BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 251-253.

A remark on Ribenboim's paper 'On the extension of orders in ordered modules'

D. Spoerel

We give another formulation of Theorem 1 of Ribenboim's paper, Bull. Austral. Math. Soc. 2 (1970), 81-88. Our condition on a module to be totally ordered such that this order extends a given strict order seems to be more useful for applications than condition (2) of Ribenboim. This is shown for example in Corollaries 3 and 4 of our paper. Corollary 4 is due to Ribenboim. Corollary 3 generalizes the corresponding well known result on abelian groups.

Let A be a commutative ordered ring with $l \in P_A$, where P_A is the positive cone of A satisfying $P_A + P_A \subset P_A$, $P_A P_A \subset P_A$, $P_A P_A \subset P_A$, $P_A \cap -P_A = 0$.

Let *M* be an ordered *A*-module with positive cone P_M satisfying $P_M + P_M \subset P_M$, $P_A P_M \subset P_M$ and $P_M \cap -P_M = 0$.

A (or M) is said to be strictly ordered iff for $a, b \in A$, a > 0and b > 0 implies ab > 0 (or iff for $a \in A$, $m \in M$, a > 0 and m > 0 implies am > 0). Let $P_A^* = P_A \setminus \{0\}$, $P_M^* = P_M \setminus \{0\}$.

LEMMA 1. Let M be an A-module with strict orders P_M and Q_M . If $P_M \cap -Q_M = 0$, then $S_M = P_M + Q_M$ is a strict order on M such that Received 25 October 1971.

251

 $P_M, Q_M \subset S_M$.

Proof. $S_M + S_M \subset S_M$ and $P_A S_M \subset S_M$ are immediate from the definition of S_M . Let $x \in S_M \cap -S_M$; then x = p + q = -p' + (-q') with $p, p' \in P_M$, $q, q' \in Q_M$. Hence $p + p' = -(q+q') \in P_M \cap -Q_M = 0$, from which we deduce p = 0, q = 0. Thus $S_M \cap -S_M = 0$. Let $a \in P_A$, $x = p + q \in S_M$; then 0 = ax = ap + aq implies $ap = -aq \in P_M \cap -Q_M = 0$. As P_M is a strict order, this shows a = 0; hence S_M is a strict order.

THEOREM 2. Let A be a commutative strictly ordered ring with $1 \in P_A$. Let M be a strictly ordered A-module with order P_M . The following statements are equivalent:

- (1) there exists a total strict order T_M on M such that $P_M \subset T_M$;
- (2) $\forall m \in M \setminus \{0\}$: Ann $(m) \cap P_A = 0$.

(Ann(m) denotes the annihilator of $m \in M$).

Proof. (1) = (2). Let $0 \neq m \in M$; we may assume m > 0. Let $a \in Ann(m) \cap P_A$; then am = 0 implies a = 0, since T_M is a strict order.

(2) = (1). Let P be the set of strict orders P with $P_M \subset P$. Let $(P_i)_{i \in I}$ be a chain in P. Define $P_I = \bigcup_{i \in I} P_i$; then evidently $P_I \in P$, and P is inductive. By Zorn's Lemma there exists a maximal strict order $T_M \supset P_M$. We state: T_M is a total order.

Assume on the contrary that there exists $m \in M$ such that $m \notin T_M \cup -T_M$. Without loss of generality we consider the following two cases:

(a). $\forall a \in P_A^* : am \notin -T_M$. Now P_A^m defines a strict order on M,

for $x \in P_A m \cap -P_A m$ implies x = am = -bm with $a, b \in P_A$; thus (a+b)m = 0. Since $\operatorname{Ann}(m) \cap P_A = 0$, we have a + b = 0; hence a = -b = 0. Let $a \in P_A^*$, $b \in P_A$. Then b(am) = 0 implies ba = 0, since $\operatorname{Ann}(m) \cap P_A = 0$. Since A is strictly ordered, we have b = 0. These are the only two nontrivial conditions to be proved. Now from Lemma 1 it follows that $T'_M = T_M + P_A m$ is a strict order on M, a contradiction to the maximality of T_M .

(b). $\exists a \in P_A^*$ such that $am \in -T_M$. Then $\forall b \in P_A^* : b(-m) \notin -T_M$. Assume on the contrary that there is a $b \in P_A^*$ with $b(-m) \in -T_M$; then with the above $a \in P_A^*$ we have $b(-amb) = ab(-m) \in T_M \cap -T_M = 0$; hence ba(-m) = 0. Ann $(-m) \cap P_A = 0$ implies ba = 0. Since A is strictly ordered this leads to a contradiction. Thus -m instead of m leads back to case (a). This completes the proof.

COROLLARY 3. Every torsionfree module over a strictly ordered ring can be totally ordered such that this order is strict.

COROLLARY 4 (see Ribenboim [1]). Let (R, P_R) be a strictly ordered, totally ordered ring. Let $M = R^I$ be the ordered R-module with pointwise order P_M . Then there exists a total order T_M on M such that $P_M \subset T_M$ and (M, T_M) is a strictly ordered module over (R, P_R) .

Proof. Immediate, since $\operatorname{Ann}\left((r_i)\right) = \bigcap_{i \in I} \operatorname{Ann}\left(r_i\right)$, $(r_i) \in \mathbb{R}^I$.

Reference

 P. Ribenboim, "On the extension of orders in ordered modules", Bull. Austral. Math. Soc. 2 (1970), 81-88.

Mathematisches Seminar der Universität, Hamburg, Germany.