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1. Introduction

Longitudinal elastic waves in solid circular cylinders were first investigated
by Pochhammer (1) and Chree (2) but they did not take into account the
effects that thermal properties have on the propagation of these waves. In
this paper we shall consider waves in solid and hollow cylinders as well as
in the infinite medium with a cylindrical cavity, and in each case we shall
take account of the thermoelastic effects.

The type of wave considered can be characterised in cylindrical polar
co-ordinates by the components of displacement

uT=R{r)ei«"+*t\ uz=Z(r)ei^z+pt>, u$=0 (1)
Here the z-axis is the axis of the cylinder and we consider wave propagation
with cylindrical symmetry. B and Z are functions of the radial coordinate r
only, and the problem is to find expressions for them such that the field equations
and the boundary conditions are satisfied. In all the problems considered
here the boundary conditions are such that the components of stress or and
TTZ vanish on the cylindrical boundaries. There is also a thermal radiation
condition.

': The field equations for thermoelasticity have been given by Biot (3). We
shall use a particular dimensionless form of these equations due to Chadwick
and Sneddon (4).

If p is the density of the medium, c its specific heat at constant strain,
vp and vs are the velocities of P- and S-waves, A and /x are Lame's constants,
k is the thermal conductivity, a the coefficient of linear expansion, y = a(3A+2/x),
and T is the absolute temperature of the medium in its reference state of zero
stress and strain, then we can define a frequency

aj*=pcvp/k (2)

and take the quantities I/to*, vP/co*, T and p as our units of time, length,
temperature and stress respectively. The field equations can then be written
in terms of the dimensionless forms of the displacement vector u and the
temperature distribution 6 as

j82graddivu-2curl<o-&grad0=£2
1-2- -

where e> = J curl u,
J l , (4)
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and F and W are the dimensionless forms of the body forces and heat sources
respectively.

Since all frequencies obtainable in practice are much smaller than o>*,
the main advantage of this system of units is that all frequencies obey the
inequality OJ<^1. This fact would be extremely useful in an approximate
numerical analysis of the results.

In an analysis where thermal effects are ignored it is obvious that equations
(3) are replaced by the simpler vector equation

^2graddivu-2curlco = ̂ 2^2- - F (5)

In the actual problems considered there are no body forces or heat sources
present. However, we need to retain them in equations (3) and (5) to enable
us to apply the method of solution given by Lockett (5), which appears as a
companion paper in this issue.

2. Non-Thermal Analyses

(1) Solid Circular Cylinder. The results of Pochhammer (1) and Chree
(2) for this problem are well known. However, we shall re-derive their results
here, since it illustrates the method on a relatively simple example whose result
is already known, and because the results of the other two problems are quickly
obtainable from this analysis.

Following the method of the companion paper, we consider the infinite
medium subjected to wave propagation of the type (1) and to the action of
body forces concentrated on the radius r = d, where d^a. We write these
body forces in the form

Fz = Bd-18(r-d)ei«"l+»t> (6)

where 8(x) is the Dirac delta function and A and B are to be chosen so that
the components of stress ar and rTz should vanish on r = a. The exponential
dependence is necessitated by the choice of the expressions (1) and the term
d*1 is put in for convenience at a later stage.

Substitution from (1) and (6) into (5) gives us the set of differential equations

/ 1 1 \
R2 IR"+-R' zR+iqZ'] +iq(iqR-Z')= - B*p2R - Ad'Wr - d)

- - (iqR+iqR'-Z'-rZ")=-p2p2Z-Bd-1S(r-d)

which can be solved by the transform method.
Defining the Hankel transforms

/

CO /•<»

rJ^Rtfdr, Z($)= rJ0
o Jo

R(g)= rJx{ir)R{r)dr, Z($)= rJ0(t;r)Z(r)dr (8)
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equations (7) may be transformed and simplified to read

The solutions of these algebraic equations can be expressed in the form

where
\ *1=<Z 2 -:P 2 (11)

and these expressions are in a convenient form for applying the inverse
transforms

i*00 /*

Jo J
$0(£r)d£ (12)

o
If we use the notation

Im»=IJM, Kmn=Km(knd) (13)

and re-group the terms in the resulting expressions, these integrations give

B= -^p-z{(kUK12+iqBk2K02)I12-(Aq^Kn+iqBk1K01)Ill} \\ {

j

The required integrals can be found in Erdelyi (6), p. 49, and have been
evaluated for 0<r<d. Thus it is at this stage that the physical requirement
(that the body forces should be outside or on the radius r=a) enters the
mathematics.

These forms for the integrals, as stated in the published tables, also require
that &kx>0 and ^Jfc2>0. However, it can be verified that the results (16)
satisfy the given conditions even when these conditions are not satisfied.

We can now introduce the parameters

pp
and write

B=k2LI12+iqMI11

Since
/ cHt it OIL \ on \

/ Q 2 O\ I r I w r I W W 2 i I o VVVT i

(17)8ur duz

the expressions (16) and the boundary conditions, ar = rTz = 0 on r=a, imply
that

E.M.S. K 2
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where the modified Bessel functions are now evaluated for r=a. These are
the equations determining the ratio LjM. (The initial amplitude of the wave
is arbitrary).

