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Solution branches for mappings

in cones, and applications

E.N. Dancer

We prove the existence of global solution branches for positive

mappings. This improves an earlier result of the author. We

also prove a related result for mappings in wedges. We then use

these two results to prove the existence of solutions for

boundary-value problems for systems of ordinary differential

equations.

In this paper, we improve some of the results in the author's previous

paper [3] and apply these results to boundary-value problems for systems of

ordinary differential equations. In [,101, Turner obtained related results

for systems of partial differential equations. His methods, when applied

to systems of ordinary differential equations, produce results somewhat

weaker than ours.

In 51, we strengthen the main result (Theorem 2) in [3].^ (A result

similar to, but slightly weaker than, Theorem 2 in [3] was also obtained in

[101.) The proof here is quite different from those in [3] and [70]. In

§2, we prove a similar result for mappings in wedges and, in §3, we apply

the results of §1 and §2 to boundary-value problems for systems of ordinary

differential equations.

1 . Mappi ngs i n cones

Our notation will follow that in [3]. It is assumed that the reader

is familiar with [3]. Let K be a cone in E with E = E and suppose
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132 E.N. Dancer

tha t r, t > 0 (where r and t may be °° ) . Vie let [a, «] denote

{x (. R : x > a} w£#z £«e usual topology. This wi l l simplify the s t a t e -

ments of some of our theorems. Define K = {x € K : \\x\\ < r] . Assume

that

(i) A : K x [0, t] ->• K is completely continuous,

( i i ) A(0, A) = 0 for A € [ 0 , t] , and

( i i i ) there exist completely continuous positive mappings B(o)

and D from E into itself such that r[B{o)) < 1 and

\\A(x, A)-B(0)a;-ADa:|| is o(\\x\\) as \\x\\ •* 0 (and x i. K )

uniformly in A on compact subsets of [0, t] .

Define B(A) : E ->• E by B(A)a: = B(O)x + XDx and l e t

C [B{ )) = {A € [0, °o] : there exists an x e #

with ||x|| = 1 and x = B(X)x] .

Since I - B(0) i s inve r t ib le , Theorem V.I.8 in [6] implies that C (B( ))

i s d i sc re te . We sha l l use the notation in [7] for the-degree of a mapping

defined on a closed convex subset of a Banach space.

LEMMA 1. If A 2 0 and r(B(A)) < 1 , then iK{B{\), K^ = 1

while, if A e [0, «>]\C1
X(B( )) and r[B(X)) > 1 , then ^ ( S ( A ) , A )̂ = 0 .

Proof. Since r(B(A)) = r (B(A)) (af. the remarks in §1 of [3] ) ,

t h i s follows from Lemma 1 in [3] and Lemma 2 in [ ? ] .

Define T(B( )) to be sup{A € [0, »] : r(B(A)) < l} . When there is

no poss ib i l i ty of confusion, we shal l write T instead of T(B( )) . If
T < °o , CK{B( )) C [T, co] .

LEMMA 2. If 0 5 A < x , r(B(A)) < 1 . If x < ~ _, r[B{x)) 5 1 ,

x € C^(B( )) and r(s(A)) > 1 for A > x .

Proof. If r(B(x)) is less than 1 , then, by Lemma 1 and the

homotopy invariance of the degree, i (B(A), K ) = i (B(x), X ) = 1 for A

near x . Lemma 1 then implies that 2"(B(A)) < 1 for A near x . Since

this contradicts the definition of x , r(B(x)) 2 1 . By a similar

homotopy argument, x € C [B( )) .
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By Lemmas 1 and 2 in [3 ] , r(B(X)) > r[B{v)) i f X > v > 0 . Since

X € CJB{ )) i f r>(B(X)) = 1 and since CV{B( )) i s d iscre te , the

remaining assertions of the lemma follow.

I t can be shown that r(B(x)) = 1 i f T < « . Define

DK{A) = {(x, X) € Xr x [o, i ] : x = 4(x, X) , x * o} u

{ ( 0 , X ) : X € < ^ ( s ( ) ) n [ 0 , * ] } .

By similar arguments to those in [3 ] , D (A) in tersects any closed bounded

subset of K x [o, t] in a compact s e t .

THEOREM 1 . If T < t , then one of the following possibilities holds

for the component T of ^V(^) containing (0, x) :

(i) T intersects {K\{o}) x {o} ;

(ii) sup{||a;|| : (x, X) € T] = r ; or

(iii) sup{X : (x, X) € T} = t .

