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Abstract

In this paper we prove theorems on the existence of integrable and monotonic solutions of
Hammserstein and Urysohn integral equations. The basic tool used in the proof is the fixed
point principle for contractions with respect to the so-called measure of weak noncompactness.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 H 15.

1. Introduction

The most frequently investigated integral equation in nonlinear functional anal-
ysis are the Hammerstein equation

(1) x(t) = v{t) + f k(t, «)/(«, x(s)) ds, t e [0,1],
Jo

and the Urysohn equation

(2) x(t) = <p(t) + / u(t, s, x(s)) ds, t e [0,1].
Jo

These equations have been studied in several papers and monographs (see for
example Krasnosel'skii et al. [10], Zabrejko et al. [14], Appell [1, 2] and references
therein).

Existence theorems for equations (1), (2) can be obtained by applying various
fixed point principles. For example, the Banach or Schauder principles are most
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frequently used although other fixed point theorems and other methods are also
applicable (see Appell [1, 2], Krasnosel'skii and Zabrejko [11]). Existence theo-
rems for (1) and (2) proved with the help of the above mentioned tools require
rather strong hypotheses, and so the result are not entirely satisfactory. A sur-
vey of such existence theorems is given in the book of Zabrejko et al. [14] and in
the paper of Appell [2].

The goal of this paper is to prove theorems on existence of solutions of the
equations (1) and (2) under weaker hypotheses. Roughly speaking we show that
an assumption on the monotonocity of the functions generating the Hammerstein
and Urysohn operators (with respect to some variables) allows us to show that
these equations have solutions in the space Lx. The basic tool which will be used
is the fixed point theorem due to Emmanuele [7].

The technique used in this paper was introduced in the paper of the author
[4] where some functional equations were investigated.

2. Notation, auxiliary facts and preliminary results

Let Ll(a,b) denote the space of Lebesgue integrable functions on the interval
[a, b], with the standard norm

\\x\\ = / |a;(*)|di.

For simplicity, we shall consider the space L1 = L1(0,1).
This section is mainly devoted to recall some auxiliary results which will be

needed further on.
Denote by S the set of all functions which are measurable on [0,1]. When we

furnish it with the metric

p(x,y) = inf[a + meas{s: \x(s) — y{s)\ > a}: a > 0]

then S becomes a complete metric space. Moreover, it is well known that the
convergence in measure coincides with convergence generated by the metric p
(see Dunford and Schwartz [6]). The convergence in measure of a sequence
{xn} C L1 does not imply the weak convergence of this sequence and conversely.
Nevertheless, we have the following result.

LEMMA 1 (Krasnosel'ski et al. [10]). If a sequence {xn} C L1 converges
weakly to x € Ll and is compact in measure then it converges in measure to x.

Apart from this we recall that a sequence {xn} C L1 is convergent strongly
(that is, in the norm of L1) to x if and only if it converges in measure to x and
is weakly compact.
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Now, let E denote an arbi t rary Banach space and let X be a nonempty and
bounded subset of E. Moreover, denote by Kr the closed ball in E centered a t 8
and with radius r. Recall, t ha t the notion of the measure of weak noncompactness
P was denned by De Blasi [5] in the following way

(3{X) = inf {r > 0 : there exists a weakly compact subset

Y of E such that X c Y + Kr}.

The function (3(X) possesses several useful properties which may be found in De
Blasi's paper [5]. This paper contains also the comparison between the measure
f3{X) and classical measures of noncompactness. A convenient and handy for-
mula for the function (3(X) in the space L1 was given recently by Appell and De
Pascale [3]

j3{X) = lim I sup | sup I / \x(t)\dt: DC [0,1], measZ? < £ > > [ .

The usefulness of the measure of weak noncompactness /? was pointed out by
Emmanuele [7], who proved the following fixed point theorem.

THEOREM 1. Let Q be a nonempty, closed, convex, bounded subset of E,
and let T: Q —> Q be a weakly continuous transformation (that is, mapping
weakly convergent sequences into itself) having the propety that there is a constant
k € [0,1) such that

p{TX) < kp{X)

for any nonempty subset X of Q. Then T has at least one fixed point in the set

Q.

In the sequel we shall need some criteria for compactness in measure. The
complete description of compactness in measure was given by Frechet [6] but the
following sufficient condition will be more convenient for our purposes.

