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Some Transformations of Hausdorff
Moment Sequences and Harmonic
Numbers

Christian Berg and Antonio J. Durán

Abstract. We introduce some non-linear transformations from the set of Hausdorff moment se-

quences into itself; among them is the one defined by the formula: T((an)n) = 1/(a0 + · · · + an).

We give some examples of Hausdorff moment sequences arising from the transformations and pro-

vide the corresponding measures: one of these sequences is the reciprocal of the harmonic numbers

(1 + 1/2 + · · · + 1/(n + 1))−1.

1 Introduction

F. Hausdorff considered in 1923 [H] the moment sequences for which the measure is
concentrated on the unit interval [0, 1] and characterized them by complete mono-

tonicity. For a Hausdorff moment sequence an =
∫ 1

0
xn dµ(x) of a probability mea-

sure µ on [0, 1] we have that a0 = 1 and an < 1, n ≥ 1, unless µ = δ1.
Moment sequences of measures supported on [−1, 1] are characterized by bound-

edness and the positive semidefiniteness of the corresponding Hankel matrices.
The main result of this paper is the following transformation from Hausdorff mo-

ment sequences to Hausdorff moment sequences:

Theorem 1.1 Let (an)n be a Hausdorff moment sequence of a measure µ 6= 0. Then

the sequence (bn)n defined by bn = 1/(a0 + · · · + an) is again a Hausdorff moment

sequence, and its associated measure ν = T(µ) has the properties ν({0}) = 0 and

(1.1)

∫ 1

0

1 − tz+1

1 − t
dµ(t)

∫ 1

0

tz dν(t) = 1, for ℜz ≥ 0.

It is clear from Theorem 1.1, that if µ is a probability then so is ν, and in this
way we get a transformation of the convex set of normalized Hausdorff moment se-
quences as well as a transformation of the set of probabilities on [0, 1]. It is easy to

see that T(δ0) = δ1, T(δ1) = χ[0,1](t)dt , i.e., the Lebesgue measure on [0, 1]. The
transformation has a unique fix point ( fn)n, determined by the recursive equation

f0 = 1, (1 + f1 + · · · + fn) fn = 1, n ≥ 1,
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giving

f1 =
−1 +

√
5

2
, f2 =

√

22 + 2
√

5 −
√

5 − 1

4
, . . . .

We hope to return to this fix point in a later paper.

The transformation (an)n → (bn)n of Theorem 1.1 is clearly one-to-one and a
sequence (cn)n belongs to the image if and only if cn > 0 for all n and (an)n defined

by

a0 =
1

c0

, an =
1

cn

− 1

cn−1

, n ≥ 1,

is a Hausdorff moment sequence.

The result in Theorem 1.1 is not true for measures supported on [−1, 1] since
µ = (δ−1 + δ1)/2 is a counterexample. It can however be extended to [−1, 1] as
follows — note that although the odd moments of the measure µ can be negative, the

sums a0+· · ·+an are always non-negative because they can be written as a0+· · ·+an =
∫ 1

−1
(1 + · · · + tn) dµ(t) ≥ 0; moreover, they are always positive unless µ = cδ−1.

Theorem 1.2 Let (an)n be a moment sequence of a measure on [−1, 1]. Then for any

positive real number r the sequence (bn)n defined by b0 = 1/r, bn = 1/(r + a0 + · · · +
an−1) is again a moment sequence of a measure on [−1, 1]. If (an)n is a Hausdorff

moment sequence so is (bn)n.

The first part of Theorem 1.1 is a consequence of Theorem 1.2: just by putting
cn = bn+1 = 1/(r + a0 + · · · + an), n ≥ 0, which is again a Hausdorff moment
sequence if (an)n is so, and taking limit as r tends to 0+, the assertion follows.

We prove these theorems in Section 2. Two different proofs are given for Theo-
rem 1.2 — hence for Theorem 1.1 — and one more for Theorem 1.1; all these proofs
use the fact that analytic functions with positive Taylor coefficients preserve bounded
moment sequences (see Lemma 2.1 below). Section 3 is devoted to some examples,

the more interesting of which is the reciprocal of the harmonic numbers. We recall
that the harmonic numbers Hn are the partial sums of the harmonic series, i.e.,

Hn = 1 +
1

2
+ · · · +

1

n
, n ≥ 1,

cf. [GKP]. Take the Lebesgue measure dµ = χ[0,1]dx which gives the moments
an = 1/(n + 1). According to Theorem 1.1 the sequence of the reciprocal of the
harmonic numbers 1/Hn+1, n ≥ 0, is again a Hausdorff moment sequence. To
describe the corresponding measure ν on [0, 1] we consider the digamma function

ψ(z) = Γ
′(z)/Γ(z), i.e., the logarithmic derivative of the Gamma function. Then

there is a sequence of numbers (ξn)n≥0, each of them unique assuming ξn ∈ (n, n+1),
n ≥ 1, ξ0 = 0, satisfying that ψ(1 − ξn) = −γ, where as usual γ stands for Euler’s
constant:
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1 − ξn

ξn ∈ (n, n + 1)

−γ

−3

−2

−1

1

2

3

−3 −2 −1 1 2

Now write αn = 1/ψ ′(1 − ξn), n ≥ 0, which is a sequence of positive numbers.
Then (1/Hn+1)n is the moment sequence of the measure

(1.2) dν =

∞
∑

n=0

αnxξnχ(0,1](x) dx.

