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0. Introduction

In [1], it was shown that if feLp(Rn), where 1 < p < oo, then the
closed subspace of LP(R") spanned by functions of the form

(xx, • • -, xn) -> /(axXi+^i, • • •, anxn+bn)

[where ax, • • •, an, blt • • •, bn are real numbers; ak ^ 0; k = 1, ••• ,»]
coincides with the whole of Lv(Rn). In the present note, analogous results
are derived for the spaces of integrable functions, essentially bounded
measurable functions, bounded continuous functions, and continuous
functions vanishing at infinity.

1. Notation

Throughout, G will denote a locally compact Abelian Hausdorff group,
and X its Pontryagin character group. The Haar measure on G will be
denoted by dx. It will be assumed that G is a direct product of non-compact
subgroups Glt • • •, Gn, with (non-discrete) character groups Xlt • • •, Xn.
Thus X is a direct product of Xlt • • •, Xn. If x e G, and k is an integer such
that 1 sS k i£ n, then xk will denote the A-th component of x.

Write N for the set {1, • • •, n}. UIQN, we define the sets £7(G) and
Fj(G) as follows:

ET(G) = {x e G : xk = 0 for all keN\I},

Fj(G) = {x e G : xk = 0 if A eiV\7; a;fc ^ 0 if As e /} .
Clearly,

(1.1) *7(G) = Ei{G) for all ICN.

The sets Fj(X) and -E^X) are similarly defined.
i1(G) and L°°(G) will be written for the spaces of integrable functions,

and essentially bounded measurable functions, respectively, on G. For the
precise definition of these spaces, especially the latter, see Hewitt and Ross
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[9], Definitions 12.1 and 12.11. L1(G) will be given the usual norm topology
and L°°(G) the weak topology a(L°°, L1) generated by i1(G). We shall also
consider the spaces CQ(G) — the space of functions which are continuous
and vanish at infinity — and BC(G) — the space of bounded continuous
functions on G. The former will be equipped with the uniform norm topology,
and the latter with the strict topology (Herz [2]). The strict topology is
defined by the semi-norms

for all /eBC(G),

where || || is the uniform norm, and k ranges over C0(G). The dual of BC(G)
with this topology can be identified with the space of bounded Radon
measures on G: every continuous linear functional on BC(G) has the form

/ -> j G fd/i, for all / e BC(G),

where fi is some bounded Radon measure on G. This is easily verified.
Let a be a bicontinuous automorphism of G; that is, a is continuous

and has a continuous inverse. If / is a function on G, we define the function
/ ' b y

f{x) = /(a(*)) for all xeG.

It is simple to verify that if / e Z.J(G), then fa e i1(G); and similarly for
each of the other spaces mentioned above. Now consider a group H of
continuous automorphisms of G, and a function / in one of the above spaces.
The closed translation-invariant subspace (of the relevant function space)
generated by {/" : a e H) is denoted by TH\J].

2. Preliminaries

The Fourier transform / of a function / eZ.°°(G) is defined as a pseudo-
measure on X. For the definition of pseudomeasures, and some of their
properties, see Edwards [3], Gaudry [5] and [6]. If /eZ.°°(G), we denote
the support of the pseudomeasure / by supp /; and if / eZ^G) , the set
Z{f) is defined by

Write Ce(G) for the space of continuous functions on G which have
compact support; and consider a bicontinuous automorphism a of G. It can
be verified that the mapping

fadx, for all / e Ce(G)

defines a non-zero, translation-invariant, positive Radon measure on G.
Hence, by the uniqueness of Haar measure, there exists a constant cx ^ 0
such that
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(2.1) J c fdx = ca.jG fdx, for all / e V-(G).

The map a* : % -> y?~l defines a bicontinuous automorphism of X; and it
follows from (2.1) that if / is in V-{G) or L°°(G), then

(2.2) supp f = a* (supp / ) .

If H is a group of continuous automorphisms of G, we write

H* = {a* : a e H}.