LEMMA 2 (Krasnosel1skii et al. [10]). Let X be a bounded subset of L1 and
suppose that there is as a family of measurable subsets {nc}0<c<i of the interval
[0,1] such that meas fic = c. If for any c G [0,1] and for any x G X

x{ti)<x(t2) {heQc, t2$nc)

then the set X is compact in measure.

Next we pay our attention to the so-called superposition operator (Fx) (t) —
f(x,t(t)). Assume that f(x,t) = / : [0,1] x R —» R satisfies Caratheodory con-
ditions, that is, it is measurable in t for any x and continuous in x for almost all
t. Then we have the following theorem due to Krasnosel'skii [9].
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THEOREM 2. The superposition operator F is a continuous map of the space
L1 into itself if and only if \f(t,x)\ < a{t) + b\x\ for all t € [0,1] and x € R,
where a(t) is a function in L1 and b is a nonnegative constant.

The last part of this section will be devoted to preliminary results.
Let r > 0 be a fixed number. Denote by Qr the subset of the ball Kr in the

space L1 consisting of all functions which are a.e. nondecreasing on the interval
[0,1]. The set Qr is nonempty, bounded, convex and closed in L1 (see Banas
[4]). Moreover, according to Lemma 2 this set is compact in measure. Indeed,
to show this it suffices to put Clc = [0, c] — P for any c £ [0,1], where P denotes
a suitable subset of [0,1] with measP = 0.

LEMMA 3. Let {xn} C Qr be weakly convergent to x € L1. Then {xn}
converges strongly to x and x €Qr.

PROOF. Taking into account the fact that Qr is comapct in measure, in virtue
of Lemma 1 we infer that {zn} converges in measure to x. Hence, keeping in
mind the weak compactness of a sequence {xn} we obtain that {xn} converges
strongly to x. In fact, x G Qr because Qr is closed. Thus the proof is complete.

COROLLARY. A subset X ofQr is weakly compact if and only if it is compact.

Moreover, we have the following trivial but useful assertion.

LEMMA 4. Any continuous operator S: Qr —> L1 is weakly continuous.

REMARK. In the case when S: L1 -> L1 (or S: Kr -> L1) the above lemma
is not true according to the result of Shragin [12].

3. Main results

Int his section we prove existence theorems for the equations (1) and (2).
First we will consider the Hammerstein equation (1). For convenience the

Hammerstein operator

(Hx)(t)= f k(t,s)f(s,,x(s))ds
Jo/o

will be written as product H = KF of the superposition operator

(Fx)(t) = f(t,x(t))
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and the linear integral operator

(Kx){t)= f k{t,s)x(s)ds.
Jo

Then the equation (1) has the form x = Bx where

(3) Bx = <p + Hx = <p + KFx.
Let us assume the following
(i) the function ip € L1 is a.e. nondecreasing on the interval [0,1],
(ii) / : [0,1] x R —» R+ satisfies CaratModory conditions and there exist a

function o € L1 and a constant b > 0 such that

\f(t,x)\<a(t) + b\x\

for all t E [0,1] and x € R,
(iii) k: [0,1] x [0,1] —• R is measurable with respect to both variables and

such that the integral operator K (defined above) maps L1 into itself.
Let us recall that the above assumption implies (Krasnosel'skii et al. [10])

that the operator K maps the space L1 continuously into itself. In what follows
by || A" || we denote the norm of the operator K.

Further, we assume that
(iv) the function t —* k(t, x) is a.e. nondecreasing on the interval [0,1] for

almost all fixed s € [0,1],
(v) b||K|| < 1.
Then we have the following result.

THEOREM 3. Under the above assumptions the equation (1) has at least one
solution x G L1 which is a.e. nondecreasing on the interval [0,1].

PROOF. Let us take an arbitrary x € L1. Then, according to the assumptions
(i), (ii), (iii) and Theorem 2 we have that Bx e L1 where B is the operator
defined in (3). Moreover, we get

\\K\\[1\f(S,x(s))\ds
Jo

\\K\\\\a\\+b\\K\\\\x\\.

From the above estimate we conclude that the operator B maps the ball Kr into
itself, where r = (||p|| + ||*|| ||o||)/(l - 6||/T||).