We also consider the one-parameter extension

Hn,c =

n
∑

k=1

1

kc
, c > 0

of the harmonic numbers and study the representing measure of the Hausdorff mo-
ment sequence (1/Hn+1,c)n, as well as the one-parameter extension

(

n
∑

k=0

1

k + a

)−1

, a > 0.

In Section 4, we relate Theorem 1.1 to the theory of convolution semigroups on the
half-line or equivalently to Lévy processes. Roughly speaking one can say that T

transforms the Lévy measure into the potential kernel, which also permits a charac-
terization of the image set T(M([0, 1]) \ {0}) of the non-zero measures under T.

2 Proofs

We need to consider the Mellin transform of a measure µ with support contained in
[0, 1]: it is the function defined by

M(µ)(z) =

∫ 1

0

tz dµ(t), ℜz > 0.

For ℜz > 0 and t > 0 we define tz
= ez log t , and since limt→0+ tz

= 0, we consider
t → tz as a continuous function on [0, 1] with the value 0 for t = 0. Clearly |tz| < 1

for t ∈ [0, 1). The function M(µ) is holomorphic in ℜz > 0. Suppose µ has a mass
a > 0 at t = 0 and decompose µ = aδ0 + µ̃ with µ̃({0}) = 0. Then M(µ)(z) =

M(µ̃)(z) for ℜz > 0 and limx→0+ M(µ)(x) = µ̃([0, 1]). Furthermore M(µ) has a
continuous extension to the closed halfplane ℜz ≥ 0 given by

lim
z→i y;ℜz>0

M(µ)(z) =

∫ 1

0

ei y log t dµ̃(t), y ∈ R.

We use the following lemma for the proofs of Theorems 1.1 and 1.2.
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Lemma 2.1 Let µ be a measure on [−1, 1], write an =
∫ 1

−1
xn dµ(x), n ≥ 0, and take

M > 0 so that |an| < M (it always exists). Let f (z) =
∑

k bkzk be an analytic function

on the disc {z ∈ C : |z| < M} with bk ≥ 0, k ≥ 0. Then the sequence cn = f (an),

n ≥ 0, is again a moment sequence of some measure ν supported in [−1, 1]. If (an)n is

a Hausdorff moment sequence so is ( f (an))n and the Mellin transforms of the associated

measures satisfy M(ν)(z) = f (M(µ))(z) for ℜz > 0.

Note that if µ is a probability on [−1, 1] different from αδ1 + (1 − α)δ−1,

0 ≤ α ≤ 1, then |an| < 1 for all n ≥ 1.

This lemma is already known: it is a consequence of the positive definiteness of
the Schur product of positive definite matrices (see [BCR, Cor. 1.14, p. 70]). We
include here a new constructive proof using multiplicative convolution of measures
on [−1, 1] defined by

∫ 1

−1

f (x) d(µ ⋄ ν)(x) =

∫ 1

−1

∫ 1

−1

f (xy) dµ(x)dν(y).

The n-th moment of µ ⋄ ν is then the product of the n-th moments of µ and ν.

Proof We have that f (an) =
∑

k bkak
n; then, by writing µ⋄k

= µ⋄· · ·⋄µ, (k factors),
µ⋄0

= δ1, it follows straightforwardly that the measure

ν =

∑

k

bkµ
⋄k

has the sequence ( f (an))n as its sequence of moments. Both f (an) and ν are well-
defined because f (z) =

∑

k bkzk converges for |z| < M, |an| < M, and ‖µ⋄k‖ =

‖µ‖k, with ‖µ‖ = a0 < M.

The result concerning the Mellin transforms follows easily from the previous ex-
pression taking into account that M(µ ⋄ σ) = M(µ)M(σ).

Corollary 2.2 Let (an)n be a moment sequence of a measure on [−1, 1]. Then

• if |an| < 1, n ≥ 0, then (1/(1 − an))n is also a moment sequence of a measure on

[−1, 1];
• for any positive number t > 0, the sequence (etan )n is also a moment sequence of a

measure on [−1, 1].

Both sequences are Hausdorff moment sequences if (an)n is such.

Proof of Theorem 1.1 We distinguish two cases.

(1) Suppose that m =
∫ 1

0
(1 − t)−1 dµ(t) < ∞ (in particular µ({1}) = 0). For

ℜz ≥ 0, we have

F(z) =

∫ 1

0

1 − tz+1

1 − t
dµ(t) =

∫ 1

0

dµ(t)

1 − t
−

∫ 1

0

tz t

1 − t
dµ(t),
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and since dσ(t) = t/(1− t)dµ(t) has no mass at t = 0, F(z) is a bounded continuous
function in ℜz ≥ 0, holomorphic in ℜz > 0.

Note that
∣

∣

∣

∣

∫ 1

0

tz t

1 − t
dµ(t)

∣

∣

∣

∣

≤
∫ 1

0

t

1 − t
dµ(t) <

∫ 1

0

dµ(t)

1 − t
,

which shows that F(z) 6= 0 for ℜz ≥ 0. In particular σ has total mass σ([0, 1]) < m,
so the measure

(2.1) ν =

∞
∑

k=0

1

mk+1
σ⋄k

is well-defined and is concentrated on (0, 1].
We find

M(ν)(z) =

∞
∑

k=0

1

mk+1
(M(σ)(z))

k
=

1

F(z)
, ℜz ≥ 0,

which shows (1.1) and in particular for z = n ∈ N0,

bn =
1

F(n)
=

∫ 1

0

tn dν(t), µ([0, 1])ν([0, 1]) = 1.