We say that a group K of continuous automorphisms of X is
(or, more briefly, a thick automorphism group of X) if, for each subset
ICN, and y e -P/(̂ Q> w e have

(2.3)

We now prove several lemmas.

LEMMA 1. Suppose that K is a thick automorphism group of X, and S
is a closed subset of X. If ICN, then Fj(X) is either contained in
PI {/3(5) :peK}or Ft(X) is disjoint from f] tf(S) : fi e K}.

PROOF. Suppose that FT(X) is not disjoint from f){f3(S) :fieK}. Then
there exists % e FT(X) such that

Hence, since K is a group, y(x) ef\{fi(S) \fleK.} for each yeK. Now,
P) {/?(S) : ft e K) is closed because S is closed; and K is a thick automorphism
group of X. Thus

This completes the proof of the lemma.
Let K be a thick automorphism group of X. Consider a closed subset

S Q X, and the class

S = {ICN : F,(X) CD {p(S):(leK}}.

Suppose that Ix, • • • , / , are the maximal elements of S, under the partial
order induced by set inclusion. Then we have

LEMMA 2. Let K be a thick automorphism group of X. If S is a closed
subset of X, and Ilt • • •, Is are as above, then

PROOF. By (1.1), and the definition of S
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U Eh(X) = { U FJk(X)}Cn {fi(S) --PeK}
*=i *=i

since S is closed.
Conversely, suppose that % e[~| {fi(S) : /? eK}. We have % e FT(X),

for some I CN. Thus

and so, by Lemma 1,

Hence / 6 S, so that I CIk, for some positive integer k ^ s.
Now

EIt(X) D Ej(X) D Fj(X),

so that x e F-i • Since x e D {/5(S) :(ieK} was arbitrary, we infer that

This completes the proof of Lemma 2.

COROLLARY. Let K be a thick automorphism group of X. If S is a closed
subset of X, then f| {/?(S) :j?eK} is an S-set.

PROOF. By Lemma 2, f| {/3(S) : /? eif} is a union of closed subgroups
of X. Thus PI {fi{S) :PeK) is a. C-set (Rudin [7], Theorem 7.5.2 (b) and
(d)), and hence an S-set.

LEMMA 3. Let K be a thick autmorphism group of X, and S a subset of
X. Then

U {fi(S) : 0 e K} = U {Ej(X) :Fj(X)nS^ 0}.

PROOF. Suppose that IQN is such that F^X) n S 7̂  0. Let
e F,(X) n S. Then (by 2.3)

Thus we infer that

U {Ej{X) : F^X) n 5 ^ 0} C

The converse inclusion is obvious.

COROLLARY. If K is a thick automorphism group of X, and S is a subset

of X, then U {/?(•$) :/3eK} is an S-set.
The proof of this assertion is similar to the proof of the corollary to

Lemma 2.
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3. Main results

We now proceed to the statement and proof of the main results con-
tained in this note. Throughout, whenever we talk about an 'automorphism
group', we shall mean a group of continuous automorphisms.

THEOREM 1. Let H be an automorphism group of G, such that H* is a
thick automorphism group of X.

(a) If f e ^(G) and g e ^(G), then g e TH\J] if and only if

(3.1) PI {«*(<?(/)) :«eff}CZ(g).

(b) / / / 6 L°°(G) and g e L°°{G), then g e TH[f] if and only if

(3.2) supp £ C U {«* (supp f):*eH}.

PROOF OF (a). In view of (2.2), condition (3.1) is certainly necessary
tor geTH[f].

Conversely, suppose that (3.1) is satisfied. According to the Hahn-
Banach theorem, we have to show that if <p e L°°(G) is such that

(3.3) <p * /« = 0, for all « e H,

then
<p*g{0) = 0 .

Thus, suppose that <peL°°(G) is such that (3.3) holds. Then, because
of (2.2)

(3.4) s u p p 0 C n { a * ( ^ ( / ) ) : « e # } .