Moreover, if there exist a linear operator V on E an a € (0, t) and a

y (. K\{0] such that Vy 2 y and A{x, a) > Vx > 0 if x d H , then (i)

or (ii) holds for the component of {(x, X) € D (A) : X 5 a} containing
K

(0, x) .

Proof. It obviously suffices to prove the result when r, t < <*> .

Thus Dv(A) is compact. Consider the first assertion. Because the proof

is similar to that of Theorem 1 in [5] (which is based on Theorem 1.16 in

[9]), we shall only outline it. Suppose that the result is false. Then

T c K^ x (o, t) . By repeating the argument in the proof of Lemma 1.2 in

[9], we find that there exists an open set U in itr
 x (0, t) such that

T c U and W n VR(A) = 0 . (Here W denotes the boundary in

•Kp x [o, t] .) By an earlier remark, CK[H )) is a finite set

{X^ : i = 1, ...,«} (where X = x ) . It follows from Lemma 1 that, if

0 < e < inf |X.-X.| and 6 is sufficiently small, then
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iKiH ,
-1 , i = 1

The proof of the f i r s t assertion can now be completed by using a similar

homotopy argument to that in [5].

Now consider the second assertion. Define A : K x [0, t] -* K by

A(x, X) = A(x, X) i f X 2 a and A(x, X) = A(x, a) + (X-a)Dx i f X > a .

I t obviously suffices to prove the resul t when A i s replaced by A . For

n a posit ive in teger , define A : K x [o, t] •+ K by

A (x, X) = A(x, X) + n \\x\\ y . Note that A and A have the same

l inear iza t ion at zero. Since A{x, X) 2 Vx i f x £ K and X € [a, t ] ,

a similar argument to that in the proof of the second assertion of Theorem

1 in [3] shows that X 5 a i f (x, X) € D [1 ) and x f 0 . Hence the

component of Dv\A ) containing (0, T) i s contained in K x [0, a] .

The proof can now be completed by a similar argument to that at the end of

the proof of Theorem 2 in [3] .

The proof of the second assertion shows that T 5 a . Lemmas 1 and 2

in [3] imply that T < °° i f r(D) > 0 . However, i t is easy to construct

examples in which r(D) = 0 but T < °° .

For s implic i ty , we have not proved our resu l t under the weakest

assumptions. With a l i t t l e more care in the proof, i t can be shown that

the resul t remains true if , instead of assuming the mapping X •*• B(X) i s

a f f ine , we assume that B(X) > B(v) i f X 2 v > 0 . Note tha t , in th i s

case , Cy\P( )) need not be discrete . Moreover, as in [3 ] , we need only

assume that B(X) i s completely continuous on K . Thus we can give an

al te rna t ive proof of the main result in [3] .

2. B i f u r ca t i on in wedges

In th is sect ion, we improve the resul ts for mappings in Borisovic [2 ] .

Assume that K i s a cone in a real Banach space E with E = E , and F
n.

is a real Banach space. Let G - E ® F , and W = K © F . We shall write

elements of G as (x, y) (or as z_ ), (x, y, X) or (z_, X) will
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denote an element of G x R , || || wil l denote the usual product norm on

G and W = {£ f W : ||sj| < r} . Suppose r, t > 0 . Assume that

( i ) A : W x [0, t] -*• W i s completely continuous,

( i i ) A{o_, A) = 0 for X € [0, t] , and

( i i i ) there exist completely continuous mappings T. : E -*• E ,

T : E •+ E , P : E •* F a n d Q : F •* F s u c h t h a t

TX(K) cK , T2(K) cK , r ^ ) < 1 a n d \\A(z_, X ) - S ( X ) (z) ||

i s o(||3_||) as HzJI -»• 0 (and z_ € W ) uniformly in X on

compact subse t s of [ 0 , t] .

.Here B(X) i s defined by B(X)(x, y) = [T X+XT X, XPx+XQy) . I f X > 0 ,

then B(X)(W) c W . Our assumed form for S(X) may seem r e s t r i c t i v e but

sn argument in [2 ] shows t h a t our o ther assumptions ensure t h a t t he f i r s t

component of B(X)(O, y) i s zero for a l l y i n F .