(2) Suppose that
∫ 1

0
(1 − t)−1 dµ(t) = ∞. For 0 < c < 1, we define µc = χ[0,c]µ +

µ({1})δc , and for certain c0 < 1 close to 1, we have µc0
6= 0. For c0 ≤ c < 1, we

note that µc satisfies the conditions of the previous part above, and µc → µ weakly
for c → 1. By the previous part, there exists a measure νc on (0, 1] such that

(2.2)

∫ 1

0

1 − tz+1

1 − t
dµc(t)

∫ 1

0

tz dνc(t) = 1, ℜz ≥ 0, c0 ≤ c < 1;

in particular µc([0, 1])νc([0, 1]) = 1. Since νc([0, 1]) ≤ 1/µc0
([0, 1]), c0 ≤ c < 1,

there exists a measure ν on [0, 1] and a sequence c j → 1− such that νc j
→ ν weakly.

Using that t → tz is continuous on [0, 1] for ℜz > 0 and that t → (1 − tz+1)/(1 − t)
is continuous on [0, 1] for ℜz > −1, we get from (2.2) that

(2.3)

∫ 1

0

1 − tz+1

1 − t
dµ(t)

∫ 1

0

tz dν(t) = 1, ℜz > 0.

Defining ν = aδ0 + ν̃ with a = ν({0}) and letting z → 0+, we get from (2.3) that

µ([0, 1])ν̃([0, 1]) = 1, but since we also have µ([0, 1])ν([0, 1]) = 1, we conclude
that a = 0. Finally ν = ν̃ has no mass at zero and (2.3) also holds for ℜz = 0. For
z = n ∈ N0, we get that

bn =

∫ 1

0

tn dν(t) =
1

a0 + · · · + an

.
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Corollary 2.3 If µ is a non-zero measure on [0, 1] with m =
∫ 1

0
(1−t)−1 dµ(t) <∞.

Then, the measure ν = T(µ) of Theorem 1.1 is given by

ν =

∞
∑

k=0

1

mk+1
σ⋄k, dσ(t) =

t

1 − t
dµ(t).

Proofs of Theorem 1.2

First proof Any measure µ on [−1, 1] is a weak limit of a sequence of discrete mea-

sures of the form c1δq1
+ · · · + cmδqm

, where c j > 0, j = 1, . . . ,m, and −1 < q1 <
· · · < qm < 1. Hence, it is enough to prove the theorem for discrete measures of
that type. Without loss of generality, we can assume that the discrete measures are
probabilities: c1 + · · · + cm = 1. The moment sequence of these measures is of the

form: c1qn
1 + · · · + cmqn

m; hence, we must prove that for any positive number r > 0,
the sequence

bn =

(

r + c1
1 − qn

1

1 − q1

+ · · · + cm
1 − qn

m

1 − qm

)−1

, n ≥ 0

is also a moment sequence of a measure on [−1, 1]. But we can write it in the form:

bn =
1

c

1

1 − (d1qn
1 + · · · + dmqn

m)
, n ≥ 0

where

c = r +
c1

1 − q1

+ · · · +
cm

1 − qm

, and d j =
c j

c(1 − q j)
, j = 1, . . . ,m.

The sequence d1qn
1 + · · · + dmqn

m is always strictly less than one in absolute value and
it is the moment sequence of the measure d1δq1

+ · · ·+ dmδqm
. It follows from the first

part of Corollary 2.2 that (bn)n is also a moment sequence of a measure on [−1, 1].

Second proof (cf. [BCR, Ex. 4.6.23]) We write σ for the measure on [−1, 1] with
moments (an)n; define sn = r + a0 + · · · + an−1, n ≥ 1, s0 = r > 0. Then:

sn = r +

∫ 1

−1

1 − xn

1 − x
dσ(x) = r + nσ

(

{1}
)

+

∫

[−1,1)

(1 − xn)
dσ(x)

1 − x
.

We claim that for t ≥ 0 there exists µt ≥ 0 on [−1, 1] such that e−tsn =
∫ 1

−1
xn dµt (x).

From this claim it is easy to prove the theorem: Consider µ =
∫ ∞

0
µt dt , which is a

positive measure on [−1, 1]; then

∫ 1

−1

xndµ(x) =

∫ ∞

0

(
∫ 1

−1

xn dµt (x)

)

dt =

∫ ∞

0

e−tsn dt =
1

sn

.
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We now prove the claim. For 0 < a < 1 let

(2.4) sn(a) = r + nσ
(

{1}
)

+

∫ a

−1

(1 − xn)
dσ(x)

1 − x

= r +

∫ a

−1

dσ(x)

1 − x
+ nσ

(

{1}
)

−
∫ a

−1

xn dσ(x)

1 − x

= α + βn −
∫ a

−1

xn dτ (x)

where α, β ≥ 0, and τ ≥ 0 on [−1, a]. Then:

e−tsn(a)
= e−tαe−tβnet

∫

a
−1

xn dτ (x),

which is a bounded moment sequence as product of the bounded moment sequences

e−tαe−tβn and et
∫

a
−1

xn dτ (x) (this last one is a moment sequence from the second part
of Corollary 2.2). Note that s0(a) = r. Therefore there exists a positive measure µt,a

on [−1, 1] so that

e−tsn(a)
=

∫ 1

−1

xn dµt,a(x),

and µt,a([−1, 1]) = e−ts0(a) < 1. As a consequence (s−1
n (a))n is the moment sequence

of the measure µa =
∫ ∞

0
µt,a dt with total mass 1/r.