Now, H* is a thick automorphism group of X. Thus n {«.*(Z(f)) : a. e H}
is an S-set (by the corollary to Lemma 2) and (by (3.1)) g vanishes on
D {a*(Z(/)) :*eH}. These facts, together with (3.4), entail that <p * g = 0.

PROOF OF (b). The 'only if part is obvious, if we bear in mind
relation (2.2).

On the other hand, suppose that (3.2) holds. Then if <p e V-{G) is such
that

<p*fa = 0, for all « e H,

it follows (again using (2.2)) that

(3.5) 0 = 0 on (J{a*(supp/) :*eH}.

Now, U {«*(supp/) :xeH] is an S-set (by the corollary to Lemma 3);
and (by 3.2))'

supp g C LJ {a* (supp f):xeH}.

Therefore (3.5) entails that cp * g = 0.
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We now invoke the Hahn-Banach theorem to deduce that g eTH[f].

THEOREM 2. Let H be an automorphism group of G, such that H* is a
thick automorphism group of X. If f e BC(G) and g e BC(G), then g eTH[f]
if and only if

suppg C U{<x*(supp/) : ocetf}.

PROOF. Suppose that fi is a bounded Radon measure on G such that

ft * /<* = 0, for all a. e H.

Then, if rp is any element in L1(G), it follows that
(f * ft) * f" = 0, for all cueH.

Since q> * fi e L1(G), we can argue as in the proof of Theorem l(b) and
infer that 9? * /* *g = 0. The fact that cp e i1(G) was arbitrary now leads
us to the conclusion that fi * g = 0.

An application of the Hahn-Banach theorem completes the proof,
if we bear in mind the remark about the dual of BC(G) made in § 1.

THEOREM 3. Let H be an automorphism group of G, such that H* is a
thick automorphism group of X. If f eC0(G), f ^ 0, then TH[f] = C0(G).

PROOF. The same argument as is used in the proof of Theorem 4.2
Edwards [4] shows that

EN\{I}{X) u • • • u EN\{n)(X)

is 1-thin. (We are here keeping in mind the fact that each Gk is non-compact).
Thus, if / is a non-zero element of C0(G), then

supp / n FN(X) ^ 0,
and so (by Lemma 3)

(3.6) U{«*(supp/) :xeH} = X.

Therefore, if fi is a bounded Radon measure such that

p * /« = 0, for all a e H,

it follows (from 3.6) that /u = 0. Now again use the Hahn-Banach theorem
to get the required result.

4. The case G = R"

In this section, we restate some of the results of § 3 for the case when
G is the M-dimensional Euclidean space Rn. The results will be phrased in a
somewhat more manageable, and apparently different, form than their
counterparts in § 3.
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For each positive integer k f^n, Jk will denote the function defined by
Jk(x) = xk, for all x e Rn.

We identify the character group of Rn with Rn. The continuous char-
acter of Rn corresponding to an element {%\, ' ' ', Xn) e Rn is the function

(xlt • • •, xn) -> exp li(xlXl-\ +«„*„)].

We note that if K is a thick automorphism group of R", then every element
a e if has the form

(4.1) afo , • • •, *„) = {<x1x1, • • -, a,*,),

when al7 • • •, aB are non-zero real numbers; and that the mapping
a -> (a1( • • •, an) is an algebraic isomorphism of H onto a dense multi-
plicative subgroup of FN(Rn). Conversely, each dense multiplicative
subgroup of FN(R") determines a thick automorphism group of Rn via
(4.1). In what follows, we shall identify a thick automorphism group of Rn

with its isomorphic image in FN(Rn), the identification being expressed
by (4.1).

If W is any open set in Rn, we shall write D(W) for the space of in-
definitely differentiable functions with compact supports contained in W.
For details of these spaces, see, for example, Schwartz [8].

Finally, note that if / e L°°(Rn), then the pseudomeasure / can easily be
identified with the distributional Fourier transform of /.

