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PSEUDO-EINSTEIN REAL HYPERSURFACES
IN COMPLEX TWO-PLANE GRASSMANNIANS

YOUNG JIN SUH

In this paper we give a complete classification of 1)L-invariant or Hopf pseudo-
Einstein real hypersurfaces in complex two-plane Grassmannians G2(Cm+2) .

0. INTRODUCTION

In the geometry of real hypersurfaces in complex space forms or in quaternionic
space forms it can be easily checked that there do not exist any real hypersurfaces with
parallel shape operator A by virtue of the equation of Codazzi.

From this point of a view many differential geometers have considered new notions
weaker than such a parallel second fundamental form, that is, V.A = 0. In particular,
Kimura and Maeda [6] have proved that a real hypersurface M in a complex projective
space CPm satisfying V$ A = 0 is locally congruent to a real hypersurface of type
Ai,A2, that is, a tube over a totally geodesic complex submanifold CPk with radius
0 < r < TT/2. The structure vector field £ mentioned above is defined by £ = ~JN,
where J denotes a Kahler structure of CP m and N a local unit normal field of M in
CP m . Moreover, in a class of Hopf hypersurfaces Kimura [5] has asserted that there
do not exist any real hypersurfaces with parallel Ricci tensor, that is VS = 0, where S
denotes the Ricci tensor of a real hypersurface M in CPm.

On the other hand, in a quaternionic projective space HPm Perez [7] has considered
the notion of V^A = 0, i = 1,2,3, for real hypersurfaces in HP"1 and classified
that M is locally congruent to of Ai, A2-type, that is, a tube over ELPfc with radius
0 < r < TT/4. The almost contact structure vector fields {^1,̂ 2.̂ 3} are defined by
£i = -JiN, i = 1,2,3, where Ji denotes a quaternionic Kahler structure of BLPm and
N a unit normal field of M in HP m . Moreover, Perez and the present author [8] have
considered the notion of V^il = 0, i = 1,2,3, where R denotes the curvature tensor
of a real hypersurface M in BLPm, and proved that M is locally congruent to a tube
of radius TT/4 over HP*.
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184 Y.J. Suh [2]

Now let us denote by G2 (Cm+2) the set of all complex 2-dimensional linear sub-
spaces in C m + 2 . Then the situation mentioned above is not so simple if we consider a
real hypersurface in such a complex two-plane Grassmannian G2(Cm+2).

In this paper we study the analogous question in complex two-plane Grassmannians
G2 (Cm + 2) of all complex two-dimensional linear subspaces in C m + 2 . This Riemannian
symmetric space has a remarkable geometrical structure. It is the unique compact
irreducible Riemannian manifold being equipped with both a Kahler structure J and
a quaternionic Kahler structure -3 not containing J. In other words, G2(Cm+2) is
the unique compact, irreducible, Kahler, quaternionic Kahler manifold which is not a
hyperkahler manifold. So, in G2 (Cm+2) we have the two natural geometrical conditions
for real hypersurfaces that [£] = Span {£} or 2)x = Span {£1,^2, £3} is invariant under
the shape operator. From such a view point Berndt and the present author [2] have
proved the following:

THEOREM A. Let M be a connected real hypersurface in G2(Cm + 2) , m ^ 3.
Then both [£] and S)x are invariant under the shape operator of M if and only if

(1) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2),or

(2) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP" in G2(Cm + 2) .

When the structure vector £ of M in G2 (Cm+2) is invariant by the shape operator,
M is said to be a Hopf hypersurface. In such a case the integral curve of the structure
vector field £ is geodesic (See Berndt and Suh [3]). Moreover, the flow generated by
integral curves of structure vector field £ of Hopf hypersurfaces in G2 (Cm+2) is said
to be a geodesic Reeb flow.

