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HIGH ORDER DIVERGENCE-FORM ELLIPTIC OPERATORS
ON LIE GROUPS

A.F.M. TER ELST AND DEREK W. ROBINSON

We give a straightforward proof that divergence-form elliptic operators of order m
on a d-dimensional Lie group with m~£. d have Holder continuous kernels satisfying
Gaussian bounds.

1. INTRODUCTION

Consider the operator

M.

of order m = 2n acting on Li = L2{G; dg) where G is a d-dimensional Lie group with
left Haar measure dg, the ca<p are operators of multiplication by ioo-functions, the
Aa, A? are products of the skew-adjoint generators Ai = dL(at), i € {1 , . . . , d} of left
translations on L2 corresponding to the multi-indices a, /3 and ai,... , ad is a vector
space basis of the Lie algebra g of G. (Definitions and background information can be
found in [17].) We assume

(1) Re

for some \L > 0, uniformly for all il>a e L2, and define the ellipticity constant fie as
the least upper bound of the p. for which this condition is satisfied. Then H can be
precisely defined as the closed maximal accretive operators associated with the sectorial
forms
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336 A.F.M. ter Elst and D.W. Robinson [2]

with domain D(h) = L^n, the functions which are ra-times differentiate in the Li-
sense. It follows that each such H generates a strongly continuous, holomorphic, semi-
group S on L2 (see, for example, [14, Chapter VI]) with a kernel Kt defined as a
distribution such that

(1>,Sttp) = I dgjig) j dhKt(g;h)<p{h)
JG JG

for all tp,ip £ C£°(G) and t > 0 where dh denotes right Haar measure. Our aim is
to give an elementary analysis of Kt when the dimension d is small relative to m.
Specifically we assume d ^ TO and establish that K satisfies Gaussian bounds and is
Holder continuous with an order related to the relative size of d and m.

If G = Rd and n = 1 then H corresponds to a second-order strongly elliptic
partial differential operator in divergence form. Such operators are of fundamental
importance in the calculus of variations and have been studied in enormous detail. It is
not difficult to establish for d = 1 that the kernels are bounded and Holder continuous
for all t > 0. A similar result for d = 2 follows from the early work of Morrey [15].
If d ^ 3 > TO, then the situation is more complicated and it is useful to distinguish
two distinct cases, real coefficients and complex coefficients. For real coefficients the
Holder continuity of the kernel is a famous result established independently by De Giorgi
[13] and Nash [16]. But for complex coefficients, or for systems with real coefficients,
this property no longer holds if d > 5. The situation for d £ {3,4} is unclear. (A
discussion of counterexamples for systems, with references, is given in [12], [2] and [8].)
Recently, Davies [7] has examined higher-order operators and has obtained Gaussian
bounds whenever d < m. Our proofs are rather different and are an extension of the
perturbation theory and embedding arguments given in [3, Section 3].

All subsequent estimates are in terms of the ellipticity constant \ic and the norms
of the coefficients. Let Me = swpiWcafiWgg '• |a | , |/?| ^ n} where IHIOQ denotes the
.Loo-norm and let Sm{(i,M) denote the set of H for which pc sS (J> and Me ^ M.

Moreover, for g 6 G let |^| be the Riemannian distance from g to the identity element
of G, canonically associated with the vector spaces a i , . . . , ad • Finally the smoothness
of the kernels as functions over G x G is expressed in terms of the left derivatives Ai,
and Bi, with respect to the first and second variable of the kernel, respectively.

THEOREM 1 . 1 . Assume d ^ m. For each M ^ p > 0 there is a. 1/ e (0,1)
such that for all a, 0 and a G (0,1) with \a\ + a < 2~1(m - d) + u and |/?| + a <
2~1(m — d) + v and all K > 0 tiere exist a,b > 0 and w ^ 0 such that {or all

3 £ £m(fJ.,M) the corresponding kernels K satisfy

(2) \ ( A a B ' K t ) ( g ; h ) \ < o
/ ( 1 )
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and

, i • i | in i \ 1 / { T7i—1)

uniformly for all g,h,k,leG and t> 0 with \k\ + \l\ ̂  itt1/"1 +2'1 \gh~l\.

