VOL. 6 (1972), 251-253.

A remark on Ribenboim's paper 'On the extension of orders in ordered modules'

D. Spoerel

Abstract

We give another formulation of Theorem l of Ribenboim's paper, Bull. Austral. Math. Soc. 2 (1970), 81-88. Our condition on a module to be totally ordered such that this order extends a given strict order seems to be more useful for applications than condition (2) of Ribenboim. This is shown for example in Corollaries 3 and 4 of our paper. Corollary 4 is due to Ribenboim. Corollary 3 generalizes the corresponding well known result on abelian groups.

Let A be a commutative ordered ring with $1 \in P_{A}$, where P_{A} is the positive cone of A satisfying $P_{A}+P_{A} \subset P_{A}, P_{A} P_{A} \subset P_{\dot{A}}$, $P_{A} \cap-P_{A}=0$.

Let M be an ordered A-module with positive cone P_{M} satisfying $P_{M}+P_{M} \subset P_{M}, P_{A} P_{M} \subset P_{M}$ and $P_{M} \cap-P_{M}=0$.
A (or M) is said to be strictly ordered iff for $a, b \in A, a>0$ and $b>0$ implies $a b>0$ (or iff for $a \in A, m \in M, a>0$ and $m>0$ implies $a m>0$). Let $P_{A}^{*}=P_{A} \backslash\{0\}, P_{M}^{*}=P_{M} \backslash\{0\}$.

LEMMA 1. Let M be an A-module with strict orders P_{M} and Q_{M}. If $P_{M} \cap-Q_{M}=0$, then $S_{M}=P_{M}+Q_{M}$ is a strict order on M such that
$P_{M}, Q_{M} \subset S_{M}$.
Proof. $S_{M}+S_{M} \subset S_{M}$ and $P_{A} S_{M} \subset S_{M}$ are immediate from the definition of S_{M}. Let $x \in S_{M} \cap-S_{M}$; then $x=p+q=-p^{\prime}+\left(-q^{\prime}\right)$ with $p, p^{\prime} \in P_{M}, q, q^{\prime} \in Q_{M}$. Hence $p+p^{\prime}=-\left(q+q^{\prime}\right) \in P_{M} \cap-Q_{M}=0$, from which we deduce $p=0, q=0$. Thus $S_{M} \cap-S_{M}=0$. Let $a \in P_{A}$, $x=p+q \in S_{M}$; then $0=a x=a p+a q$ implies $a p=-a q \in P_{M} \cap-Q_{M}=0$. As P_{M} is a strict order, this shows $a=0$; hence S_{M} is a strict order.

THEOREM 2. Let A. be a commutative strictly ordered ring with $1 \in P_{A}$. Let M be a strictly ordered A-module with order P_{M}. The following statements are equivalent:
(1) there exists a total strict order T_{M} on M such that

$$
P_{M} \subset T_{M} ;
$$

(2) $\forall m \in M \backslash\{0\}: \operatorname{Ann}(m) \cap P_{A}=0$.
($\operatorname{Ann}(m)$ denotes the annihilator of $m \in M$).
Proof. (1) $=(2)$. Let $0 \neq m \in M$; we may assume $m>0$. Let $a \in \operatorname{Ann}(m) \cap P_{A}$; then $a m=0$ implies $a=0$, since T_{M} is a strict order.
$(2) \Rightarrow(1)$. Let P be the set of strict orders P with $P_{M} \subset P$.
Let $\left(P_{i}\right)_{i \in I}$ be a chain in P. Define $P_{I}=\bigcup_{i \in I} P_{i}$; then evidently $P_{I} \in \mathrm{P}$, and P is inductive. By Zorn's Lerma there exists a maximal strict order $T_{M} \supset P_{M}$. We state: T_{M} is a total order.

Assume on the contrary that there exists $m \in M$ such that $m \notin T_{M} \cup-T_{M}$. Without loss of generality we consider the following two cases:
(a). $\forall a \in P_{A}^{*}:$ am $\}-T_{M}$. Now $P_{A} m$ defines a strict order on M,
for $x \in P_{A} m \cap-P_{A} m$ implies $x=a m=-b m$ with $a, b \in P_{A}$; thus
$(a+b) m=0$. Since $\operatorname{Ann}(m) \cap P_{A}=0$, we have $a+b=0$; hence
$a=-b=0$. Let $a \in P_{A}^{*}, b \in P_{A}$. Then $b(a m)=0$ implies $b a=0$, since $\operatorname{Ann}(m) \cap P_{A}=0$. Since A is strictly ordered, we have $b=0$. These are the only two nontrivial conditions to be proved. Now from Lemma l it follows that $T_{M}^{\prime}=T_{M}+P_{A} m$ is a strict order on M, a contradiction to the maximality of T_{M}.
(b). $\exists a \in P_{A}^{*}$ such that $a m \in-T_{M}$. Then $\forall b \in P_{A}^{*}: b(-m) \notin-T_{M}$. Assume on the contrary that there is a $b \in P_{A}^{*}$ with $b(-m) \in-T_{M}$; then with the above $a \in P_{A}^{*}$ we have $b(-a m b)=a b(-m) \in T_{M} \cap-T_{M}=0$; hence $b a(-m)=0 . \operatorname{Ann}(-m) \cap P_{A}=0$ implies $b a=0$. Since A is strictly ordered this leads to a contradiction. Thus $-m$ instead of m leads back to case (a). This completes the proof.

COROLLARY 3. Every torsionfree module over a strictly ordered ring can be totally ordered such that this order is strict.

COROLLARY 4 (see Ribenboim [1]). Let $\left(R, P_{R}\right)$ be a strictly ordered, totally ordered ring. Let $M=R^{I}$ be the ordered R-module with pointwise order P_{M}. Then there exists a total order T_{M} on M such that $P_{M} \subset T_{M}$ and $\left(M, T_{M}\right)$ is a strictly ordered module over $\left(R, P_{R}\right)$.

Proof. Inmediate, since $\operatorname{Ann}\left(\left(r_{i}\right)\right)=\bigcap_{i \in I} \operatorname{Ann}\left(r_{i}\right),\left(r_{i}\right) \in R^{I}$.

Reference

[1] P. Ribenboim, "On the extension of orders in ordered modules", Bull. Austral. Math. Soc. 2 (1970), 81-88.

Mathematisches Seminar der Universität, Hamburg,
Germany.