In the proof of Theorem A we have proved that the one-dimensional distribution
[£] is contained in either the 3-dimensional distribution S3-1- or in the orthogonal com-
plement 2) such that TXM = S)©®-1-. The case (1) in Theorem A is just the case that
the one dimensional distribution [£] is contained in I)1-.

A real hypersurface M in G2(Cm+2) is said to be pseudo-Einstein if the Ricci
tensor 5 of M satisfies

3

(*) SX = aX

for any tangent vector field X on M, where b and c are nonvanishing constants and

1-forms T) and r)u are defined by v(X) = g(£,X) and T)V(X) = g{(,v,X) respectively.

Moreover, a real hypersurface M in G2(Cm+2) is said to be Einstein if the constants

b and c identically both vanish.

Then the derivative of the Ricci tensor 5 of a pseudo-Einstein real hypersurface
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[3] Pseudo-Einstein real hypersurfaces 185

in G2 (C m + 2 ) is given by

(••) (VYS)X =

for nonvanishing constants b and c on M.
It is not difficult to check that any real hypersurfaces given in Theorem A is pseudo-

Einstein. Then it must be a natural question to know whether pseudo-Einstein real
hypersurfaces in G2(Cm+2) can be classified or not ?

Related to such a problem the main result of this paper is to give a complete clas-
sification of S)-1 -invariant pseudo-Einstein real hypersurfaces in G2(Cm+2) as follows:

THEOREM 1. Let M be a D-1--invariant real hyperswface in G2(Cm+2) satisfy-
ing the formula (**). Then M is congruent to

(A) a tube of radius r over G2(Cm+1) in G2(Cm+2) or
(B) a tube of radius r over HP m , m = In, in G2(Cm + 2).

The formula (**) mentioned in Theorem 1 is just covariant derivative of the Ricci
tensor of pseudo-Einstein real hypersurfaces in G2(Cm + 2). Prom such a view point we
give a S)x-invariant pseudo-Einstein real hypersurfaces in G2(Cm+2) as follows:

THEOREM 2 . Let M be a 'D±-invariant pseudo-Einstein real hypersurface in
G2(Cm+2). Then M is congruent to

(a) a tube of radius r, cot2\/2r = ( m - l ) / 2 , over G2(Cm + 1), where
o = 4m + 8, b + c= -2(m + 1),

(b) a tube of radius r, cot2r = {2n±y/An - l)/(2(n - 1)), over MPm,
m = 2n, where a = 8n + 6, 6= -16n + 2, c = - 2 .

When M is a Hopf hypersurface in G2(Cm + 2) , we assert the following:

THEOREM 3 . Let M be a Hopf pseudo-Einstein real hypersurface in G2 (Cm + 2) .
Then M is congruent to

(a) a tube of radius r, cot2\/2r = ( m - l ) / 2 , over G2(Cm + 1), where
a — 4m + 8, b + c— —2(m + 1), provided with c^ - 4,

(b) a tube of radius r, cot2r = (2n±y/4n - l)/(2(n - 1)), over MPm,
m = 2n, where a = 8n + 6, 6 = - 1 6 n + 2, c= - 2 .

In Section 2 we recall Riemannian geometry of complex two-plane Grassmannians
G2(C m + 2 ) and in Section 3 we shall show some fundamental properties of real hyper-
surfaces in G 2 ( C m + 2 ) . The formula for the Ricci tensor S and its covariant derivative
VS will be shown explicitly in this section.