The compatibility of equations (18) leads to the frequency equation

P = 2iqk1l'1(k1a) - ($? - 2)pH0(k2a) +2kll'l(k2a) = 0 (19)

i.e.
z-2kll'12] (20)

which apart from slight differences of notation is the result obtained by
previous authors (see e.g., Sneddon and Berry (7), Eq. (73.24)).

(2) Infinite medium with cylindrical cavity. The only difference
between this and the previous analysis is that d^a<r and we are therefore
interested in evaluating the integrals (12) for d<r. It can be seen from the
published tables that the result of this inequality is to reverse the roles of
the modified Bessel functions I and K in the previous analysis. Thus R and
Z are given by expressions of the form

R = k2LK12+iqMKn

Z = iqLKQ2-k1MK01

and the frequency equation becomes

2iqkxK\(k1a) - Q32 - 2)p2K0(k2a) +2ifc|
2iqkiK1(k2a)

= 0 (22)

(3) Hollow circular cylinder. We now have to consider the extra
body forces

( 2 3 )

where

a^ and a2 being respectively the external and internal radii of the tube.
The components with suffix " 1 " behave like the forces in the solid cylinder

analysis, and those with suffix " 2 " behave like the forces in the cavity analysis.
It is easily seen that their combined effect leads to the expressions

R =
Z = i MJ^ +iqL2K02-k1M2K01)

We now have to apply the conditions ar = rrz = 0 on both r=a1 and r = a2,
and this leads to a frequency equation

P{<h) Qi<h)
P(a2) Q(a2)
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where the minors P and Q are defined in (19) and (22), .and the arguments a^
and a2 show that they are evaluated for r=a1 and r = a 2 respectively.

3. Thermoelastic effects

(1) Solid circular cylinder. To the forms (1) we now have to add
the temperature distribution 0 in the form

0=®(r)ei<«2+3J*) (26)

Since there is an extra (thermal) condition to apply we have also to consider
a concentrated heat source

W=Od-1S(r-d)eilqz+'ti (27)

in addition to the body forces (6).
Substitution of (1), (6), (26) and (27) into (3) gives the set of differential

equations

R" +-B'-\R +iqZ'\ +iq{iqR -Z')-b&'=- p*p2R - Ad-^ir - d)r r* J

(R'+ - R+iqZ\ - i (iqR+iqrR' -Z' -rZ")-biq®= -^Z-Bd- ...(28)

whichlare the thermal counterparts of equations (7).
We can now transform these equations to the form

)
(29)

=-CJ0(&))

where R and Z are defined by (8) and

. ©(£)= f rJo(£r)0(r)dr (30)
J o

The solutions of equations (29) are found to be

(31)

3

where
D=AJX(&), G=BJ0(&), K=CJ0(£d)

and } (32)
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We now write 2) in the form

where £3 and k\ are the roots of the equation

It is then easily seen that

2 * • 2 * -1 * S * J • 2 * -1 "" ^ ^

where

Thus the expressions (31) can all be written as the sums of terms like

where Q is a coefficient not involving g, and where p and /JL can take the values
0 or 1, and i can take the value 1, 3 or 4.

If we now apply to the new forms of (31) the transforms inverse to (8)
and (30) we find that R, Z and © are the sums of terms of the type

f°°
J 0

which, when evaluated for r <d, is of the form

(coefficient)

In each of the expressions for R, Z and @, we then collect together the
terms involving the same Bessel function Im(knr), so that these expressions
can be written in the form

(coefficient Pmn) x IJknr).

Although we do not give the details of the algebra here, it is found that
the coefficients Pmn, which depend on d, can all be written down in terms of
three new parameters L, M and N. In so doing it is necessary to remember
that kl and k\ are roots of the equation (34). We then get

R=iqLIn+bk3MI13+bkANIu )
Z= -kjLIn+ibqMIn+OqNIo,, (36)

J
and it can be verified that these expressions satisfy (28) for r<d.
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If we now apply the boundary conditions o> = 0, TTZ=0, dd/dr-{-hd=O,
on r=a, we obtain three equations in L, M and N the compatibility of which
demands that

U s 2iqklln

2ibqk3I13 2ibqkJu

0 (q2-p2-k2
3)(k3I13+M03) (q2-p2-k2

i)(killi+hlm)

where the modified Bessel functions are evaluated for r = a, i.e. Imn=InSJcna)-
Equation (37) is the thermoelastic frequency equation.

(2) Infinite medium with cylindrical cavity. Having already derived
the solutions to problems I I and III from the solution of problem I for the
non-thermal case, it is not necessary to describe how this is done for the thermal
case. I t is easily seen that the thermoelastic frequency equation is

V= 2iqklK'n

= 0
(37)

2ibqk3K
13

= 0.
(38)

= 0 (39)

1

0 (q2-p2-kl)(k3K13+hK03)
(3) Hollow circular cylinder. TVom the results of problems I andJII and

the reasoning given in the non-thermal theory we see that the new frequency
equation is of the form

U{at) Via,)
U(a2) V(a2)

where the minors U and V are defined in (37) and (38) and the arguments %
and az indicate that the Bessel functions are evaluated for r = a1 and r = a2

respectively.
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