THEOREM 4. Let H be a thick automorphism group of Rn.

(a) Suppose that f e L1{Rn) and geL1{Rn). Then g e TH[f] if and
only if the following statement is true: for every subset {nlt • • -,nk} of
{1, • • •, n) for which

(4"2) \R "\R K*1' ' ' '' x^dx«i' ' ' dx"* = °' ( a l m o s t everywhere),

it is also true that

(4-3) SR'" SR g(Xl> ' ' '• x^dx«i' ' ' dx«* = ° ( a l m o s t everywhere).

(b) Suppose that f e L°°{Rn) and g e L°°(Rn). Then g e TH{j] if and only
if the following statement is true: for every multi-index /? such that fik ^ 1
for each k sS n and

(4.4) D<>f = 0,

it is also true that

(4.5) D0g = 0.

PROOF OF (a). Suppose that g e TH[f], and
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fR • • • j R / (*i . ' • •. *»)<&„, •••dxnt = 0 a.e.

Without loss of generality, assume that {n1, • • •, nk} = {1, • • •, k}. Then
we also have that, for each cue H,

SR'" J f l e x p [*(**+i **+H r-*BZ»)]/(oi*i. • • •> «A)<&i • • • <&„ = 0,

for all % + ! , • • • , %»ei?.
Since g e Tf f [ / ] , this entails that

S R ' " L e X p [*(**+! **+i+ ^ x J l g f o , • • •> *«)<&i •••<&„ = 0,
for all Z I + I . 1 > 1 . Z , E * .

and so

S R ' " S R 8 ^ 1 ' ' ' '' x")dXl • • • d x k = 0 a . e .

Conversely, suppose that (4.2) implies (4.3). Note that for the case
G = Rn, H* = H. Thus, according to Theorem 1 (a), we have to show that

Z(g)Df] {a (Z( / ) ) : a e #} .

Let Z£fl {«(£(/)) : " 4 Then ^Fi f f i " ) , for some /CAT. By
Lemma 2, F7(2?") C Z(/). Thus if 2V\/ = [nx, • • •, nk}, we have

SR'" SR^*1' ' ' '' x")dx»i' ' ' dx»* = ° a-e>'
and hence also

SR'" SR8^1' ' ' "' x^dx"i • • • d x n k = ° a.e.

From this, it follows trivially that %e Z(g).

PROOF OF (b). First suppose that geTH[f], and /? is a multi-index
such that Z)"/ = 0. Then D^f = 0, for all cueH, and so

/« * (D"<p) = 0, for all «.eH and all 9) 6 D{Rn).

Thus, since g e TH[f], it follows that

= g * Z)̂ (̂O) = 0, for all 9) e D(Rn).

On the other hand, suppose that (4.4) implies (4.5), and let us assume
that, contrary to Theorem 1 (b),

: U{a(supp/) :a 6 #}.

Choose x e suPPg such that x 4 U{«(supp/) : a eH}. Then, by Lemma 3,
X T£ 0. Suppose that xe Fi(Rn)> where / = {wj, • • • , % } . Choose a
neighbourhood W of x s u c n that

W n (^Ul,,(/?-) u • • • u £v,u.i(/?")) = 0-
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230 S. R. Harasymiv [9]

Since %esuppg, there exists <p e D(W) such that g(<p) ^ 0. By the
choice of W, there exists xp e D(W) such that / „ • • • Jntf = <p; so that

Thus D,h • • • Dntg ^ 0. _ _ _
On the other hand, Lemma 3 and the fact that % $ u {a(supp /) : a e H)

imply that
/£ «) u • • • u ENy{

Furthermore, for each <p e D(Rn), Jn • • • Jn <p vanishes on the S-set

u • • • u EN^{

Thus Dni • • • DJtf) = f(Jni • • • Jnk<p) = 0, for all v e D(R"). This leads
to a contradiction.
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