
8
Quantum chromodynamics

The quark model of hadrons, developed by Gell-Mann and Zweig, began
to be taken seriously in the mid to late 1960s. The discovery of scaling
in deep inelastic electron–nucleon reactions in the late 1960s seemed to
imply that at very short distances, or very high momentum transfers,
the nucleon constituents (valence quarks) behaved like weakly interact-
ing point particles. However, the interactions between quarks had to be
very strong at long distances, or small momentum transfers, to confine
them in hadrons and thus explain the non-observation of isolated quarks.
Politzer [1] and Gross and Wilczek [2], who received the Nobel prize in
2004, showed that the only renormalizable field theory of quarks that
had the property of an increasing force at long distance and a decreas-
ing force at short distance was of the type discovered by Yang and Mills
[3]. Quarks must be spin-1/2 fermions, with fractional electric charge,
and must come in three colors (a new quantum charge akin to electric
charge) in order to explain the systematics of hadron spectroscopy. Inter-
actions between quarks are mediated by gluons (the glue which holds them
together). Gluons are massless spin-1 bosons, as are photons, but unlike
photons they interact among themselves directly (via point interactions)
because they also carry a color charge. Such theories are called nonabelian
gauge theories. This theory of quarks and gluons, quantum chromody-
namics (QCD), is the accepted theory of the strong interactions. Unfor-
tunately, it has been very difficult to make quantitative predictions with
QCD, owing to its complexity and peculiar properties. For a more thor-
ough discussion of the history of QCD and its experimental support see
Close [4].

During the mid to late 1970s it was realized that there should be a
qualitative change in the properties of hadronic matter as the temperature
or density is increased. A dilute system could be described in terms of
pions, nucleons, and other hadrons. In a very dense system such extended
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136 Quantum chromodynamics

composite particles would overlap, and quarks and gluons would be free
to roam. There might even be a color-deconfinement phase transition at
a temperature of several hundred MeV or a baryon density of around ten
times the normal nuclear density. A phase transition from hadron gas to
quark–gluon plasma requires a very large energy density. Such a transition
could have occurred in the very early universe during the first microsecond
of the big bang, or it could occur in the interior of a neutron star or during
the collisions of large nuclei at very high energy in terrestrial accelerators.

The outline of this chapter is as follows. In Section 8.1 the Lagrangian
of QCD is discussed as well as the functional integral representation of
the partition function, including ghosts. Section 8.2 contains a brief dis-
cussion of asymptotic freedom, whereby the effective coupling decreases
to zero logarithmically at short distance. In Sections 8.3 and 8.4 the per-
turbative evaluation of the thermodynamic potential at high temperature
and density is surveyed and all known results are summarized. Section 8.5
discusses various limits of the gluon propagator, in various gauges that
are useful in linear response analyses. Instantons are nonperturbative,
topological, excitations which contribute to the thermodynamic poten-
tial, and a short introduction to them is given in Section 8.6. Unresolved
infrared problems which appear at high order in perturbation theory are
discussed in Section 8.7. Strange cold quark matter is analyzed in Sec-
tion 8.8. Finally, the very interesting problem of color superconductivity
is studied in Section 8.9. Applications of QCD to neutron stars, the big
bang, and high-energy heavy ion collisions will be made in later chapters.

8.1 Quarks and gluons

Quarks must come in three colors (color being a new, strong-interaction,
quantum number) in order that we may construct the observed hadrons
without violating the Pauli exclusion principle. The color gauge group
of QCD is SU(3). However, we may base our analysis more generally on
the group SU(N), N = 2, 3, . . . . The generators of the group are written
as Ga, where the index a runs in integral steps from 1 to N2 − 1. The
generators satisfy the commutation relations

[Ga, Gb] = ifabcGc (8.1)

where the fabc are the group structure constants. For example, for SU(2)
the group generators may be represented by the 2 × 2 Pauli matrices and
for SU(3) by the 3 × 3 Gell-Mann matrices.

The gauge field Aμ
a carries color with a color index a = 1, . . . , N2 − 1.

