMENTARY REFORMS
	CONCLUSION
	DATA AVAILABILITY STATEMENT
	CONFLICTS OF INTEREST
	NOTES