In Section 4 (respectively, Section 5) we shall give a complete proof of Theorem
2 (respectively, Theorem 3) when M is a Sx- invar iant (respectively, Hopf) pseudo-
Einstein real hypersurface in G 2 ( C m + 2 ) .
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186 Y.J. Suh [4]

1. RIEMANNIAN GEOMETRY OF G2(Cm+2)

In this section we summarise basic material about G2(Cm+2), for details we refer
to [1, 2, 3]. By G2(Cm+2) we denote the set of all complex two-dimensional linear
subspaces in C m + 2 . The special unitary group G = SU(m + 2) acts transitively on
G2(Cm + 2) with stabiliser isomorphic to K = S(U(2) x U(m)) C G. Then G2(Cm+2)
can be identified with the homogeneous space G/K, which we equip with the unique
analytic structure for which the natural action of G on G2(Cm+2) becomes analytic.
Denote by g and E the Lie algebra of G and K, respectively, and by m the orthogonal
complement of E in g with respect to the Cartan-Killing form B of g. Then g = 6 © m
is an Ad(K) -invariant reductive decomposition of g. We put o = eK and identify
ToG2(Cm+2) with m in the usual manner. Since B is negative definite on g, its
negative restricted to m x m yields a positive definite inner product on m. By Ad(K)-
invariance of B this inner product can be extended to a G-invariant Riemannian metric
g on G2(Cm + 2). In this way G2(Cm+2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalise g such
that the maximal sectional curvature of (Cr2(C

m+2),3) is eight.

The Lie algebra E has the direct sum decomposition E = su(m) ©su(2) ©9t, where
*R is the centre of E. Viewing E as the holonomy algebra of G2(Cm+2), the centre 9t
induces a Kahler structure J and the su(2)-part a quaternionic Kahler structure 3 on
G2(Cm+2) . If J\ is any almost Hermitian structure in (J, then JJ\ — J\J, and JJi is
a symmetric endomorphism with (JJi) = / and tr(JJi) = 0. This fact will be used
frequently throughout this paper.

A canonical local basis J\,J2,Jz of 3 consists of three local almost Hermitian
structures Jv in 3 such that JvJv+\ = Ju+2 = —Jv+iJv, where the index is taken
module three. Since 3 is parallel with respect to the Riemannian connection V of
(G2(Cm+2),<7), there exist for any canonical local basis Ji,J2,Js of Z three local
one-forms <7i,<72)93 such that

(1.1) VxJu = qv+2(X)Jv+1 - qu+1{X)Jv+2

for all vector fields X on G2(Cm + 2) .
The Riemannian curvature tensor R of G2(Cm+2) is locally given by

(1.2)
R{X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ

3

, Z)JVX - g{J»X, Z)JVY - 2g(Jl,X,Y)JvZ}

, Z)JVJX - g(JvJX, Z)JVJY},
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where J\,J2,Jz is any canonical local basis of 3 .

2. SOME FUNDAMENTAL FORMULAS FOR REAL HYPERSURFACES IN G 2 ( C m + 2 )

In this section we derive some basic formulae from the Codazzi equation for a real
hypersurface in G 2 ( C m + 2 ) .

Let M be a real hypersurface in G2(C m + 2 ) , that is, a hypersurface of C?2(Cm+2)
with real codimension one. The induced Riemannian metric on M will also be denoted
by g and V denotes the Riemannian connection on M. Let N be a local unit normal
field of M and A the shape operator of M with respect to N.

For any local vector field X on a neighbourhood of a point x in M the transfor-
mation under the Kahler structure J of G 2 ( C m + 2 ) can be given by

JX = <f>X + ri(X)N, JN = - £ ,

where 4> defines a skew-symmetric transformations of the tangent bundle TM of M,
while 1} and £ denote a 1-form and a vector field on a neighbourhood in M, respectively.
Then it is seen that g(£, X) = rj(X). In such a case the set of tensors (<£, £, rj,g) is said
to be an almost contact metric structure on M. They satisfy the following

tfx = -x + r,(X)z, tf = o, v(4>x) = o, v(0 = 1

for any tangent vector field X on M.