Let

CW[B(X)) = {X € [0 , <*>] : t h e r e e x i s t s a z_ d W such, t h a t | |sj| = 1

and B(X)z_ = z) ,

and let S denote the set of non-negative characteristic values of Q .

It is easy to see that CW{B( )) = C^T^+XT^) u S . Let 0 < y < y < ...

denote the distinct positive characteristic values of Q 'of odd

(algebraic) multiplicity. Define a function «„ on C (B( )) by

(i) nw(v) = 0 if v > T[T +XT) or if v < T[T +XT ) and v

is a characteristic value of Q of even multiplicity;

(ii) nJ/(Yi) = 2(-l)
t if yi < T[TX+XT2) ; and

(iii) n (T(2" +AT )) = (-I)3*1 , where Y- is the largest positive

characteristic value of Q of odd multiplicity with

(Take j to be zero if no such y. exists.)

0
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LEMMA 3 . Suppose that v (. CW[B{ )) and e > 0 such that

[ V - E , v+e] n CW{B{ )) = {v} .• Then

iw{B(v+e), Wx) - iw[B(v-e), Wj = nw(v) .

Proof. Suppose that X £ [0, <*>]\Cy(B( )) . By a similar argument to

tha t in 12 ] ,

i f X < T(2I
1+XT )

(-1)6 i f X > T^+XTg)

Here B is the sum of the mul t ip l ic i t ies of the elements of 5 n [0, X) .

The l a s t equality follows from Theorem 2. I*.6 in [7] and our Lemma 1. Lemma

3 follows from th i s equality and the definition of «„ .

Define

V A ) = {(^> X) * T/r X [ 0 ' *1 : £ = 4 ( £ . ^ ) , £ ^ 0} u

u { ( 0 , X ) : X € ^ ( S f ) ) n [ 0 , t } } .

THEOREM 2. -T/ H is a component of DW(A) , then

(i) H intersects [w\{{0)}) x {o} 3 or

(ii) sup{||a|| : (x, X) 6 H] = r s or

(Hi) sup{X : (x, X) € H} = t , or

(iv) 1 «y(X) = 0 , where the summation is over {X : {0_, X) € H) .

In particular, if T(T +XTp) < t 3 (i)3 (ii) or (Hi) holds for the

component containing [o_, x[T +XT )) . Moreover, if there exist a linear

operator V on E , an a € (0, t ) and a y_ € W such that -y_ $ W ,

Vy_ - y_ € W , V(W) c W and A(z_, a) - Vz_ d W for z_ € W , then (i) or

(ii) holds for the component of {{s_, X) € DAA) : X S a} containing

(0, T[T1+XT2)) .

Proof. The proof of the first assertion is similar to the proof of
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the first assertion of Theorem 1 except that Lemma 3 is used instead of

Lemma 1 and i-uiA, & O is used instead of iy\A, KA . The second

assertion follows from the first and the definition of n^ . The proof of

the third assertion is similar to the proof of the second assertion of

Theorem 1.

With more care in the proof, it could be shown that, if the

assumptions of the last assertion of Theorem 2 hold, then (i) , (ii) or (iv)

holds for each component of {(z_, A) € DAA) : X £ a} .

The most useful parts of Theorem 2 are those which involve the

component containing (b_, T[T +XT )) . However, the statements involving

the components which intersect { (o_, Y-) : Y- < T } do give more

information about the solutions than one can obtain from Theorem 1.16 in

[9]. With more care in the proof, one could prove rather more general

versions of Theorem 2. However, the above result suffices for most

applications. It is also possible to prove an analogue of Theorem 3 in

m.
Note that the set K © F is a wedge in the sense of [3]. In [3], we

mentioned rather less precise results for general wedges. These are proved

by using degree arguments similar to those used here.

3. Applications to systems of differential equations

In th i s section, we use Theorems 1 and 2 to obtain some new resul ts

for boundary-value problems for systems of ordinary different ial equations.

Let C[0, l ] denote the space of continuous real-valued functions on

[0, 1] and C [0, 1] the space of real-valued continuously differentiable

functions on [0, l ] . Assume tha t , for i = 1, 2 , p . € C^O, 1] ,
Lr

q. € C [ 0 , 1 ] and p . ( t ) > 0 f o r t €. [ 0 , 1 ] . D e f i n e L. by

L.y(t) = -(p.(t)y'(t))1 + qAt)y(t) .