In particular if d = m the kernel is Holder continuous and satisfies Gaussian
bounds but it is not necessarily differentiate. The degree of smoothness is an increasing
function of the difference between m and d. The degree of regularity is, however, not
optimal. For example, if d = 1 = n then the Holder continuity bounds are valid for
a G (0,1], and \a\ = 0 = |/3| (see [3, 11]).

Note that if H € Sm{fi,M) and |0| < arctan(ji/M) then ei0H G Sm{y.e,M) with
fj.0 = fj, cos 6 — M |sin 6\. Therefore the kernel Kz of Sz satisfies bounds similar to the
above, with t replaced by \z\, uniformly for z G C\{0} with |argz| ^ 9.

2. PROOFS

The proof of Theorem 1.1 is based on a combination of perturbation arguments and
Sobolev embeddings which extends ideas of [3] but avoids any form of scaling. Since the
proof for non-unimodular G introduces some extraneous difficulties we first examine
unimodular G and subsequently explain the extension to non-unimodular groups. The
proof for unimodular G is in two steps. The first step establishes uniform bounds. The
second step extends the uniform bounds to Gaussian bounds by Davies' exponential
perturbation method [7].

STEP 1. (Uniform bounds: unimodular G) The proof starts with the l^-estimates

(3) ||5t||2_2 < e»\ WHStW^^at-1^

which yield bounds

(4) \\AaSt\\2^2^at-Wme»t,

whenever |a | ̂  n, for all t > 0. (Here and in the sequel we use a and w to denote
parameters whose values may vary line by line. The a are strictly positive, the w are
non-negative and they are all decreasing functions of /*c and increasing functions of
Me) These estimates follow from the ellipticity condition (1) applied to ex9H, the
Cauchy integral formula and e, e"1 arguments by standard reasoning. (Further details
are given in the derivation of (15).)
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338 A.F.M. ter Elst and D.W. Robinson [4]

Next, since d ^ m, one has the Sobolev inequalities

with a = 1/2 - 1/p for all e G (0,1] and all a with \a\ < n whenever a G- [0,1/d)

(see [17, Appendix B.2]). Thus if d = 1, or d = 2, the inequalities are valid for all
p G [2,00) and if d ^ 3 they are valid for p G [2,2d/(d - 2)). Therefore, replacing <p

by Stf, setting e = i1/"* and using the foregoing £2-bounds, one finds

(5) H^Stll^ ^at-d'/mt-Wmeu't

for all a with |a| < n and all t > 0. (Initially these estimates are valid for t G (0,1]
and then, by use of the semigroup property, for all < > J.) The main technical difficulty
in this first step is to establish that the bounds (5) remain valid for |a| = n and some
p > 2.

The proof uses the positive self-adjoint operator Am determined by the quadratic
form

with domain L^n • Then A m is a strongly elliptic operator with constant coefficients
which generates a continuous semigroup T with a smooth Gaussian kernel (see [17,
Chapters 1 and 3], or, for a short proof, see [10]). Consequently, for each a one has
bounds

IU a T t | | ^ t-\a\/mt-dM/m ut

uniformly for all t > 0 and all p ,q G [1,00] with q^ p , where s = 1/p — 1/q. Hence if
Ao = u> + 1, \a\ < n and p,q G [1,00], with n — \a\ — ds > 0, one obtains bounds

(6) ll^Q(5A||p^g ^ aX-(n-\a\-d.ym

for all A ̂  Ao , where Q\ = (XI + A m ) ~ ' , by the usual Laplace transform arguments.