By the method of moments, lima→1 µt,a = µt is a family of positive measures on
[−1, 1] with

e−tsn =

∫ 1

−1

xn dµt (x),

and the claim is proved.

Remark We can still give another different proof of the first part of Theorem 1.1; it is

based on the following result by the authors: Let (an)n be a non-vanishing Hausdorff

moment sequence. Then (bn) defined by b0 = 1 and bn = 1/(a1 · · · an) for n ≥ 1 is a

normalized Stieltjes moment sequence (see [BD, Theorem 1.1]).
We know from the second part of Corollary 2.2 that (etan )n is a Hausdorff moment

sequence for any t > 0; hence bn = et(an−a0) is a normalized Hausdorff moment
sequence and by the previously cited result tn = 1/(b0 · · · bn) is a normalized Stieltjes
moment sequence. But

tn =
1

b0 · · · bn

= e−t(a0+···+an)et(n+1)a0 .

Therefore e−t(a0+···+an) is a Stieltjes moment sequence, and integrating with respect to
t over (0,+∞), we get that 1/(a0 + · · · + an) is a Stieltjes moment sequence. Being

bounded by 1/a0, it is a Hausdorff moment sequence.

By applying the previously cited result by the authors to the first part of Corollary
2.2 we get:
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Corollary 2.4 If (an)n is a normalized Hausdorff moment sequence, then so is the se-

quence
∏n−1

k=0 (1 − ak+1), n ≥ 0.

3 Examples

First of all, we show some examples of moment sequences provided by Lemma 2.1:

to do so we note that for dµ = tαχ(0,1](t)dt , α > −1, a straightforward computation
gives:

(3.1) d(µ⋄k) = tα
(−1)k−1

(k − 1)!
logk−1(t)χ(0,1](t) dt, k ≥ 1.

Example 3.1 Take now dµ = tχ(0,1](t)dt with moments an = 1/(n + 2). The

analytic functions on the unit disc − log(1− z) and (z + (1− z) log(1− z))/z provide,
according to Lemma 2.1, the following Hausdorff moment sequences

an = log
n + 2

n + 1
,

bn = 1 − (n + 1) log
( n + 2

n + 1

)

.

Taking into account the Taylor expansions:

− log(1 − z) =

∞
∑

k=1

zk

k
,

z + (1 − z) log(1 − z)

z
=

∞
∑

k=1

zk

(k + 1)k
,

the proof of Lemma 2.1 now gives the corresponding measures for these sequences

σ1 =

∞
∑

k=1

µ⋄k

k
, σ2 =

∞
∑

k=1

µ⋄k

(k + 1)k
,

and using (3.1) we get:

dσ1 =

∞
∑

k=1

(−1)k−1t logk−1 t

k!
χ(0,1](t)dt =

t − 1

log t
χ(0,1](t)dt ;

dσ2 =

∞
∑

k=1

(−1)k−1t logk−1 t

(k + 1)!
χ(0,1](t)dt =

1 − t + t log t

log2 t
χ(0,1](t)dt.

The first example is known (see [BCR, Ex. 4.6.24, p. 139]), the second seems to be
new.

We now show examples provided by Theorem 1.1.
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Example 3.2 For µ = δq, 0 < q < 1, Theorem 1.1 gives the Hausdorff moment
sequence

bn =
1 − q

1 − qn+1
= (1 − q)

∞
∑

k=0

qk
(

qk
) n

;

the discrete measure ν = (1 − q)
∑∞

k=0 qkδqk has (bn)n as its sequence of moments.

Example 3.3 We now consider µ = αδp + βδq, α, β ≥ 0, α + β = 1 and 0 ≤ p <
q < 1. This gives the Hausdorff moment sequence:

bn =
1

α 1−pn+1

1−p
+ β 1−qn+1

1−q

.

By Corollary 2.3, the associated measure is given by

ν =

∞
∑

k=0

1

mk+1

(

α
p

1 − p
δp + β

q

1 − q
δq

)⋄k

, m =
α

1 − p
+

β

1 − q
;

writing m1 = αp/(m(1 − p)), m2 = βq/(m(1 − q)) and taking into account that
δa ⋄ δb = δab, we get

ν =
1

m

∞
∑

k=0

k
∑

j=0

(

k

j

)

m
j
1m

k− j
2 δp j qk− j .

Example 3.4 For 0 < q < 1, let µ = δ1 + (1 − q)δq be. This gives the Hausdorff
moment sequence:

bn =
1

n + 1 + (1 − qn+1)
=

1

n + 2

1

1 − qn+1

n+2

=

∞
∑

k=0

qk(qk)n
( 1

n + 2

) k+1

.

But the sequence
(

1
n+2

)k+1
, n ≥ 0, is the Hausdorff moment sequence of the measure

dνk =
(

xχ(0,1](x)dx
)⋄(k+1)

=
(−1)k

k!
x logk xχ(0,1](x)dx;

hence the measure

ν =

∞
∑

k=0

qkδqk ⋄ νk

has (bn)n as it sequence of moments. It is easy to check that

δqk ⋄ dνk =
(−1)k

q2kk!
x logk(x/qk)χ(0,qk](x)dx,
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which finally gives

dν = x

∞
∑

k=0

(−1)k

qkk!
logk(x/qk)χ(0,qk](x)dx.