On the other hand, let us denote by {J\, J2 , J3} a canonical local basis of 3 , which
are said to be a quatemionic Kahler structure of G2(C m + 2 ) . Then the transformation
of the tangent vector field X on M under the quatemionic Kahler structure {Ji, J2, J3}
can be given by

JVX = $UX + V»(X)N, JUN = -&,

for any v = 1,2,3, where <$>VX denotes the tangent component of JVX and r\v(X)
= g{X,£v). Then J 2 = —/ induces an almost contact metric structure (<j>vAv,r1v,9)
on M defined in such a way that

<j>lX = -X + !»„(*)&,, *„&, = 0, Tlv(<i>»X) = 0, Tfctf,,) = 1

for any tangent vector field X on M and any v — 1,2,3.

Using the above expression (1.2) for R, the Gauss and the Codazzi equations are

respectively given by

R(X, Y)Z = g(Y, Z)X - g(X, Z)Y

, Z)d>X - g{<}>X, Z)<t>Y - 2g{(j>X, Y)4>Z
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, Z)<j>vX - g(<f>vX, Z)<j>vY - 2g{4>vX, Y)<j>vZ}

X, Z)<t>v<f>Y}

MY, Z) - V(Y)g(<i>v<l>X,Z)}^
v=l

+ g(AY, Z)AX - g(AX, Z)AY

and

(VXA)Y - (VYA)X = T,(X)<f>Y - r,(Y)<f>X - 29{<j>X, Y)Z
3

3

+ J2{tl(X)th,{4,Y)-

where R denotes the curvature tensor of a real hypersurface M in
From JvJv+\ = —Jv+iJv — Ju+2 and JJV = JUJ, v = 1,2,3, the following

identities can be proved in a straightforward method and will be used frequently in
subsequent calculations:

#* *.*, V^) = r,(<fi»X),
t i X j X +

Then from this and the formula (1.1) we have that

(2.2)

(2.3)

(2.4)
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[7] Pseudo-Einstein real hypersurfaces 189

Summing up these formulas, we find the following

Moreover, from JJV = JUJ, 1/ = 1,2,3, it follows that

(2.6) UuX = (f>v<j>X +

3. P R O O F OF MAIN THEOREM

Now let us contract Y and Z in the equation of Gauss in Section 2. Then the
Ricci tensor S of a real hypersurface M in G2(Cm + 2) is given by

4m-1

sx= 52
» = 1 3

- 3 '

(3.1)

3

f hAX - A2X,

where h denotes the trace of the shape operator A of M in G2(C m + 2 ) . From the
formula JJU = JVJ', Tr JJU = 0, v = 1,2,3 we calculate the following for any basis
{e i , . . . , e 4 m_i , N} of the tangent space of G 2 (C m + 2 )

0 = Tr J Jv

4 m - l

= 5Z 9(JJvek,ek)+g(JJuN,N)
(3-2) fc=i

= Tr

= Tr

and

(4>i,(f>) X = (j>v

(3.3) =<t>u{~
= X-
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Substituting (3.2) and (3.3) into (3.1), we have
3

SX = (4m + 10)X - 3rj(X)Z - 3^2
3 "=1

+ 52{Vu(O4h,4>X -X-

+ hAX - A2X
(3 4)

= (4m + 7)X -
3

+ hAX - A2X.

Now its covariant derivative of (3.4) becomes

(VYS)X = -
v=\

3 3

(3.5)

Then from (3.5), together with the formulas in Section 2, we have

- 3r,{X)<t>AY

3

riv((j>X)AY -

- g(AY, X)^} - g(<j>AY,
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- qv+2{Y)r,{4>u+1X) - r,v(X)r,(AY)

+ {Yh)AX + h(VYA)X - (VYA2)X.

