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FATOU-JULIA THEORY ON TRANSCENDENTAL SEMIGROUPS II

KiNn-KEUNG POON

In this paper, we extend our theories on the dynamics of transcendental semigroups.
Several properties of Fatou and Julia sets of transcendental semigroups will be ex-
plored.

1. INTRODUCTION

The study of complex dynamics was started in 1918-1922 with the work of Fatou
(2, 3] and Julia [7, 8]. A modern comprehensive survey can be found in {1] for the
dynamics of transcendental meromorphic functions.

A natural generalisation of complex dynamics is to investigate the dynamics of a
sequence of different functions by means of composition. There are two main streams of
the study. One is by Zhou and Ren (see {13, 14] for details) who published a series of
papers on random iterations. The other is by Hinkkanen and Martin [5, 6] concerning
semigroups of rational functions. In 1998, Poon (see [10, 11]) began the study of tran-
scendental semigroups and obtained some results on the properties of Fatou and Julia
sets of transcendental semigroups and Abelian transcendental semigroups. In this paper,
we extend that theory.

A transcendental semigroup G is a semigroup generated by a family of transcenden-

tal entire functions {fi,..., fa,...} with the semigroup operation being composition of
functions. We denote the semigroup by :
G=(fi,fa...)

In this way, h € G is a transcendental entire function and G is closed under compo-
sition. Hence h can be written as

h=fi,ofi,o-0f.

A semigroup G = (fy, ..., fn) generated by finitely many functions is called finitely
generated. From now on, transcendental semigroup will mean non-empty finitely gener-
ated transcendental semigroup unless specified otherwise.
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Based on the Fatou-Julia theory of complex functions, we can define the set of
normality on a transcendental semigroup G.

DEFINITION 1.1. Let G be a transcendental semigroup. The set of normality or the
Fatou set F(G) of G is the largest open subset of C on which the family of transcendental
entire functions in G is normal. Thus F(G) consists of those z, that have a neighbourhood
U such that {g : g € G} is a normal family on U. The Julia set J(G) of G is complement
of F(G), that is, J(G) = C\F(G).

DEFINITION 1.2. G = (f1, f2,--- , fn) is called an Abelian transcendental semigroup
if all the generators in G are permutable, that is, fio f; = fjo fiforall 1 < 4,5 < n.

DEFINITION 1.3. Given a transcendental semigroup G, we define the set
O~ (2z) = {w € C: there exists g € G such that g(w) = z}.
The ezceptional set of G is defined by

E(G) = {z € C: O™ (2) is finite}.

DEFINITION 1.4. Suppose G is a transcendental semigroup. A non-empty open set
U C C is called a backward fundamental set of G if g~ (U)NU = 0 for all g € G\{1d}.
Similarly, U is called a forward fundamental set if g(U)YNU = @ for all ¢ € G\{Id}.

The basic properties of F(G) and J(G) can be found in {10, 11].

2. LEMMAS AND MAIN THEOREMS

In analogy to the rational semigroups case [5], we have the following theorem.

THEOREM 2.1. Given two transcendental semigroups G and H, suppose U and
V are backward fundemental sets of G and H respectively and assume further that
C\U c V. If W is the semigroup generated by G and H, that is, W = (G, H), then
FW)YoUnV#0.

LEMMA 2.1. [11] Given a transcendental semigroup G,

LEMMA 2.2. (Iversen’s Theorem, see {9).) Let F be a Riemann surface of
parabolic type over the w plane, and let w = wg be an arbitrary point in the plane. Fur-
ther assume that § > 0 and, w, is an interior point of the surface F' with |w, — wg| = 6.
Then it is possible to find a continuous curve L that joins the points wy, and wy without
leaving the disk |w ~ we| < & and, with the possible exception of the end point wy, L
consists of nothing but interior points of the surface F.
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THEOREM 2.2. Suppose G is a transcendental semigroup. If F(g) has no un-
bounded component for all g € G, then E(G) C J(G).