Example 3.5 The probability measure on (0, 1) defined by

µc =
logc−1(1/t)

Γ(c)
dt, c > 0,

has Mellin transform [GR, p. 551 (6)].

(3.2) M(µc)(z) =

∫ 1

0

tz dµc(t) =
1

(z + 1)c
, ℜz > −1,

and moments an(c) = 1/(n + 1)c. The sequence of measures (µc)c>0 is a convo-

lution semigroup for the product convolution, i.e., a convolution semigroup on the
multiplicative group (0,+∞) in the sense of [BF]. According to Theorem 1.1, the
moments of µc give the Hausdorff moment sequence

1

Hn+1,c
=

1

1 + 1
2c + · · · + 1

(n+1)c

, n ≥ 0.

We now compute the representing measure νc for this moment sequence.

From Theorem 1.1, we know that νc has no mass at 0 and that its Mellin transform
satisfies

M(νc)(z) fc(z + 1) = 1, ℜz ≥ 0,

where

(3.3) fc(z) =

∫ 1

0

logc−1(1/t)

Γ(c)

1 − tz

1 − t
dt, ℜz > 0.

For z > 0, we have by the positivity of the integrand and (3.2) that

(3.4) fc(z) =

∫ 1

0

(1 − tz)

∞
∑

k=0

tk logc−1(1/t)

Γ(c)
dt

=

∞
∑

k=0

( 1

(k + 1)c
− 1

(k + z + 1)c

)

.

For c > 1 (but not for c ≤ 1), we can sum each series and get

(3.5) fc(z) = ζ(c) − ζ(c, z), c > 1,
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where ζ(c, z) is the Hurwitz’s zeta function

ζ(c, z) =

∞
∑

n=1

1

(n + z)c
, c > 1, z ∈ C \ (−∞,−1].

Note that ζ(c, 0) = ζ(c) is the ordinary Riemann’s zeta function.

We now consider the function

ψ(z) =
Γ
′(z)

Γ(z)
=

d

dz
log Γ(z),

which satisfies, as it is well known (see, for instance, [GR, p. 943], that

(3.6) ψ(z + 1) + γ =

∞
∑

n=1

( 1

n
− 1

n + z

)

= z

∞
∑

n=1

1

n(n + z)
.

This gives

f1(z) =

∫ 1

0

1 − tz

1 − t
dt = ψ(z + 1) + γ;

from which, we get

f (k)
1 (z) = (−1)k−1

∫ 1

0

tz logk(1/t)

1 − t
dt = ψ(k)(z + 1), k = 1, 2, . . . ,

and so

fk+1(z) =

∫ 1

0

1 − tz

1 − t

logk(1/t)

k!
dt

= ζ(k + 1) −
∫ 1

0

tz

1 − t

logk(1/t)

k!
dt

= ζ(k + 1) − (−1)k−1 f (k)
1 (z)

k!

= ζ(k + 1) +
(−1)kψ(k)(z + 1)

k!
.

We then have the following table for the Mellin transform of νc:

(3.7) M(νc)(z) =



























































[

∑∞

k=0

( 1

(k + 1)c
− 1

(k + z + 2)c

)

]−1

if 0 < c < 1,

1

ψ(z + 2) + γ
if c = 1,

1

ζ(c) − ζ(c, z + 1)
if 1 < c,

1

ζ(c) +
(−1)c−1ψ(c−1)(z + 2)

(c − 1)!

if c = 2, 3, . . . .
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Formally, we can find νc by inversion of the Mellin transform, i.e.,

νc =
1

2π

∫ +∞

−∞

t−ix−1

fc(1 + ix)
dx,

but it does not seem possible to get further in this direction.

For 0 < c ≤ 1, we choose another method based on Pick functions (cf. [D]) and
Stieltjes functions.

Theorem 3.1 The function fc(z) has a holomorphic continuation to C \ (−∞,−1].

It is a Pick function for 0 < c ≤ 1, i.e., ℑ fc(z) > 0 for ℑz > 0.

Proof The term 1
nc − 1

(n+z)c , n = 1, 2, · · · , is holomorphic in C \ (−∞,−1] and for

z ∈ C \ (−∞,−1], |z| ≤ N , n > N ,

1

nc
− 1

(n + z)c
=

1

nc

(

1 −
(

1 +
z

n

)−c)

=
1

nc

(

−
(−c

1

)

z

n
−

(−c

2

)

( z

n

) 2

− · · ·
)

=
z

nc+1

(

c −
(−c

2

)

z

n
− · · ·

)

,

in modulus behaving like 1/nc+1 which is the term of a converging series. Therefore,
the right-hand side of (3.4) is holomorphic in C \ (−∞,−1].

Using that [GR, p. 288, (3.221.1)]

t−c
=

sin(πc)

π

∫ ∞

0

s−c

s + t
ds, 0 < c < 1,

we get

(3.8)
1

nc
− 1

(n + z)c
=

sin(πc)

π

∫ ∞

0

s−c
( 1

s + n
− 1

s + n + z

)

ds

= z
sin(πc)

π

∫ ∞

0

s−c ds

(s + n)(s + n + z)
,

showing that 1
nc − 1

(n+z)c is a Pick function. This shows the assertion for 0 < c < 1.