Let M be a pseudo-Einstein real hypersurface in G2(Cm+2). That is, M satisfies
the formula (*) in the intoduction. Then by the formulas in Section 2 the derivative of
the Ricci tensor S satisfies

(VYS)X = - S{VYX)

( * * }

v=l v=l

From this, together with (3.6), we have

(3.7)

(c + 3)

3

- qu+1(Y)r,u+2(X)

(j>vAY)\

<t>v<t>AY, X)<f>

4>v<j>AY

v=\

- g(AY,

g(<f>AY, X)Vv(Z)Sv

{Yh)AX - (hi - A)(VYA)X + [VYA)AX = 0
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Note that pseudo-Einstein real hypersurfaces in G2(Cm+2) satisfies the formula
(3.7). Now contracting X and W in (3.7) and using the formulas mentioned below

Tr <t>v<t> - qu+i(Y)ti(tv+2) Tr <j>v<j>

- 9 I / + 1 ( y ) 7 ? l / ( O T r <t>v+24> + qv+2(Y)Vv{0Tr <t>v+Kt>} = 0,

and
3

^2{ } = 0,

then we have the following

(3.8) -{Yh)h + trace (VYA)(2A - hi) = 0.

Now let us take an inner product (3.7) with any vector field W and use the equation of
Codazzi for the final terms of the left side of (3.7). Prom this, contracting Y and W,
we have

(3.9)

3

(c + 3)

vi, X) - }

+ 77(6,) Tr A}]

- qv+1{<t>v+2<t>x)

vA -

3

, 4>X) +
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<t> - n{iu)vMAX)} = o

Now let us here calculate more explicitly the following terms in (3.9) as follows:

(3.10)

»»(*)& MO) = V
(3-11)

Now let us substitute (3.10) and (3.11) into (3.9). Prom this, together with the formulas

g{<j>v<t>A4>vS,, X) = -g

a n d

3

i

we have

3

v=\ v=\

(3.12) (b + 3)g(<j>M, X) + c^9(^vA(v, X) - 2jjfc,(0*)ifc,(O ^ A

- (AX)h + Tr (A -W)(VxA)
3

!•„</> = 0 ,
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where we have used the following

3

+ lnAX){qu+2{^+i) - qv+iitv+2)}] = 0,

3

Y l [{i»+2(<t>»09{<t>v+iZ, X) - qv+y{<t>vZ)g{<j>v+2Z, X)}
l

}] = 0,

qv+2(<t>u+i<t>X)}] = 0,

and

3

9 + ( ^ + ) 9+i(&+2)}] = 0.

On the other hand, by (3.8) we know that

Tr (VYA)A = {Yh)h. .

Prom this and using Tr <j>v(f> = 277,,(f) in (3.12), we have

3

(3.13) 6<M£ + c%jt>»Mv = 0.

When g(AD,^) = 0 , that is A£v =PV£,V, u= 1,2,3, then by (3.13) the structure
vector £ is principal. Then by virtue of a theorem due to Berndt and the present author
[3], we summarise the above arguments as follows:

THEOREM 3 . 1 . Let M be a £>-•- -invariant reai hypersurface in G2 (Cm + 2) sat-

isfying (**)• Then M is congruent to one of the following:

(A) a tube of radius r over G 2 (C m + 1 ) in G 2 ( C m + 2 ) , or
(B) a tube of radius r over H P " , m = 2n, in G 2 ( C m + 2 ) .
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REMARK 3.1. A real hypersurface M in G2(C m + 2 ) is said to be Einstein if the con-
stants b and c in the formula (*) identically both vanish. Then by the formula (**) its
Ricci tensor should be parallel. Moreover, in such a case the Ricci tensor 5 commutes
with the structure tensor <j>. On the other hand, in a paper due to Pe'rez and the present
author [9] we have proved that there do not exist any Hopf hypersurfaces in G2(Cm + 2)
with parallel and commuting Ricci tensor. So naturally we know that there do not exist
any Hopf Einstein real hypersurfaces in G 2 ( C m + 2 ) .

4. P R O O F OF THEOREM 2

In this section, let M be a 2)-"--invariant pseudo-Einstein real hypersurface in
G 2 (C m + 2 ) . Then the Ricci tensor S of M satisfies the formula (*). Then naturally it
satisfies the formula (**). So by virtue of Theorem 3.1 M is congruent to of type (A)
or of type (B). First we consider M is congruent to of type (A), that is, a tube over a
totally geodesic G 2 (C m + 1 ) in G 2 ( C m + 2 ) .