It is also necessary to have precise estimates on the n-th derivatives of the square

root of the resolvent of A m . It follows from [5] that one has bounds

|a|=n

for all (p G Lp and all p G (1, oo). Now we argue that one can improve these estimates

uniformly in A if p is sufficiently close to 2. U
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LEMMA 2 . 1 . For each e > 0 there exist 6 G (0,1/2) and Ao > 0 such that

uniformly for tp £ Lp, A ̂  Ao and p e (l,oo) with | l /2 — l /p | ^ 6.

PROOF: First note that

for all <p G £2 and all A > 0.
Secondly, if Ao is large enough then the semigroup generated by Ao/+ Am on Lp

is exponentially decreasing and holomorphic in the right half-plane. Therefore, for all
p G (l,oo) the operator Ao/ + Am has a bounded 5oo(A(tf))-functional calculus, in the
sense of [6], for any 0 G (0,7r/2), by [9, Theorem 3.1]. So there exists cp > 0 such that

||/(A0/ + A m ) | | ^ p ^ c p s u p { | / ( Z ) | :zeA(B)}

for all / G Hoo(A(0)). Hence application of this estimate to the holomorphic function
f(z) = z^2(X -\0+ z)~1/2 yields

(9) ||(A07 + Am)1/2(A7 + Am)"1/2\\p_p = ||/(A07 + Am)\\^p <

for all A ^ Ao. One then concludes from combination of (7) and (9) that

|a|=n

for all p G (l,oo) and <p G Lp, uniformly for A ^ Ao > 0.
Now let Y = G x {1,2,... ,<£"} with the natural sum measure, using left Haar

measure on each copy of G. Then for all A ^ Ao the operator T\: Lp(G) —> LP(Y)
defined by Tx<p = (AaiQ\<p,... , AadnQ\<p), where cti is an enumeration of the dn

multi-indices with \at\ = n, satisfies ||TA||L (G)^>L (Y) ^ cpcp(^o) by the preceding
estimate and ||?A||£,3(G)-.L,(y) ^ 1 by (8). Hence by interpolation for all e > 0 there
exists 6 G (0,1/2) such that ||Tx||x, (G)—L (y) ^ 1 + e uniformly for all A ̂  Ao and
those p such that |l/2 — l/p| ^ 6. But this is equivalent to the statement of the
lemma. u
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The next lemma provides the crucial estimates on the resolvent of H by expressing
it as a perturbation of a multiple of Am following a technique of [4, Chapter 1, Section
4], which also occurs in [3, Proposition 3.1]. Let

p=
|

denote the principal part of H.

LEMMA 2 . 2 . TAere exist Ai > 0, Se (0,(2d)~l) and a > 0 sucA that

\\Aa{M + P y v

tor all a, 0 with \a\ ^ n and |/3| ^ n and

for all a., 0 with \a\ < n and |/3j < n uniformly for all X > Ai and p £ [2,oo) with

s = l/2-l/p^6.

PROOF: It suffices, by interpolation, to prove bounds with a dependent on p.

Let C = (ca,fi) denote the dn X dn-matrix formed by the coefficients with |a| =

n = |/9| and set ||C|| = sup ||C($)|| , where \\C(g)\\ denotes the /p-norm of the
geG

matrix C(g). Set N = n^1 \\C\\l, <r = iic\\C\\? and C = I-N~1C. Then

for all ^ € C d " . So ||C7||* ^ 1 - a2 < 1. But WC^ < dn\\C\\2 and \\C\\X

Hence, by interpolation,

for all p € [2,oo], with q conjugate to p, and then, by a similar argument, for all
p € [1,2]. Therefore one may choose 80 £ (0,1/2) such that

(10) | | 5 | | p < l - 4 - V < l

for all p 6 [l,oo] satisfying |l/2 - l/p| < So.

Since P = JV(Am - P) with P = J^ {A")* ca<0 A? one has a formal repre-
|a|=|/?|=n

sentation

(11)
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where

which we argue is well-defined on the Zp-spaces with p sufficiently close to 2.