For c → 1−, we get the assertion for c = 1, but it is also a consequence of (3.6).

We now find the measure νc by inverting the table (3.7). We start by taking c = 1.
The sequence of moments is

1

Hn+1

=
1

1 + 1
2

+ · · · + 1
n+1

, n ≥ 0,

and we next show that the representing measure ν1 is given by (1.2).
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For c = 1, (3.6) and (3.7) give that

M(ν1)(z) =
1

ψ(z + 2) + γ
=

1

f1(z + 1)
.

We say that a function φ : C \ (−∞, 0] → C is a Stieltjes function if it has the form

φ(z) = a +

∫ ∞

0

dσ(x)

x + z

where a ≥ 0 and σ is a measure on [0,+∞). The function f1(z)/z is a Stieltjes
function with a = 0 and σ =

∑∞

k=1 δk/k:

f1(z)

z
=

∞
∑

k=1

1

k(k + z)
=

∫ ∞

0

dσ(t)

x + z
.

Since f1(x)/x is strictly decreasing on each interval (−1,+∞), (−2,−1), . . . (take

into account that d
dx

( f1(x)
x

) = −∑∞

k=1
1

k(k+x)2 < 0) and has poles at −1,−2, . . . ,
we have that the function has a simple zero in each of the intervals (−n − 1,−n),

n = 1, 2, . . . . Let ξn ∈ (n, n + 1) be so that f1(−ξn)/(−ξn) = 0, i.e., ψ(1− ξn) = −γ.
There is no zero at (−1,+∞) because the function is positive there. We now put
ξ0 = 0 so (−ξn)n≥0 are the zeros of f1 — a Stieltjes function has no zeros outside the
real axis.

It is known that for a Stieltjes function φ also 1/(zφ(z)) is a Stieltjes function (see
[B, I, R]. Hence 1/ f1(z) is a Stieltjes function with simple poles precisely at (−ξn)n≥0:

1

f1(z)
=

∞
∑

n=0

αn

z + ξn
,

where

αn = lim
z→−ξn

z + ξn

f1(z)
=

1

f ′
1 (−ξn)

=
1

ψ ′(1 − ξn)
> 0.

Note that the constant a is zero because limz→∞ f1(z) = ∞. In particular,

α0 =
1

ψ ′(1)
=

6

π2
.

We then find that

M(ν1)(z) =
1

f1(z + 1)
=

∞
∑

n=0

αn

z + 1 + ξn

=

∫ 1

0

(

∞
∑

n=0

αnxξn

)

xz dx,

from which we deduce that the probability ν1 has the density
∑∞

n=0 αnxξn with respect
to the Lebesgue measure χ(0,1](x)dx.
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We now give the asymptotic behaviour of ξn and αn:

ξn = n + 1 − δn, where 0 < δn+1 < δn <
1

2
, δn ∼ 1/ log n(3.9)

αn ∼ 1/ log2 n.(3.10)

Indeed, since ξn ∈ (n, n + 1), we define δn so that ξn = n + 1 − δn, n ≥ 1. By
Euler’s product formula for Γ we find

(3.11) ψ(x) − ψ(1 − x) = −π cot(πx).

Hence, for x = ξn, we get ψ(ξn) + γ = π cot(πδn). The digamma function is

strictly increasing with ψ(1) = −γ, so cot(πδn) > 0, showing that 0 < δn < 1/2 is
decreasing. Since ψ(x) ∼ log x for x → ∞ (cf. [GR]), we easily get δn ∼ 1/ log n for
n → ∞.

Differentiating (3.11), we get

ψ ′(ξn) +
1

αn
=

π2

sin2(πδn)
,

and since ψ ′(x) =
∑∞

k=0 1/(x + k)2 → 0 for x → +∞, we get limn→∞ δ2
n/αn = 1,

and (3.10) follows.
The first 5 of the numbers ξn, n ≥ 1, are given with 5 correct digits ξ1 = 1.56735,

ξ2 = 2.62846, ξ3 = 3.66038, ξ4 = 4.68118, ξ5 = 5.69626.
For 0 < c < 1, fc(z)/z is also a Stieltjes function. Indeed, from (3.8), we get

1

nc
− 1

(n + z)c
= z

sin(πc)

π

∫ ∞

n

1

t(t − n)c

dt

t + z
,

and so

fc(z) = z
sin(πc)

π

∫ ∞

0

(

∑

1≤n<t

1

(t − n)c

) dt

t(t + z)
= z

sin(πc)

π

∫ ∞

0

φc(t)

t

dt

t + z
,

where

φc(t) =

∑

1≤n<t

1

(t − n)c
=















































0, if 0 < t ≤ 1,
1

(t − 1)c
, if 1 < t ≤ 2,

1

(t − 1)c
+

1

(t − 2)c
, if 2 < t ≤ 3,

...
1

(t − 1)c
+

1

(t − 2)c
+ · · · +

1

(t − n)c
, if n < t ≤ n + 1.