Related to the exceptional value and dynamics of transcendental functions, we have
the following theorem.

THEOREM 2.3. Suppose f and g are permutable transcendental entire functions
with finite order. If either one has a Fatou exceptional value, then f = cg for some
constant c such that ¢* =1 and hence F(f) = F(g).

Concerning Abelian transcendental semigroups, we have the following conjecture :

CONJECTURE. Suppose G is an Abelian transcendental semigroup. Then F(G) = F(g)
for all 0 € GG.

3. PROOF OF THE THEOREMS

ProoF OF THEOREM 2.1: By Montel’s Theorem, it follows that U C F(G) and
V € F(H), so that F(G) # 0 and F(H) # 0. From C\V C U, we have C\U C V also.

If f € W, then since G and H are semigroups, we can write
f=gnohyogn10h, 10...0g,0h10¢,

where g; € Gfor 1< j<n-—1,and h; € H for 1 < j < nand g,, g» € GU {Id}. The
assumptions imply that J(G) C V\U and J(H) C U\V, and furthermore that for any
g € G and h € H, we have g~}(U) C V\U and h~}(V) C U\V. Consider

HJ(G)) =(g;' ohitogito...ogt okt 0 g ) (J(G)).

We have g, (J( )) € J(G). Since J(G) C V\U, we have h;*(g;'(J(G))) C U\V.

Similarly, g2, (k' (971 (J(G))) € V\U. Continuing in this way, we obtain f~!(J(G)) C

U\V if g, = Id, and f~(J(G)) c V\U if g, # Id. Since {J f7}(J(G)) is a dense
few

subset of the closed set J(W), it follows that J(W) C (V\U) U (U\V). Hence F(W) =
C\J(W)D>UNYV #0, as claimed. This proves the theorem.

PROOF OF THEOREM 2.2: According to [11], we know that E(G) has at most one
element. Suppose a € E(G) is the only element, then a is the Picard’s exceptional value
for all g € G. Pick an arbitrary element, say g € G. By Lemma 2.2, there exists a path vy
tending to infinity such that along the path v, lim,e, g(2) = a. We choose an unbounded
sequence {wy}, where w; € «y for all 1 € N.

Now, assume a € F(g). By our choice of w; and the complete invariance of F(g),
there exists an N > 0 such that for all n > N, g(w,) € F(g), and hence w, € F(g).
We now show that all these points w, belong to the same component of F(g). From
our definition of v, for sufficiently large z in v, g(z) belongs to some neighbourhood of
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a, which is a subset of F(g). By the connectedness of «, the continuity of g, and the
complete invariance property of F(g), there is a component U in F(g) such that for
sufficiently large z in v, 2 € U. Hence U contains an unbounded sequence w,. This
contradicts our hypothesis that F(g) has no unbounded components. From Lemma 2.1,
we obtain our theorem. 0

Proor oF THEOREM 2.3: Without loss of generality, we assume that f has a Fatou
exceptional value a. By a result of Gross [4], a is also the exceptional value of g and hence
we can further assume that 0 is the Fatou exceptional value of both f and g. So f = z"e”,
g = z™e?, and f o g = go f, for some non-negative integers m, n, and non-constant
polynomials P, Q. Comparing f o g = z™e"@+P(z"e%) and go f = ;mnemP+Q"eR) o

observe that there is an integer k such that
(1) nQ + P(z™e?) = mP + Q(z"e") + 2mik.

Write A = P(0), B = Q(0), so that P = A+ P, and @ = B + @1, where P,(0) =
@:1(0) =0.

