Kenneth S. Williams
(received August 14, 1968)

Let $X_{1}, x_{2}, \ldots, x_{k}$ denote $k \geq 2$ indeterminates and let $f\left(X_{1}, \ldots, X_{k}\right)$ be a homogeneous polynomial, in $G F\left(p^{n}\right)\left[X_{1}, \ldots, X_{k}\right]$, which is irreducible but not absolutely irreducible over $G F\left(p^{n}\right)$. Thus f is irreducible in $G F\left(p^{n}\right)\left[X_{1}, \ldots, X_{k}\right]$ but reducible in some $G F\left(p^{n m}\right)\left[X_{1}, \ldots, X_{k}\right], m>1$. For any polynomial $h\left(X_{1}, \ldots, X_{k}\right)$ in $\operatorname{GF}\left(\mathrm{p}^{\mathrm{n} \ell}\right)\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right], \ell \geq 1$, let $\mathrm{N}_{\mathrm{p}^{n}}(\mathrm{~h})$ denote the number of $\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{GF}\left(p^{n}\right) \times \ldots \times \operatorname{GF}\left(p^{n}\right)$ such that $h\left(x_{1}, \ldots, x_{k}\right)=0$. It follows from the work of Birch and Lewis [1] that

$$
\begin{equation*}
\mathrm{N}_{\mathrm{p}^{n}}(\mathrm{f})=0_{\mathrm{k}, \mathrm{~d}}\left(\mathrm{p}^{\mathrm{n}(\mathrm{k}-2)}\right) \tag{1}
\end{equation*}
$$

where $d=\operatorname{deg} f$ and the constant implied by the 0 -symbol depends only on k and d. If f factors into linear factors in $\operatorname{GF}\left(\mathrm{p}^{\mathrm{nm}}\right)\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right]$, following Carlitz [2], we call such polynomials factorable. In this note we obtain a more precise statement than (1) when f is factorable. We prove

THEOREM 1. If $f\left(X_{1}, \ldots, X_{k}\right) \in \operatorname{GF}\left(p^{n}\right)\left[X_{1}, \ldots, X_{k}\right]$ is an irreducible, factorable, homogeneous polynomial of degree $d \geq 2$ in the $k \geq 2$ indeterminates X_{1}, \ldots, X_{k} then there exists an integer $r \equiv r(f)$ depending only on f and satisfying $2 \leq r \leq \min (k, d)$ such that

Canad. Math. Bull. vol. 12, no. 5, 1969

$$
\begin{equation*}
\mathrm{N}_{\mathrm{p}} n(\mathrm{f})=\mathrm{p}^{\mathrm{n}(\mathrm{k}-\mathrm{r})} \tag{2}
\end{equation*}
$$

Proof. Applying the ideas used by Carlitz in $\S 3$ of [2] to homogeneous polynomials, we deduce that f is an irreducible, factorable, homogeneous polynomial of degree d over $G F\left(p^{n}\right)$ if and only if there is a factorization

$$
\begin{equation*}
f\left(X_{1}, \ldots, X_{k}\right)=\prod_{i=0}^{d-1} \ell_{i}\left(X_{1}, \ldots, X_{k}\right), \tag{3}
\end{equation*}
$$

where $\ell_{i}\left(x_{1}, \ldots, x_{k}\right)=a_{1} p^{n i} x_{1}+\ldots+a_{k} p^{n i} X_{k}$ and $d=$ 1.c.m(deg $a_{1}, \ldots, \operatorname{deg} a_{k}$). (If $a \in G F\left(p^{n f}\right)$ but $a \notin G F\left(p^{n e}\right)$ for $1 \leq e \leq f$, we write $\operatorname{deg} a=f$). Clearly each $\ell_{i}\left(X_{1}, \ldots, X_{n}\right)$ $\in \operatorname{GF}\left(\mathrm{p}^{\mathrm{nd}}\right)\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right]$. Suppose $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \in \operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right) \times \ldots \times \operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$ is such that $\ell_{i}\left(x_{1}, \ldots, x_{k}\right)=0$. Choose a positive integer u such that $u d+j-i>0$, where $0 \leq j \leq d-1, j \neq i$. Raising ℓ_{i} to the $p^{(u d+j-i) n} t h$ power, we obtain $\ell_{j}\left(x_{1}, \ldots, x_{k}\right)=0$, as each $x_{i} \in \operatorname{GF}\left(p^{n}\right)$ and each $a_{i} \in G F\left(p^{n d}\right)$. Thus $\left(x_{1}, \ldots, x_{k}\right) \in G F\left(p^{n}\right) \times \ldots \times$ $\operatorname{GF}\left(p^{n}\right)$ which satisfy $\ell_{i}\left(x_{1}, \ldots, x_{k}\right)=0$ also satisfy $\ell_{j}\left(x_{1}, \ldots, x_{k}\right)=0$ and vice-versa. Hence $N_{p^{n}}(f)=N_{p^{n}}\left(\ell_{o}\right)$. Now $G F\left(p^{\text {nd }}\right)$ is a d-dimensional vector space over $G F\left(p^{n}\right)$. Let $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ be a basis for this vector space. Hence for $i=$ $1,2, \ldots, k$ we can write uniquely

$$
\begin{equation*}
a_{i}=\sum_{m=1}^{d} b_{i m} \alpha_{m} \quad\left(b_{i m} \in G F\left(p^{n}\right)\right) \tag{4}
\end{equation*}
$$