Since fc(z)/z is a Stieltjes transform, so is 1/ fc(z), i.e.,

1

fc(z)
=

∫ ∞

0

dκc(t)

t + z
.
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Note that the constant a is zero because limz→∞ fc(z) = ∞ by (3.3). Hence

M(νc)(z) =

∫ ∞

0

dκc(t)

t + z + 1
=

∫ ∞

0

(
∫ 1

0

xt+z dx

)

dκc(t)

=

∫ 1

0

xz

(
∫ ∞

0

xt dκc(t)

)

dx,

so

dνc(x) =

∫ ∞

0

xt dκc(t).

In principle, one can find κc as the limit for y → 0+ of the densities

1

π
ℑ

[

1

fc(−x + i y)

]

, x > 0.

Since fc increases on (−1,+∞) from −∞ to +∞ with a simple zero for z = 0 with

f ′
c (0) = cζ(c + 1), we see that

κc = (cζ(c + 1))−1δ0 + κ̃c,

where κ̃c is concentrated at [1,+∞). The determination of κ̃c involves calculation of
the Hilbert transform of the density φc(t)/t , but an explicit expression does not seem
possible.

For c > 1, fc(z)/z is not a Stieltjes function, but m =
∫ 1

0
(1−t)−1 dµc(t) = ζ(c) <

∞. According to Corollary 2.3, we define

dσc =
t

1 − t

logc−1(1/t)

Γ(c)
χ(0,1](t)dt,

and get

νc =

∞
∑

k=0

σ⋄k
c

ζk+1(c)
.

It seems impossible to find a closed expression for the convolution σ⋄k
c . Note that νc

has the mass 1/ζ(c) at 1 and it is absolutely continuous on (0, 1) with respect to the
Lebesgue measure.

In the case c = 1, we have the following one-parameter extension

Example 3.6 For a > 0, let µa = xa−1χ(0,1](x)dx with moments sn(µa) = 1/(a+n),
n ≥ 0. The case a = 1 corresponds to c = 1 in Example 3.5. We get

∫ 1

0

1 − tz+1

1 − t
dµa(t) =

∞
∑

n=0

( 1

n + a
− 1

n + a + z + 1

)

=
1

f (z + 1)
, ℜz > −1,

where

f (z) = z

∞
∑

n=0

1

(n + a)(n + a + z)
.
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It follows that f (z)/z and 1/ f (z) are Stieltjes functions

1

f (z)
=

∞
∑

n=0

αn(a)

z + ξn(a)
, αn(a) =

1

f ′(−ξn(a))
,

where ξ0(a) = 0, ξn(a) ∈ (a− 1 + n, a + n), n ≥ 1, are such that f (−ξn(a)) = 0. The
measure νa with moments

sn(νa) =

(

n
∑

k=0

1

a + k

)−1

, n ≥ 0,

is given as

νa =

(

α0(a) +

∞
∑

n=1

αn(a)tξn(a)
)

χ(0,1](t)dt.

Example 3.7 As we mentioned in the introduction, the measure
δ
−1+δ1

2
shows that

Theorem 1.1 is no longer true for measures on [−1, 1]. However, Theorem 1.2 gives
for any r > 0 that bn =

1
r+[(n+1)/2]

is again a moment sequence on [−1, 1] (as usual

[x] denotes the integer part of the real number x). Its associated measure µ can be

computed using the second proof of Theorem 1.2. Indeed, with the notation of that
proof, we straightforwardly have that the sequence (2.4) is given by:

sn = r +
1

4
+

n

2
− 1

4
(−1)n

(note that it is independent of a). The measures µt with moments e−tsn , t > 0, are
given by the formula

µt = e−t(r+1/4)δe−t/2 ⋄ σt ,

where the measure σt has moments e(−1)nt/4. This measure can be calculated using
the proof of Lemma 2.1:

σt =

∞
∑

l=0

(t/4)l

l!
δ⋄l
−1

=

(

∞
∑

l=0

(t/4)2l

(2l)!

)

δ1 +
(

∞
∑

l=0

(t/4)2l+1

(2l + 1)!

)

δ−1

=
et/4 + e−t/4

2
δ1 +

et/4 − e−t/4

2
δ−1.

This gives for the measure µt the formula

µt = e−t(r+1/4)
(

cosh(t/4)δe−t/2 + sinh(t/4)δ−e−t/2

)

.

The measureµ is then
∫ ∞

0
µt dt ; this can be computed easily to show that the measure

µ has density

|x|2r

(

1

|x| + sgn(x)

)

with respect to the Lebesgue measure on [−1, 1].

https://doi.org/10.4153/CJM-2005-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-036-8


Some Transformations of Hausdorff Moment Sequences and Harmonic Numbers 957

4 Relation to Convolution Semigroups

Let (νc)c>0 be a convolution semigroup of sub-probabilities on [0,∞) with Laplace
exponent or Bernstein function f given by

(4.1)

∫ ∞

0

e−sx dνc(x) = e−c f (s), s ≥ 0

cf. [BF, Bt]. We recall that f has the integral representation

(4.2) f (x) = a + bs +

∫ ∞

0

(1 − e−sx) dλ(x),

where a, b ≥ 0 and the Lévy measure λ on (0,∞) satisfies the integrability condition
∫

x/(1 + x) dλ(x) < ∞. Note that νc([0,∞)) = e−ac, so that (νc)c≥0 consists of
probabilities if and only if a = 0. In the following we shall exclude the Bernstein
function identically equal to zero, which corresponds to the convolution semigroup
νc = δ0, c > 0.

The potential kernel κ of the convolution semigroup ( f 6≡ 0) is given as

(4.3) κ =

∫ ∞

0

νc dc,

∫ ∞

0

e−sx dκ(x) =
1

f (s)
.