1,
Finally, assume that f. : R •* R are continuously differentiable for
£ = 1, 2 , / . ( 0 , 0 , 0 , 0 ) = 0 for i = 1, 2 , and the pa r t i a l derivatives

Lr
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Dif;(°> 0, 0, 0) = 0 for i = 1, 2 and j = 3, k . We wish to find twice

continuously differentiable solutions of the boundary-value problem

L ^ x i t ) - b y ( t ) = \ f x { x ( t ) , y ( t ) , x ' { t ) , y ' { t ) ) ,

( 1 )
- d x ( t ) = X / 2 ( x ( t ) , y ( t ) , x ' ( t ) , y '

x(0) = x(l) = y(0) = i/(l) = 0 .

We first consider the application of Theorem 1 to this problem. Let
T denote the solutions (x, y, X) of (l) for which x(t) > 0 and
y(t) > 0 for t € [0, 1] , A > 0 and (x, y) t (0, 0) . Define
Dj. = T u ({(0, 0)}xC) , where C is the set of non-negative eigenvalues of

the linear problem

±x{t) - by(t) = X(ai:La;(t)+ai

L2y(t) -

x(0) = x(l) = y(0) = 2/(1) = 0 . Here a., denotes D.f.(0, 0, 0, 0) for

i, j = 1, 2 . If C is non-empty, i t has a least element y. .

THEOREM 3. Suppose that all the eigenvalues of L. and £„ are

positive, £ > > 0 , d > 0 3 bd is sufficiently small,

f^O, x2, 0, xk) > 0 if x2 5 0 and xh f R , ^ K ' ° ' X3' °) - ° lf

x > o and x-. € R , a. . > 0 for i , j = 1, 2 , and a > 0 or

a_2 > 0 . Then C is non-empty and there exists a connected subset .S of

D such that (o, 0, p ) t S and S is unbounded in

^ [ O , 1] x C^lO, 1] x R .

Proof. We apply Theorem 1. Let E = Cr[O, l ] * C [0, 1] and l e t K

be the cone {(x, y) (. E : x, y are non-negative on [0, l ]} . If

a > 0 , define BjiX) : E •* E by

Se(X)(x, y) = f (£1+eJ)"1[&2/+ca;+Xa11x+Xal22/],
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Since a l l the eigenvalues of L. + cl are positive (for i = 1, 2 ) ,

(i.+ej)"* maps non-negative functions to non-negative functions. Thus, i f

A 2 0 , B (X)K cK . Note that C (B ( )) (and thus T [B ( )) ) is

independent of o . Lemma 1 and the homotopy invariance of the degree

imply tha t , i f r[B (0)) < 1 , then r[B (0)) < 1 for a l l e > 0 . I f

(x, y) = XB (0)(x, y) , then x = X bdL'1!,' x . Thus, i f bd i s

sufficiently small, any positive character is t ic value of ^/-,(0) i s greater

that 1 , that i s , r[BQ(O)) < 1 . Since a • > 0 or a > 0 , Lemma 2

in [3] shows that the mapping D defined by
c

oo(*, y) = ( X

has p o s i t i v e s p e c t r a l r a d i u s . (A s i m i l a r argument i s used in §1+ of 1101.)

By a remark a f t e r Theorem 1 , i t follows t h a t T ( B ( )) < «> .

l

» 0, xk

where ^ t ^ , *2, *3> ^ ) = j ^ i ^ ! ' x
2 ' te3' xl»^* * s i m i l a r l y »

f2i
x
1>

 x
2'

 x
3>

 x 0 = Xk92^XV X2> X3' X 0 + - ^ K ' X 2 ' X 3 ' °^ - Choose

a positive integer with n > T(B ( )) and then choose fl > 0 such that

both ax± + te2 + ^ ( ^ j x 2 , 0, x^) and cx2 + da^ + A ^ ^ , x2> x3> o)

are non-negative i f A, x , x are non-negative,

x + x + |x | + |x, | 5 n and A £ n . Our assumptions on f. and / 2

ensure that th i s can be done.