Raising both sides of (4) to the $p^{n j}$ th power $(j=0,1, \ldots, d-1)$ we obtain

$$
\begin{equation*}
a_{i} p^{n j}=\sum_{m=1}^{d} b_{i m} \alpha_{m}^{p^{n j}} \tag{5}
\end{equation*}
$$

Hence $A=B C$, where A is the $k \times d \operatorname{matrix}\left(a_{i} p^{n j}\right), B$ is the $k \times d \operatorname{matrix}\left(b_{i j}\right)$ and C is the $d \times d \operatorname{matrix}\left(\alpha_{i}{ }^{n j}\right)$. Since the α_{i} form a basis, C is non-singular and so rank $A=r a n k B$. We write

$$
\begin{equation*}
r(f)=\operatorname{rank} A=\operatorname{rank} B, \tag{6}
\end{equation*}
$$

so that $r(f)$ depends only on the a_{i}, that is only on f. Using (4) we obtain

$$
\ell_{o}\left(x_{1}, \ldots, x_{k}\right)=\sum_{m=1}^{d}\left(\sum_{i=1}^{k} b_{i m} x_{i}\right) \alpha_{m}
$$

so that $\ell_{o}\left(x_{1}, \ldots, x_{k}\right)=0$, for $\left(x_{1}, \ldots, x_{k}\right) \in G F\left(p^{n}\right) \times \ldots \times G F\left(p^{n}\right)$, if and only if

$$
\sum_{i=1}^{k} b_{i m} x_{i}=0, \quad m=1,2, \ldots, d
$$

that is, if and only if

$$
B^{T}\left(\begin{array}{c}
x_{1} \tag{7}\\
\vdots \\
x_{k}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right)
$$

The number of linearly independent solutions $\left(x_{1}, \ldots, x_{k}\right) \in G F\left(p^{n}\right) \times \ldots x$ $G F\left(p^{n}\right)$ over $G F\left(p^{n}\right)$ of (7) is $k-\operatorname{rank}\left(B^{T}\right)=k-\operatorname{rank}(B)=k-r(f)$. Thus the total number of solutions of (7) is $\left(p^{n}\right)^{k-r}$, giving $N_{p n}(f)=N_{p n}\left(\ell_{o}\right)=p^{n(k-r)}$, as required.

As A is $k \times d$, clearly $r \leq \min (k, d)$. We note next that $r \geq 2$. As f is not identically zero, $\mathrm{r} \neq 0$. Suppose $\mathrm{r}=1$; then there exists a row of A, without loss of generality the first one, such that every other row is a multiple of it. Hence $a_{i}=\lambda_{i} a_{1}\left(\lambda_{i} \in \operatorname{GF}\left(p^{n}\right), i=2, \ldots, k\right)$ giving $f\left(X_{1}, \ldots, X_{n}\right)=a_{1}^{1+p^{n}+p^{2 n}+\ldots+p^{(d-1) n}\left(x_{1}+\lambda_{2} X_{2}+\ldots+\lambda_{k} X_{k}\right)^{d}, ~}$ which is a contradiction as $d \geq 2$, since f is irreducible over $G F\left(p^{n}\right)$.

The author is grateful to the referee for pointing out that a special case of theorem 1 has been given by Carlitz (see formula (5.3) in [3]). Carlitz considers the case $k=d, \operatorname{det}\left(a_{i} p^{n j}\right) \neq 0$, so that $r(f)=k$ and $N_{\underline{p}} n(f)=1$.

Theorem 1 can be extended to irreducible factorable polynomials which are not homogeneous. If $f\left(X_{1}, \ldots, X_{n}\right) \in \operatorname{GF}\left(p^{n}\right)\left[X_{1}, \ldots, X_{k}\right]$ is an irreducible factorable polynomial which is not homogeneous, we set

$$
\begin{equation*}
f^{*}\left(x_{1}, \ldots, x_{k+1}\right)=x_{k+1}^{d} f\left(x_{1} / x_{k+1}, \ldots, x_{k} / x_{k+1}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{* *}\left(X_{1}, \ldots, X_{k}\right)=f^{*}\left(X_{1}, \ldots, X_{k}, 0\right) \tag{9}
\end{equation*}
$$

where d is the total degree of f, so that f^{*} and $f^{* *}$ are both homogeneous of degree $d . f^{*}$ is irreducible and factorable but $f^{* *}$ need not be. We examine the possibilities for $f^{* *}$. We write

$$
f\left(x_{1}, \ldots, x_{k}\right)=\prod_{j=0}^{d-1}\left(a_{1}^{p^{n j}} x_{1}+\ldots+a_{k}^{p^{n j}} x_{k}+a_{k+1}^{p^{n j}}\right)
$$

where $d=1 . c . m\left(\operatorname{deg} a_{1}, \ldots, \operatorname{deg} a_{k}, \operatorname{deg} a_{k+1}\right)$.
Then

$$
\begin{equation*}
f^{* *}\left(x_{1}, \ldots, x_{k}\right)=\prod_{j=0}^{d-1}\left(a_{1}^{p^{n j}} x_{1}+\ldots+a_{k}^{p^{n j}} x_{k}\right) \tag{10}
\end{equation*}
$$