The field strength is

Fμν
a = ∂μAν

a − ∂νAμ
a − gfabcA

μ
bA

ν
c (8.2)
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8.1 Quarks and gluons 137

Here, the dimensionless coupling g enters. Under an infinitesimal gauge
transformation αa(x, t), the gluon field transforms as

Aμ
a → Aμ

a + gfabcA
μ
bαc − ∂μαa (8.3)

The field strength is not invariant, unlike in QED, since

Fμν
a → Fμν

a + gfabcF
μν
b αc (8.4)

However, its square is invariant since Fμν
a F a

μν → Fμν
a F a

μν .
The quarks come in N different colors, so the quark field ψ has a color

index i which runs from 1 to N (where N = 3 for SU(3)). The QCD
Lagrangian is

L = ψ̄(i∂ −M − g AaG
a)ψ − 1

4F
μν
a F a

μν (8.5)

The first term is the kinetic energy of the quarks. The second term is the
quark mass matrix, which is diagonal in flavor space (that is, referring to
the u, d, s, c, . . . quarks). The third term is the minimal coupling of the
quarks to the gluons. (Notice the suppression of the quark color indices in
(8.5). If Ga is represented by an N ×N matrix then ψ is represented by
an N -dimensional column vector in color space.) In order for this coupling
to be gauge invariant the quark field must transform as

ψ → exp(igGaαa)ψ (8.6)

The last term in (8.5) is gauge invariant by the construction of Fμν
a . When

g = 0, (8.5) describes massive noninteracting quarks and N2 − 1 massless
noninteracting “photons”.

The strong interactions conserve baryon number and electric charge.
They also conserve quark flavor (such as strangeness), but the weak inter-
actions allow for flavor change. Color charge is conserved by all known
interactions. The color current density is

ja(c)μ = g
(
ψ̄γμG

aψ + fabcF b
μνA

ν
c

)
= ∂νF a

νμ (8.7)

The second equality follows from the Lagrange equations of motion for
Aμ

a . The conservation law ∂μja(c)μ = 0 follows from the antisymmetry of
the field strength in its two Lorentz indices. The color charge generators
are

Qa
(c) =

∫
d3x ja(c)0 (8.8)

The non-observation of isolated quarks or gluons leads us to postulate
that only aggregates of quarks and gluons with zero net color charge, or
color singlets, have finite energy. Aggregates with net color should have
infinite energy. This would explain their absence. This color confinement
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138 Quantum chromodynamics

is a generally accepted consequence of QCD but apparently has never
been rigorously established.

Quantization proceeds in a way parallel to that of QED, discussed in
Section 5.1. Equation (5.24) corresponds to the QCD formula

Z =
∫

[dAμ
a ][dψ̄][dψ]δ(F b) det

(
∂F c

∂αd

)
exp

(∫ β

0
dτ

∫
d3x(L + ψ̄μγ0ψ)

)
(8.9)

The number of polarization degrees of freedom of the gluons is 2Ng =
2(N2 − 1) and F b is the gauge fixing function; there is one for each b =
1, . . . , N2 − 1. Summation over quark color and flavor indices is implied.

One set of gauges that is often used is the set of covariant gauges

F a = ∂μAa
μ − fa(x, τ) = 0 (8.10)

Under the infinitesimal gauge transformation (8.3),

F a → ∂μ
(
Aa

μ + gfabcAb
μα

c − ∂μα
a
)
− fa (8.11)

Then the argument of the determinant is

∂F c

∂αd
= −∂2δcd + gf cbd∂μAb

μ (8.12)

As usual, we multiply Z by

exp
(
− 1

2ρ

∫
dτ

∫
d3x f2

a

)
and integrate over fa to obtain

Z =
∫

[dAμ
a ][dψ̄][dψ] det

(
−∂2δac + gfabc∂μAb

μ

)
× exp

[∫
dτ

∫
d3x

(
L + ψ̄μγ0ψ − 1

2ρ
(∂μAa

μ)2
)]

(8.13)

As in (5.26) and (5.34), we introduce ghost fields C̄a and Ca to represent
the determinant in functional integral form:

Z =
∫

[dAμ
a ][dψ̄][dψ][dC̄a][dCa] exp

(∫
dτ

∫
d3xLeff

)
(8.14)

where

Leff = L − 1
2ρ

(∂μAa
μ)2 + gfabcC̄a∂μA

μ
bCc + ψ̄μγ0ψ + ∂μC̄a∂

μCa

In the covariant gauges the ghost field does not decouple from the gluon
field. The ghost field integration cannot be factored out.
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8.2 Asymptotic freedom 139

In Table 8.1 the diagrammatic rules for QCD in the covariant gauges
are listed. Table 8.2 contains a listing of the properties of the six quarks.
The numerical values of the quark masses depend on the precise way in
which they are defined, since freely propagating quarks do not exist. The
three light quark masses are evaluated at an MS scale of 2 GeV, while the
three heavy quark masses are evaluated at their own mass.