Now let us introduce a proposition in [2] concerned with a tube of type (A) as
follows:

PROPOSITION A. Let M be a connected real hypersurface in G 2 ( C m + 2 ) . Sup-
pose that AD CD, A£ = a£ , and £ is tangent to I)-1. Let Ji€(J be the almost Hermi-
tian structure such that JN = JiN. Then M has three(ifr = n/2) or four (otherwise)
distinct constant principal curvatures

(4.1) a = V8cot (%/8r) , 0 = %/2cot (%/2r) , A = - \ / 2 t a n ( v ^ r ) , /x = 0

with some r e (0, TT/4) . The corresponding multiplicities are

m(a) = 1 , m(/?) = 2 , m(A) = 2m - 2 = m(/x),

and t ie corresponding eigenspaces we have

Ta = R£ = RJN,

TM = {x\x±mz, JX = -

Now let us check for a tube over a totally geodesic G 2 (C m + 1 ) in G 2 ( C m + 2 ) . We
put XeTf, in (3.4). Then by the formula (*) we know that

(4.2) a = 4m + 8.
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Prom this, together with (4.1), (3.4) gives for any XGT\

{(4m + 7)-%/2tan\ /2r / i - (V2tanV2rY}X + fafX

= {4m + 6-V2tajxy/2rh-(y2ta.ny/2r) }X

= (4m + S)X.

This gives h = — x/^tanV^r + cot V2r). Prom this, together with the trace of h,
which is given by h = (2m - 2)(—v^tanv^r) + V&coty/Er + 2>/2cot>/2r, we have
cot2y/2r = (m-l)/2.

On the other hand, by putting X — ( = £i in (3.4) and the formula (*), we know

a + 6 + c = 4m + ha — a2.

From this, together with (4.1) and (4.2), it follows that

b + c = ha-a2-8

= \/2h(cot V2r - tan \/2r) - 2(cot V2r - tan V2r\ - 8

= -2(cot2 V2r - tan2 y/2r) - 2(cot \plr - tan y/2r) - 8

= - 4 (cot2 V2r + l )

Next we consider M is congruent to of type (B), that is, a tube of radius r over
lHLPm, m = 2n in G2(<Cm+2). Moreover, for a tube of type (B) in Theorem A we
introduce the following proposition due to [2] as follows:

PROPOSITION B. Let M be a connected reai hypersurface of G2(Cm + 2). Sup-
pose that AD CD, A£ = a£, and £ is tangent to D. Then the quaternionic dimension
m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal cur-
vatures

a = - 2 tan (2r) , /3 = 2 cot (2r) , 7 = 0 , A = cot (r) , fi = - tan (r)

with some r G (0, TT/4) . The corresponding multiplicities are

m(ct) = 1 , m(/3) = 3 = m{y) , m(A) = 4n - 4 = m(/i)
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[15] Pseudo-Einstein real hypersurfaces 197

and the corresponding eigenspaces are

where

Tx(BTli = (HCOX , 3TA = Tx , 3TM = TM , JTX = T» .

By the formula (3.4) and (4.2) for the Ricci tensor of a pseudo-Einstein real hy-
persurface M in G2(Cm + 2), we have respectively for XeTx and XtTp

(4.3) a = 4m + 7 + / i co t r -co t 2 r

and

(4.4) a + c = 4m -I- 4 + 2 cot 2rh - 4 cot2 2r.

Moreover, by Proposition B we can put h the trace of the shape operator A of M
in G2(Cm+2) as follows

(4.5) h = 4(n- I ){co t r - tanr} + 6cot2r-2tan2r .

On the other hand, for XeTc o t r and r € T _ t a n r we know that SX = aX and SY
= aY. Then by (3.4) we have hcotr — cot2r = h{— tanr) — tan2r. Then it follows
that

(4.6) h = cot r — tan r.