From (4.2), we find

f (s + 1) − f (s) = b +

∫ ∞

0

e−sx(1 − e−x) dλ(x),

which shows that f (s + 1) − f (s) is the Laplace transform of the finite measure

(4.4) bδ0 + (1 − e−x)dλ(x).

In particular, s → f (s + 1) − f (s) is completely monotonic. Note that any finite
measure on [0,∞) has the form (4.4) for a uniquely determined pair (b, λ), where
b ≥ 0 and λ is a Lévy measure.

Let us now introduce the group isomorphism ρ of the additive group R onto the

multiplicative group (0,∞) given as ρ(x) = e−x with inverse ρ−1(y) = log(1/y).
The image measures ν̃c = ρ(νc) of the convolution semigroup (νc)c>0 form a con-

volution semigroup on (0, 1] with respect to the product convolution ⋄ and formula
(4.1) reads

(4.5)

∫ 1

0

xs dν̃c(x) = e−c f (s).

We now introduce the potential kernel κ̃ and the Lévy measure λ̃ of (ν̃c)c>0 as

κ̃ = ρ(κ) =

∫ ∞

0

ν̃c dc, λ̃ = ρ((1 − e−x)λ),
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so, (4.2) and (4.3) are transformed to

(4.6) f (s) = a + bs +

∫ 1

0

1 − t s

1 − t
dλ̃(t)

(4.7)

∫ 1

0

t s dκ̃(t) =
1

f (s)
.

Note that the formulas (4.1), (4.2), (4.5), (4.6) remain valid when the variable s takes
values in the half-plane ℜz ≥ 0, while in (4.3), (4.7), we can let s assume values in
ℜz > 0.

The transformation T of Theorem 1.1 defined on the set of measures µ 6= 0 on
[0, 1] can now be described in terms of convolution semigroups-Bernstein functions
in the following way.

Theorem 4.1 Let µ be a non-zero measure on [0, 1] and write µ = aδ0 + bδ1 + λ̃
with a = µ({0}), b = µ({1}), λ̃ = µ|(0,1). Let f be the non-zero Bernstein function

given by (4.6). Then, the measure ν = T(µ) is given as ν = xdκ̃(x), where κ̃ is

the potential kernel of the corresponding product convolution semigroup. The moment

sequence bn = 1/(a0 + · · · + an) of ν is given as bn = 1/ f (n + 1), n ≥ 0.

Proof From (4.6) and (4.7), we get

f (s + 1) =

∫ 1

0

1 − xs+1

1 − x
dµ(x),

∫ 1

0

xsx dκ̃(x) =
1

f (s + 1)
,

and comparing with (1.1), we get ν = T(µ) = xdκ̃(x), and clearly bn = 1/ f (n + 1).

5 Examples

Example 5.1 For the Bernstein function f (s) = log(1 + s), we have a = b = 0 and

λ = (e−x/x)dx. This gives µ = (1 − t)/ log(1/t)dt . The corresponding product
convolution semigroup is

ν̃c =
1

Γ(c)
logc−1(1/t)χ(0,1)(t)dt,

cf. Example 3.5. The potential kernel κ̃ has the density on (0, 1)

∫ ∞

0

logc−1(1/t)

Γ(c)
dc.

Note that the function (of x)
∫ ∞

0

xc−1

Γ(c)
dc
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can be considered as an “integral version” of the exponential function.

We find

T(µ) = t

∫ ∞

0

logc−1(1/t)

Γ(c)
dcχ(0,1)(t)dt.

Example 5.2 For the Bernstein function f (s) = sα, 0 < α < 1, we have a = b = 0
and λ = (α/Γ(1 − α))x−α−1dx since

sα =
α

Γ(1 − α)

∫ ∞

0

(1 − e−xs)
dx

xα+1
,

cf. [BF, p. 71]. Therefore

µ =
α

Γ(1 − α)

1 − t

t
log−α−1(1/t)χ(0,1)(t)dt.

The corresponding convolution semigroup (νc)c>0 on (0,∞) is called the one-sided
stable semigroup of order α. The potential kernel is

κ =
1

Γ(α)
xα−1χ(0,∞)(x) dx

and we have

ν = T(µ) =
1

Γ(α)
logα−1(1/t)χ(0,1)(t) dt.

Example 5.3 The Bernstein function f (s) = c(1− e−as) corresponds to the Poisson
semigroup on [0,∞) and it leads to the measures µ, ν studied in Example 3.2 with
q = e−a, c = 1/(1 − q).

Example 5.4 The study of Example 3.5 corresponds to the Bernstein function (3.3)
with a = b = 0 and λ̃ = (1/Γ(c)) logc−1(1/t)χ(0,1)(t)dt . The corresponding poten-
tial kernel κ̃c is related to νc by νc = tκ̃c.

In terms of potential kernels, it is clear that we can characterize the image of
M+([0, 1])\{0} under the transformation T as the set of measures of the form tdκ̃(t),

where κ̃ is a potential kernel of a product convolution semigroup (ν̃c)c>0 on (0, 1].
Similarly, the set of moment sequences bn = 1/(a0 + · · ·+ an), where (an)n is a Haus-
dorff moment sequence with a0 > 0, is the same as the sequences (1/ f (n+1))n where
f is a non-zero Bernstein function.
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