Consider a sector of the complex plane such that Re @,(2) = —oco as z — oo within
the closure of the sector. There P(z™e?) = A + o(1) as z — co. Within this sector, we
can find another sector in which either Re P;(2) — 400 or Re P;(2) = —oc. In the former
case, Q(z"ef) = oo exponentially fast, which contradicts (1) since P(z™e%) = A + o(1).
So it must be impossible to find such a sector. Therefore, whenever Re @1(z) -+ —oco in
a sector, we have Re P;(z) — —oo in the same sector, and the converse is also true by a
similar argument. Considering (1) in such asector, we obtain nQ+A— (mP+ B+2wik) =
C(z), where

|C(2)] < Ag|z|m={mn} exp (— min {|Re P(z)|, |Re Q(z)|}) < Ap|z|m*{mn} exp (—Ailz])

for some positive constants Ay and A, (since P and @ are both non-constant). Since
n@ + A — (mP + B + 2wik) is a polynomial, it must then vanish identically.
From the constant terms, it follows that

(2) nB+ A=mA+ B+ 2wik
and hence
(3) an = mPl.

In view of this, (1) may be written as
(@ Py(amePH ) = @ (meAH P10,

Suppose first that m > 1 and n > 1. Then by (3), @1 = (m/n)P,. Write P, =
az* + O(z#*1) and @, = (m/n)az* + O(2**!) as z — 0, where a # 0 and p > 1. Now in
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a sector where Re P;(2) = —o0 as z = oo, from (4), for a suitable positive integer g, we
have

az™ exp (uB + p(m/n)Py(2)) + O(|z|" exp { (u+ 1)(m/n)P1(z)})
_ (m/n)aznuexp (uA+uP1(z)) + O(Izlq exp {(/J' + l)Pl(Z)}),

which implies, after multiplying both sides by z ™#e~#F(2)  that
az™ " exp (p,B + (u(m/n) - u)Pl(z)) (1 + O(|z%exp {(m/n)PI(z)}))

= (m/n)aexp(uA) + O(|2|" exp { Pi(2)}).

Since (m/n)ae4 # 0 is a constant, it follows first that m = n and then that ae#? =
(m/n)a®", or B = A + (2mil/u) for some integer l. It also implies P, = Q;. Thus
f(z) = z"eA*P1(2) and

g(z) - zmeB+Q1(z) = zneA+P1(z)+(21ril/u) — Cf(Z),

where ¢ = €*™/# 50 that ¢ = 1. A bit of calculation shows that ¢? = 1 for some integer

q.
Suppose that m = 0. Then n = 0 by (3) since Py, @; are non-constant. Similarly, if
n =0, then m = 0. If m =n =0, then by (1),

P(e?) = Q(eP) + 2mik,
in which case we may, without loss of generality, replace @ by @ + 27ik and assume that
() P(e?) = Q(e").

Considering the sectors where Re P(z) - —oo or Re Q(z) — —oo, we discover that
they have to be the same so that deg P = deg@ = N > 1, say, and furthermore, if the
leading coefficients of P and @ are a and J respectively, we find that a/8 > 0. Similarly,
it follows that P(0) = Q(0) = A, say. Write P= A+ P,, Q= A+ Q,, and B = e #0.
We may write (5) as
(6) Pi(Be?) = Q1 (BeM),
where P;(0) = @,(0) = 0 and deg P, = deg@; = N > 1. As z — 0, we have Py(z) =
az* + O(z#*1) and @Q,(z) = bz? + O(2**1), say, where ab# 0 and 1 < p,v < N.

In a sector where Re Py(z) — —oo and Re Q;(z) = —o0 as z — oo, we obtain from

(6) that
aB#e 2 (1 + o(1)) = bB%e*™ (1 + o(1)),

so that
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Thus in this sector, Re(u@, — vP,) must be bounded above and below. Since uQ, — vP,
is a polynomial, this is possible only if 4@, = vP, is a constant, and then this constant is
zero since p@); — v P, vanishes at the origin. We conclude that u@Q; = vP;, which implies,

considering the exponents of z in the most important terms in P, and @, as z — 0, that
p=v,andso P, =Q,. Thus P=A+P=A+Q,=Q. Hence f=gif m=n=0.
Hence we have the required form of f and g. According to [12], the theorem follows. [
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