Define I. , : {z t C?[0, l ] : z(0) = s ( l ) = o} + C[0, l ] by

= V - X*;(M' u> "'• w')s

and A : E •*• E b y
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A ( \ ) ( u , v) = [ ( L i ^ ^ j X + e l ) - 1 [ c u + 2 > y + X / i ( M , v, 0 , v 1 ) ] ,

If (a;, y, X) € D
K(A) > then (x, y, X) ZDR. I t is easy to check that

this mapping satisfies the assumptions of Theorem 1 with r = t = n and
linear term BJ^ ) . The conditions on the linear term are verified in the

preceding paragraph. The remaining conditions are verified by similar
arguments to those in [10]. The results in the previous paragraph also
show that C is non-empty. Thus, we find that, for each n > 0 , the
component 5 of D containing [0, 0, V. J intersects

{(x, y, X) (. E x R • \\x\\ +\\y\\ = n or X = n} . (Our assumptions ensure

that there are no non-trivial solutions with X = 0 .) Since n can be
arbitrarily large, this completes the proof.

With more care, one could prove more general results. A similar

result s t i l l holds if a - ,pa
? 1

 > 0 and <*,-,= a
? p

 = ° or if ad > 0 or

a b > 0 . In the lat ter cases, we could relax the posltivity assumptions

on the / . and s t i l l prove that y is a bifurcation point.
Is X

The second assertion of Theorem 1 can be used to obtain additional

results . For example, i t implies that, if there exists an a > 0 such

that f-^x,
 x

2, * 3 . x
k) - a*! for *1»

 x
2 - 0 and xy x

h
 e R and i f

a l l the assumptions of Theorem 3 are satisfied, then the component of

Ux, y, X) € DK : X 5 or L^1 >• containing (o, 0, u^ is unbounded.

Moreover, in this case, we could weaken the assumption on / to

f2i
x
v 0, xy 0) > -arJL^-jda^ for ^ > 0 and x^ € R .

We now consider the applications of the resul ts of §2 to ( l ) . In th i s

case, we place stronger assumptions on one of the equations and weaker ones

on the other. Define 2" to be the set of solutions (x, y, X) of ( l )

for which X > 0 , x i s non-negative and (x, y) t (0, 0) and l e t

Dw = Z" u ({(0, 0)}xC) .

THEOREM 4. Suppose that all the eigenvalues of L are positive,
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andL is invertible, b = 0 , f (o, x , 0 , x,) 2 0 for x , x, € R

a > 0 . Then there exists a connected subset S of D^ such that

0, 0, a r\L e S and S is unbounded in

CX{0, 1] x (p-[0, 1] x j ) ,

Proof. I t suffices to show tha t , for each n > o , the component of

{(x, y, X) € Dw : Ikl^+llj/l^ < n, X S n) containing fo, 0, K ^ K j 1

conta ins a po in t (x, y, X) with ||a;|| + \\y\\ = n or X = n . Let

G = C?-[0, 1] x C^tO, 1] , V = {(a:, y) € C : x i s non-negat ive} . Choose

e > 0 such t h a t ex + Xf (x x 0 , x ) 2 0 i f x and X are non-

n e g a t i v e , X £ M and x + | x | + |x, | S w . Define A{X) : G -*• G by

A(X){U, v) = ( ( L I ^ J U ) X + C J ) - 1 [ C M + X / I ( M , v, o , y ' ) ] ,

( L ^ - ^ d u + X ^ C u , v, u\ 0 ) ] ) .

The proof of Theorem k is completed by applying Theorem 2 to A . Similar

arguments to those in the proof of Theorem 3 ensure that A verifies the

assumptions of Theorem 2.

The condition that L is invertible can be removed by an

approximation argument. Moreover, we could apply the third assertion of

Theorem 2 if there exists an a > 0 such that / (x , x x x,) > ax

if xi > 0 , x2, x3, i^ E R .

Our assumptions in Theorems 3 and k are much stronger than is really

necessary. For example, f, f could be allowed to depend on t and X

while P , P , q , q , b, d could be allowed to depend on t, x, x', y, y'

and X . Our methods could also be applied to systems of n equations and

to systems of differential equations of higher order. In [JO], Turner

considers systems of elliptic partial differential equations. Our methods

could be used to considerably strengthen his results. It is possible to

obtain variants of our results by considering slightly different cones and

wedges, for example, the cone K = {(x, y) € E : x, -y are non-negative} .
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142 E.N. Dancer

Finally, the results in [4] could be used to show that, in Theorems 3 and

k, "connected set" can be replaced by "unbounded ar

real analytic (where "unbounded arc" is defined in

k, "connected se t" can be replaced by "unbounded arc" i f / and / are
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