Let e G (0,1] and fix 8 such that the estimates of Lemma 2.1 are valid. Then for
all p G (l,oo) with | l /2 — l / p | ^6, ip G Lp n Li and x € LqC\ L2, where q is again
conjugate to p , one has

a\=\fi\=n

uniformly for all A ^ Ao whenever \l/q — 1/2| = | l /2 — l /p | ^ 6 A So, where the last
estimate uses (10). Hence by choosing e sufficiently small one may ensure that

for all p with | l /2 — l / p | ^ S, possibly by reducing the value of 6. Therefore the
(/ — .BA)" 1 are defined as bounded operators, by a norm convergent power series, on
each of the Z/p-spaces with | l / 2 — l / p | ^ S and their norms are uniformly bounded for
A ̂  Ao. Then, however, the representation (11) is well-defined for this range of p and
A and can be used to obtain the estimates of the lemma.

First, for all \a\ < ra, \/3\ ^ n and p with | l /2 - l / p | ^ 6 A (1/d) one has

- 1

by (6) and (7), uniformly for A ̂  Ao. Here /?» denotes the multi-index obtained from
/3 by reversing its order. Finally,

if S is small enough. Thus the statements of the lemma are valid with Ai = N\o . U

Now we can extend (5) to the a with \a\ — n for p close to 2.
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LEMMA 2 . 3 . Fix 6 as in Lemma 2.2. Then there exist a > 0 and w > 0 such
that

(12) H^ a 5 t | | 2 - . P < a<~ ( n + d ' ' ) / m e"*

uniformly for all a with \a\ = n, t > 0 and p 6 [2,oo) with s = 1/2 — 1/p ^ 6.

PROOF: It follows from the representation

AaSt = Aa(XI + P)~1(XI + H)St + Aa{XI + Pr\P - H)St

that

There are two terms on the right hand side which we denote by L(t) and R(t), respec-
tively. We set A = <—1. The leading term L[i) can be bounded by the second estimate
of Lemma 2.2, with \a\ = n and |/3| = 0 , together with (3). One finds

i ( < ) ^ a A - ( T l - d ' ) / m ( A + r 1 ) e a ' t ^ a V<-n+d'V™ e
wt

first for t ^ A "̂1 and then, by the semigroup property, for all t > 0 with possibly
increased values of a and w. Alternatively, the remainder R(t) is bounded by

where the first sum is over the /?, 7 with |/?| = n and I7I ^ n — 1 and the second over
|/31 $J n — 1 and I7I ^ n. But these terms are bounded by the first estimate of Lemma
2.2 and (5), and the second estimate of Lemma 2.2 and (4), respectively. One finds

first for small t and then, by increasing a and w, for all t > 0. Combination of these
estimates gives the desired result and in fact the final estimate can be written in the
form

This will be useful in the next step of the proof.
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REMARK 2.4. It is worth noting that the estimates of Lemma 2.3 combined with the

usual perturbation expansion of the resolvent allow one to convert the bounds on the

derivatives Aa(XI + P ) " 1 A ? into analogous bounds on the derivatives Aa(\I + H)'1 A13

at the cost of increasing the value of Ax.

We next use the bounds of Lemma 2.3 together with the Sobolev inequalities

\\Aav\L < * n - W - d / p sup \\A^\\p + Cpe-H-a/PlMI
\0\=n

which are valid for all e G (0,1] whenever n — \a\ — d/p > 0, in order to obtain bounds
from Z/2 into £(»• Setting e = txlm and 1/p = 1/2 — 8, with 8 as in Lemmas 2.2 and
2.3 gives

I U a 9 j | < /("-W-d/p)/™ s n n 11 40 C.ll + c t-(\<*\+<i/p)/m\\e II
\\A l3*ll2-.oo ^ * SUp 11A Jt\\2-.p + cPl IP*ll

| 3 |

1 1 \ \ 2 . p P IPll2-.p
|/3|=n

for t £ (0,1] and |a| < 2~1(m — d) + dS. Note that 2~1(m - d) + dS is not an integer.
But then the estimates of Lemma 2.3 together with (5) give bounds