Let $e=1 . c . m\left(\operatorname{deg} a_{1}, \ldots, \operatorname{deg} a_{k}\right)$ so that $e \mid d$. We consider two
possibilities: (i) e $\neq 1$; (ii) $e=1$. If (i) holds (10) becomes

$$
f^{* *}\left(x_{1}, \ldots, x_{k}\right)=\left\{g\left(x_{1}, \ldots, x_{k}\right)\right\}^{d / e}
$$

where

$$
g\left(x_{1}, \ldots, x_{k}\right)=\prod_{j=0}^{e-1}\left(a_{1}^{p^{n j}} x_{1}+\ldots+a_{k}^{p^{n j}} x_{k}\right)
$$

is an irreducible factorable homogeneous polynomial of degree e.
Hence by Theorem 1

$$
\begin{equation*}
N_{p^{n}}\left(f^{* *}\right)=N_{p^{n}}(g)=p^{n(k-s)} \tag{11}
\end{equation*}
$$

where $s=r(g)=r\left(f^{* *}\right)$ satisfies $2 \leq s \leq \min (k, e)$. If (ii) holds
(10) becomes

$$
f^{* *}\left(x_{1}, \ldots, x_{k}\right)=\left\{\ell\left(x_{1}, \ldots, x_{k}\right)\right\}^{d},
$$

where

$$
\ell\left(x_{1}, \ldots, x_{k}\right)=a_{1} X_{1}+\ldots+a_{k} X_{k} \in \operatorname{GF}\left(p^{n}\right)\left[x_{1}, \ldots, x_{k}\right]
$$

Hence

$$
\begin{equation*}
\mathrm{N}_{\mathrm{p}}{ }^{\left(\mathrm{f}^{* *}\right)}=\mathrm{N}_{\mathrm{p}}(\mathrm{l})=\mathrm{p}^{\mathrm{n}(\mathrm{k}-1)} \tag{12}
\end{equation*}
$$

Also by Theorem 1 we have

$$
\begin{equation*}
\mathrm{N}_{\mathrm{p}^{n}}\left(\mathrm{f}^{*}\right)=\mathrm{p}^{\mathrm{n}(\mathrm{k}+1-\mathrm{t})}, \tag{13}
\end{equation*}
$$

where $t=r\left(f^{*}\right)$ satisfies $2 \leq t \leq \min (k+1, d)$. By the definition of s and t as ranks clearly $t=s$ or $s+1$. Moreover, when $\mathrm{e}=1$ we have $\mathrm{s}=1, \mathrm{t}=2$. Now

$$
\begin{equation*}
\mathrm{N}_{\mathrm{p}}(\mathrm{f})=\frac{\mathrm{N}_{\mathrm{p}}\left(\mathrm{f}^{*}\right)-\mathrm{N}_{\mathrm{p}^{n}}\left(\mathrm{f}^{* *}\right)}{\mathrm{p}^{\mathrm{n}}-1} \tag{14}
\end{equation*}
$$

so from (11), (12), (13) and (14) we have

THEOREM 2. If $f\left(X_{1}, \ldots, X_{k}\right) \in \operatorname{GF}\left(p^{n}\right)\left[X_{1}, \ldots, X_{k}\right]$ is an irreducible, factorable, non-homogeneous polynomial of degree $d \geq 2$ in the $k \geq 2$ indeterminates $x_{1}, X_{2}, \ldots, X_{k}$ then

$$
N_{p^{n}}(f)= \begin{cases}p^{n\left(k-r\left(f^{*}\right)\right)} & , \text { if } e \neq 1, \quad r\left(f^{*}\right)=r\left(f^{* *}\right) \\ 0 & , \text { otherwise },\end{cases}
$$

where $f^{*}, f^{* *}$ are defined by (8), (9) respectively.

REFERENCES

1. B. J. Birch and D. J. Lewis, p-adic forms. J. Indian Math. Soc. 23 (1959) 11-32.
2. L. Carlitz, On factorable polynomials in several indeterminates. Duke Math. J. 2 (1936) 660-670.
3. L. Carlitz, The number of solutions of some special equations in a finite field. Pacific J. Math. 4 (1954) 207-217.

Summer Research Institute
Queen's University
Kingston

Carleton University
Ottawa