Now let Qr denote the subset of Kr consisting of all functions which are a.e.
nondecreasing on [0,1] (see the last part of Section 2). From the assumptions
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(iv) and (ii) we deduce that B maps Qr to itself. Apart from that, in view of
Lemma 4, we infer that B is weakly continuous on the set Qr.

In what follows we show that the operator B is a contraction with respect
to the measure of weak noncompactness /?. To do this let us fix e > 0 and
X c Qr- Further, take x G X and D c [0,1] such that meas£> < e. Then by
our assumptions we obtain

\(Bx)(t)\dt< f \<p(t)\dt + f \f k(t,s)f(s,x(s))di
JD JD \JO

dt

Now, taking into account that the operator K maps the space ^(D) into itself
and is continuous, we get

/ \(Bx)(t)\dt <
JD

HD) + \\K\\\\a\\LHD)+b\\K\\\\x\\Ll{D)

= f \<p(t)\dt +\\K\\ [ a(t)dt + b\\K\\ ( \x(t)\dt,
JD JD JD

where the symbol \\K\\D stands for the norm of the operator K: LX(D) —> Ll(D).
Further, using the obvious fact

lim | sup A |y?(t)|dt-|-||/if|| I a(t)dt: Dc [0, l ] ,measD < e 1 = 0

we have P(BX) < b\\K\\fi(X). This inequality together with the assumption (v)
and the properties of the set Qr quoted in Section 2 allow us to apply Theorem
1. This completes the proof.

REMARK 1. It is very difficult to find necessary and sufficient conditions
for the function k(t, s) guaranteeing that the linear integral operator K maps
L1 into itself. In some special cases this problem was solved by Juberg [8] and
Stuart [13] (see also Zabrejko et al. [14], where some particular cases were also
discussed).

REMARK 2. Up to now existence theorems for the equation (1) have been
proved under more restrictive assumptions than (ii) and (iii). Namely, it was
assumed that F is the so-called "improving" operator while K was supposed to
be a regular operator. Conditions of this type were first formulated by Zabrejko
and Pustyl'nik [15] (see also [10, 14, 2]).
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Throughout the remainder of this section we shall discuss the solvability of the
Urysohn equation (2). Denote by G the opera tor associated with the r ight-hand
side of this equation and by U the Urysohn opera tor

/•I

(Ux){t)= I u(t,s,x(s))ds.

We assume the following hypotheses:
(i) u(t, s,x) = u: [0,1] x [0,1] x R —• R satisfies the Caratheodory conditions,

that is, u is measurable with respect to (t, s) for any x € R and continuous in x
for almost all (t, s),

(ii) the Urysohn operator U maps L1 into L1 and is continuous,
(iii) the function t —> u(t, s, x) is a.e. nondecreasing on the interval [0,1] for

almost all s € [0,1] and for each x € R,
(iv) \u{t,s,x)\ < ki(t,s)(a{t) + b\x\) for (t,s) e [0,1]2 and x e R, where

a e L1, 0 < b = const, and a function ki: [0,1]2 —• R+ is measurable and such
that the linear integral operator Kx generated by fci is a continuous mapping of
L1 into itself for which 6||/fi|| < 1,

(v) <p eL1 and is a.e. nondecreasing on the interval [0,1].
Then we can formulate the following theorem.

THEOREM 4. Let the assumptions (i)-(v) be satisfied. Then the equation (2)
has at least one solution x such that x € L1 and is a.e. nondecreasing on [0,1].

The proof may be carried over in the same fashion as the proof of Theo-
rem 3 and is therefore omitted. We give only a few comments concerning the
assumptions (ii) and (iv).

First of all let us remark that instead of (ii) we can assume that \k(t, s, x)| <
p(t, s, x), where p: [0,1] x [0,1] x R —> R satisfies Caratheodory conditions and
is such that the integral operator

(Px){t)= / p(t,s,x(s))ds
Jo

maps the space Ll into L1 and is continuous. Then the continuity of the Urysohn
operator U follows from the known majorant principle given in the book in
Krasnosel'skii et al. [10], for example. Particularly, as the function p we can
take a function determining a Hammerstein operator [14]. We mention also that
some conditions guaranteeing the continuity of the operator U may be found in
[10].

Finally let us observe that in our considerations we can replace nondecreasing
functions by nonincreasing ones.
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