(14) \\AaStL ^ at-W*+\*\)/m e*t

for t £ (0,1] and then, by enlarging a and u , for all t > 0. Since similar bounds are
valid for the adjoint semigroup one concludes that

for all t > 0 and a, /3 with \a\ < 2-1(m-d) + dS and |/3| < (m-d)/2 + dS.
Then by the Dunford-Pettis theorem [1, Theorem 1.3] the operator AaStA

p' has

a kernel K{
t
a'0) e L^G X G) satisfying H ^ ' ^ L < at-dlmt-Ua\+W>lm eut. Set

Kt = K\aS) if |a| = |i9| = 0.

Next, the Holder space GT is denned for T = N + a with N 6 No and o- £ (0,1)
as the subspace of Loo;N for which the norm

| |y , | | C T = sup
0<|*K

is finite. Then one has the Sobolev inequalities

|M|CT ^e"-r-d* sup 1 1 ^
|a|=n

which are valid for all e G (0,1] whenever n — T > d/p. In particular if 1/p = 1/2— S

these inequalities are valid for all T G (0,2~1(TTI — d)+d6)\N. Now the arguments in the
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above proof can be repeated and one deduces that for all T = \a\ +a < 2~1(TO — d) + d6
there are a and w such that

for all t > 0 first for all |fc| G (0,1] and then, by the bounds (14), for all Jfe € G. Similar
bounds are valid on the adjoint semigroup. Therefore combination with (14) gives

^ a(\k\' \l\°t-2''m + \k\'t-«'m + \l\" t-'/^t-d/mt-{

for all a, /? and a G (0,1) with \a\+<r < 2~1(m - d)+dS and \0\+<r <2-1(m-d)+d6

and for all t > 0, k,l € G. So

|/r t~2<Tlm + \k\" r"lm + \l\" t-"/^t-d/mt-(

where L denotes the left translations on G xG. Hence the measurable function K\

is continuous and the lemma of Du Bois-Reymond implies that Kt is |a|-times differen-
tiable in the first variable and the derivatives are |/3|-times differentiable in the second
variable.

STEP 2. (Gaussian bounds) The Gaussian bounds on the kernel now follow by repetition
of the foregoing arguments for the perturbed semigroup

where p »—> Up is the unitary group of multiplication operators defined by Up<p —

e~^tpt with real-valued V G G^°(G) and Hp is the operator obtained from H by the
replacement A,- by J4,- + p(Aitf)). All subsequent bounds depend on derivatives Aaij> of
if> and are uniform over the set Dn of real-valued if) £ C£°(G) with ||-4a^||oo ^ 1 for
all a with 1 ̂  \a\ ^ n. First the bounds (3) are replaced by

\\CP\\ <
IP* II2-.2 ^

with a and w independent of p and ip 6 £>„ (see [17, Lemma III.4.4]). Then

sup \\AaSfr\\l < HJ Re(5tV,P5tV)
l«l=n

by ellipticity. But
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[11] Elliptic operators on Lie groups 345

as a form bound by a calculation similar to the proof [17, Lemma II.4.5]. Thus

sup ||A
|a|=n

Then, by a standard e, e"1 argument one obtains the analogue

(15) IIAaSt1la_2 < « < ~ H / m e^1"1"'"1)*,

of (4) for all a with |a | ^ n and all t, p and ip. The arguments leading from (4) to

(5) applied to (15) now yield

(16) ||^a5f||2_>jj < at-ds/mt-\a\/m e«(l + p )*

for all t > 0, p G R , i> G Dn and all a with \a\ < n and all p G [2,oo) with
a — 1/2 — 1/p < 1/d. But P is the principal part of Hp and