8.2 Asymptotic freedom

The renormalization-group running coupling for massless λφ4 theory, λR,
was discussed in Section 4.2. From (4.25) we saw that the effective cou-
pling grows at high energy, or equivalently at short distance. The phys-
ical interpretation is that a point charge is shielded, or screened, by
virtual pair production in the vacuum. As we approach the source of
the charge, we penetrate the screening cloud surrounding it. The effec-
tive charge we see becomes larger due to the loss of screening. In a
sense this is like penetrating the electron cloud surrounding an atomic
nucleus. The difference is that the atomic electrons are real particles
nearly on their mass shell. Electronic screening is essentially a classi-
cal effect. The increase in the renormalization-group charge is effected in
the lowest approximation by virtual particles and so is a purely quantum
effect.

To lowest order in the coupling constant, a β-function is either positive
(the charge grows at short distance) or negative (the charge decreases
at short distance). Until 1973, examples of only the former were known.
The discovery that only nonabelian gauge theories allow for a negative
β-function is credited to Politzer [1] and to Gross and Wilczek [2]. They
showed that QCD yields a charge that decreases at short distance, an
effect called asymptotic freedom that is required by experiment. This
discovery was not anticipated by any simple intuitive reasoning. Let us
examine the renormalization-group as it applies to QCD with massless
quarks and in the set of covariant gauges.

The renormalization-group equation for the irreducible vertex function
for n gluon and n′ massless quark fields is (see the discussion leading to
(4.13))

(
M

∂

∂M
+ β(g, ρ)

∂

∂g
+ δ(g, ρ)

∂

∂ρ
+ nγA(g, ρ) + n′γψ(g, ρ)

)
×Γn,n′

(p1, . . . , pn+n′ ; g, ρ,M) = 0 (8.15)

Here δ is the “β-function” corresponding to the gauge parameter ρ.
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140 Quantum chromodynamics

Table 8.1. Bare propagators and vertices in QCD in covariant gauges

Quark p
i j Gij =

δij
p−m

, p0 = iωn + μ

Gluon
k

a b Dμν =
δab
k2

(
gμν − (1 − ρ)kμkν

k2

)

Ghost Wab =
δab
k2

i j

μ, a

ΓF
0 = gγμGa

ij

k

b c

μ, a

ΓG
0 = −igfabckμ

r(β, b) q(γ, c)

k(α, a)

ΓV
0(3) = igfabc [gβγ(r − q)α

+ gαβ(k − r)γ
+ gγα(q − k)β ]

q(β, b)

k(α, a)

r(γ, c)

s(δ, d)

ΓV
0(4) = −g2 [fadefebc (gαβgδγ − gαγgδβ)

+ fabefedc (gαδgβγ − gαγgδβ)
+ facefedb (gαδgβγ − gαβgδγ)]
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8.2 Asymptotic freedom 141

Table 8.2. Quark properties

Flavor Electric charge Baryon number Mass

u (up) 2/3 1/3 3 MeV
d (down) −1/3 1/3 7 MeV

s (strange) −1/3 1/3 120 MeV

c (charm) 2/3 1/3 1.2 GeV

b (bottom) −1/3 1/3 4.25 GeV

t (top) 2/3 1/3 175 GeV

There is a Ward identity for QCD which states that the longitudinal
part of the inverse gluon propagator is not altered by interactions. That
is,

Γ2,0
L =

pμpν

ρ
(8.16)

This is the same as in QED (see (5.46)). Application of (8.15) to (8.16)
then yields the relation

δ(g, ρ) = 2ργA(g, ρ) (8.17)

This points to the advantage of the Landau gauge ρ = 0; in this gauge
δ(g, 0) = 0. Hence, starting with ρ = 0 we are guaranteed that after renor-
malization ρ = 0 will remain true, on account of the renormalization group
equation

M
∂ρ̄

∂M
= δ(ḡ, ρ̄) (8.18)

Otherwise, we must keep ρ arbitrary in our equations. For example, ρ = 1
will not remain as such under application of the renormalization group.