From this, together with (4.3), we assert that a = Am + 6 = 8n + 6.
On the other hand, by comparing both two equations (4.5) and (4.6) mentioned

above, we know that

(4.7) ( 4 n ^

which gives cot2 r = (2n±v
/4n - l ) / (2n — 1). Moreover, from (4.4) and (4.6) we know

c = —2 + (cotr — tanr)/ i — (cotr — tanr ) 2 = - 2 .

Finally, we assert that 6 = — 16n + 2.

In fact, by the formula (*), (3.4) and Proposition B for X&Ta we have

2cot2r 4cot22r"
From this, together with (4.3), it follows that

4 16
(4m + 7) + hcotr - cot2 r + b = (4m + 4) h -cot r - tanr (cot r - tan r ) 2 '

Then substituting (4.6) and (4.7) into this formula, we know that

(4m + 7) + (cot r - tanr) cot r - cot2 r + b = 4m - 8(2n - 1),

which gives above assertion that b = — 16n + 2. So summing up all the situations
mentioned above, we give a complete proof of Theorem 2.
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5. PROOF OF THEOREM 3

In this section, we consider a Hopf pseudo-Einstein real hypersurface M in
G 2 (C m + 2 ) , provided with c^ - 4. Then, its Ricci tensor is given by

3

SX = (4m + 7)X -

hAX - A2X

for nonvanishing constants b and c / - 4 on M. Then by putting X = £ into (5.1), we
have

3 3 3

(5.2) 4(m + 1)£ - 3 j > ( 0 & - 5>(0&< + hA£ - ^ = (o + b)£ + c^
f = l 1/=1 K=l

On the other hand, by (5.1) we have

3

(5.3) A2X - hAX

where p = a — (4m + 7). When M is a Hopf hypersurface, (5.2) gives the following

3

(5.4) {4(m + 1) + ha - a2 - (a + b)}t=

From this, applying £M to both sides, we have

(5.5) {4(m + 1) + ha - a2 - (a + b) - (c + 4)}jfc,(f) = 0.

Now let us divide two cases. Then first we consider

CASE I. 4(m + 1) + ha - a2 - (a + b) - (c + 4)^0

Then from (5.5) we know that »&,(£) = 0. that is, £e2). Now let us put
T = A2 - hA. Then by (5.3) we have the following

T& = (A2 - hA)^ = {p - (3 + c)}£2,

= {A2 - hA)h = {p - (3 + c)}&,
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where we have put p = a — (4m + 7). Prom this, together with the fact TA = AT and

^(TD.X)-1-) = 0 we know that there exists a basis Xi,X2,X3 of S)-1- that AXt - \{Xi

and TXi = XiXi, t = 1,2,3, in such a way that

where SO(3) denotes the 3x3 special orthogonal matrix. Then

Span {XUX2,X3} = Span {61,62,63}-

Accordingly, we also assert that g(AJ),S)-L) = 0.

CASE II. 4(m + 1) + ha - a2 - (a + b) - (c + 4) = 0
3

By (5.4) and c^ - 4, we know that 6 = IZ r?«/(6)6i/€S)x. So we may put 6 = £1 •

Then by (5.3) we have the following

(5.6) A%

(5.7) A% - hAZ2 = {4m + 7 - a - (1 + c)

(5.8) A2i3 - hA£3 = {4m + 7 - a - (1 + c)

Then we know that ^(rS),!)-1-) = 0, where we have put T = A2 — hA. Moreover as in

Case I we know TA = AT. From this, together with the fact g(TS), 3)x) = 0, by the

same method as in Case I we assert that g(A'S,D-L) — 0. Accordingly, summing up

Cases I and II we know that M is S)x -invariant. Then by Theorem 3.1 and using the

same method given in the proof of Theorem 2 we give a complete proof of Theorem 3.
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