P-Hp =

where p H^ cpn(p) is a polynomial of order at most m— |/?| — I7I and the coefficients are
uniformly bounded for ip £ Dn. Moreover, the cpn(p) are linear in the cpn. Therefore
the reasoning of Lemmas 2.1, 2.2 and 2.3 can be applied to Hp and Sf to obtain the
bounds

for all a with \a\ = n in place of (13). But by increasing the values of a and u> one
has

(17) l l ^ ^ l ^ p ^ ai-("+d')/m e*1*™

for all t > 0 uniformly for p G R , i> G U n and p G [2,00) with a - 1/2 - 1/p ^ 6.

At this point one can repeat the arguments following the proof of Lemma 2.3 with
St replaced by S£ and using (15), (16) and (17) in place of (4), (5) and (12) to conclude
that

for all t > 0, p G R , ip G Dn and a , f3 with \a\ < 2~1{m- d) + dS and |/3| <
2~1(m — d) + d6. The a and w are independent of p, 1(1 and t. Then

https://doi.org/10.1017/S0004972700034006 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034006


346 A.F.M. ter Elst and D.W. Robinson [12]

As the kernel of UpA
aStA*U;1 is given by (g, h) •-» (-l)We*«')-*k»(AaB0Kt){g. h

it then follows that

I(AaB<3Kt)(g;h)\^ at~d/mf-( e e

and the Gaussian bounds (2) follow by minimising over p £ R and ip 6 Dn. Note that
the distance which naturally enters these estimates is given by

(18) dn(g;h)= sup

But this distance is equivalent to the normal distance (g, h) i-» |<7/i-11 (see [17, pp.201-
202]).

Finally, similar estimates can be deduced for the Holder continuity of the derivatives
of the kernel. Specifically, for all a, /3 and cr 6 (0,1) with \a\ + a < 2~1(m — d) + d6
and |/31 + a < 2~1(m — d) + dS one obtains

( HI* i~2cr/m + \k\a t-olm + \l\a *-°Vm) t-dlm f-(

uniformly for aR g,h,k,l £ G, t > 0, /?£R and tp £ Dn. Using (2) one can minimise
the above bounds and obtain the second bounds of Theorem 1.1 by a slightly more
complicated argument which we omit (see [11, proof of Proposition 4.5]).

STEP 3. (Non-unimodulax G) If G is non-unimodular it is necessary to analyse the
left differential operator H on the spaces L~ — Lp(G;dg) formed with respect to right
Haar measure. In fact the kernel Kt is bounded if and only if the semigroup St extends
to a bounded operator from Z~ to Loo •

The left derivatives At are no longer skew-adjoint on L^ but the Z^-adjoint is

given by A\ = —Ai + b{I where bi = (A{A)(e) is the derivative of the modular function
A at the identity e. Nevertheless H is still defined on L^ as a maximal accretive
operator associated with a sectorial form

where (•, •) denotes the scalar product on L^ and the 'c.afi are linear in the caip and
polynomial in the bi, but the principal coefficients are unchanged. Hence H generates
a semigroup 5 on Lj with kernel K and now one has

sup \Kt{g;h)\ = ||£||T^oo
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et cetera. Once one proves that K satisfies Gaussian bounds it is then straightforward

to verify that St(£j-n L2) Q {L^V\ L2), its extension to L2 is generated by the in-

version of H and Kt = Kt. Therefore one must now repeat the proofs of Steps 1 and

2 but relative to the L^-spaces. This presents no difficulty.

First, the Sobolev embeddings inequalities used in the proofs remain valid for left
derivatives on the L^-spaces (see [17, Appendix B.2]) and, in fact, they fail for the
£p-spaces. Secondly, the principal part P is now defined relative to L^ as the operator
associated with the form

|er|,|/9|=n

|.4oV||and the approxdmant A m is introduced by the form <p 1—» ]T) ||.4oV||c-. After these

changes the proofs proceed as previously. We omit further details. D
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