The γ’s may be obtained most directly from Γ2,0
T and Γ0,2. To lowest

order in g we must evaluate the following diagrams:

+ + +
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142 Quantum chromodynamics

If these are normalized to have their free-field values at p2 = −M2 (accord-
ing to Euclidean momentum subtraction) then

Γ2,0
T = (p2gμν − pμpν)

{
1 +

[(
13
6

− 1
2
ρ

)
c1 − 4

3
c2

]
g2

16π2
ln
(
− p2

M2

)}
(8.19)

Γ0,2 = p
[
1 − ρ c1

g2

16π2
ln
(
− p2

M2

)]
(8.20)

The c’s are given by

facdfbcd = c1δab = Nδab
(8.21)

Nf Tr GaGb = c2 δab =
1
2
Nf δab

and Nf is the number of quark flavors. If we apply (8.15) to (8.19) and
(8.20), and after differentiation set p2 = −M2, we can solve for the γ’s:

γA =
g2

16π2

[(
13
6

− 1
2
ρ

)
c1 − 4

3
c2

]
(8.22)

γψ = − g2

16π2
ρc1 (8.23)

It is not possible to determine the β-function in these covariant gauges
with knowledge of the two-point functions (propagators) alone.

Knowledge of a three-point function would suffice to determine β. From
the following diagrams,

+ + +

we compute

Γ3,0 = −igfabc(gβγpα + gαβpγ − 2gγαpβ)

×
{

1 +
[(

17
12

− 3
4
ρ

)
c1 − 4

3
c2

]
g2

16π2
ln
(
− p2

M2

)}
(8.24)

and from

+
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8.2 Asymptotic freedom 143

we compute

Γ1,2 = −gγμGa

[
1 −

(
3
4

+
5
4
ρ

)
c1

g2

16π2
ln
(
− p2

M2

)]
(8.25)

These are computed with external momenta (p1, p2, p3) = (0,−p, p) and
normalized at p2 = −M2. Application of (8.15) to either (8.24) or (8.25)
yields the lowest-order renormalization-group β-function,

β = − g2

48π2
(11N − 2Nf) (8.26)

This will be negative, and the running coupling g will decrease with
increasing energy, as long as Nf < 5.5N . This condition is fulfilled for
SU(3), with six quark flavors.

It is worthwhile remarking that knowledge of the gluon two-point func-
tion in the Coulomb gauge (∇ · Aa = 0) and the axial gauge (n ·A = 0,
where n is a fixed four-vector) is sufficient to determine β. The reason
is that the noncovariance of these gauges provides a tensorial structure
for the gluon propagator and self-energy that requires two independent
scalar functions, even in the vacuum (see Sections 5.4 and 6.3). These two
independent scalar functions then allow the determination of both γA and
β. The result is identical to (8.26).

The renormalization-group running coupling is determined by (see
Section 4.2)

M
∂ḡ

∂M
= β(ḡ) (8.27)

with solution

ᾱ =
ḡ2

4π
=

12π
(11N − 2Nf) ln(M2/Λ2)

(8.28)

This explicitly displays asymptotic freedom: ᾱ → 0 as M → ∞. Notice
the absence of any intrinsic coupling “constant” on the right-hand side
of (8.28). In its place as the free parameter of the theory is the QCD
energy scale Λ. The numerical value of Λ is, however, dependent on
the gauge and on the renormalization scheme chosen (for example, this
might be the choice used in (8.24) and (8.25)). This is seen in higher
order.

Finite quark masses can be incorporated into the renormalization-group
analysis by adding to the differential operator in (8.15) a term

γm

(
g, ρ,

mf

M

)
mf

∂

∂mf
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144 Quantum chromodynamics

for each quark flavor f. That is, mf/M is treated as a dimensionless cou-
pling constant. The quark mass may be defined by

G−1|p2=−M2 =p−m (8.29)

This is one possible renormalization prescription, but there exist others.
A direct computation of β and γm in the Landau gauge yields [5]

M
∂g

∂M
= β = − g3

48π2

⎡⎣11N − 2
3

∑
f

B0

(
m2

f

M2

)⎤⎦ (8.30)

where

B0(x) = 1 − 6x + 12
(
x2

y

)
ln
(
y + 1
y − 1

)
y =

√
1 + 4x (8.31)

and

M

m

∂m

∂M
= γm = − g2

2π2
C0

(
m2

M2

)
(8.32)

C0(x) = 1 − x ln(1 + x−1) (8.33)

Good approximations for B0 and C0 are

B0(x) � (1 + 5x)−1

C0(x) � (1 + 2x)−1 (8.34)

(We have now removed the overbar from g and m and will denote the
running coupling and mass by g and m for notational simplicity.)

In general, (8.30) and (8.32) form a set of Nf + 1 coupled first-order
nonlinear differential equations that must be solved numerically. The basic
features of these equations are readily understood in the following way.
The running coupling can be written as

g2

4π
=

12π[
11N − 2N eff

f (M)
]
ln(M2/Λ2)

(8.35)

where

N eff
f (M) � 1

ln(M2/Λ2)

∑
f

M2 + m2
f (M)

Λ2 + m2
f (M)

(8.36)

is the effective number of quark flavors at the energy scale M . Equations
(8.35) and (8.36) form a solution to (8.30) valid to the lowest order in
g. If mf(M) is small then it contributes to β, but if it is large then it
decouples. That is, if the quark mass is large compared with the energy
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8.2 Asymptotic freedom 145

scale of interest then there is insufficient energy for pair production, so
that flavor does not add to the charge screening.

As an example, consider the first three quark flavors with mu = md =
0 but ms = 0. We look at high energy where M � ms. Then g2/4π �
2π/[9 ln(M/Λ)] can be inserted into (8.32):

dms

dM
= − 4

9 ln(M/Λ)
ms

M
(8.37)

This has the solution

ms(M) = ms0

[
ln(M0/Λ)
ln(M/Λ)

]4/9

(8.38)

where ms0 is the mass at the scale M0. The monotonic decrease in quark
mass with increasing energy is in fact a general feature of (8.32), since
γm < 0.

The β-function has been computed to two loops, that is, to order g5

(the reader is referred to [6] for a more detailed discussion of massive
quarks). For massless quarks [7],

β = − (11N − 2Nf)
g3

48π2
−
(

34N2 − 13NNf + 3
Nf

N

)
g5

768π4

≡ −β0g
3 − β1g

5 (8.39)

which is still gauge and prescription independent. An approximate solu-
tion of the renormalization-group equation is

α2(M) = α1(M) − 4π
(
β1

β0

)
α2

1(M) ln
(

1
α1(M)

)
(8.40)

where α1(M) = 1/[4πβ0 ln(M2/Λ2)] is the lowest-order solution. Correc-
tions to (8.40) are of order α3

1(M) ∼ [1/ ln(M2/Λ2)]3. For QCD with Nf =
3, α2(M) = α1(M) + 0.0354α2

1(M) lnα1(M). Thus, when α1(M) � 1 we
have α2(M) � α1(M) to rather good accuracy.

The thermodynamic potential Ω must be independent of gauge and of
renormalization prescription since it is a measurable quantity. However,
the way this works in practice can be rather subtle. For example, if we
work in a covariant gauge then

d

dρ
Ω(g(ρ), ρ) =

(
∂

∂ρ
+

∂g

∂ρ

∂

∂g

)
Ω(g(ρ), ρ) = 0 (8.41)

must hold, not ∂Ω(g, ρ)/∂ρ = 0. The reason is that g depends on the
gauge and on the renormalization prescription used to render it finite
from its bare value.
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8.3 Perturbative evaluation of partition function

Since the effective QCD coupling goes to zero logarithmically at short
distances, it is reasonable to attempt a perturbative expansion of the
thermodynamic potential at high energy density [8, 9, 10]. In this and the
next section we summarize the results so far obtained. Possible limits to
the usefulness of perturbation theory will be discussed in later sections,
as will some applications of the formulae obtained here. In the following
discussion we quote perturbative results for the pressure P (T, μ). The
entropy density s = ∂P/∂T , flavor densities nf = ∂P/∂μf , and energy
density ε = −P + Ts +

∑
f μfnf are computed straightforwardly.

To zero order in the coupling, the QCD plasma is an ideal gas of gluons
and quarks. The pressure can be written down immediately from (1.31)
and (1.32):

P0 =
π2

45
NgT

4 +
N

3π2

∑
f

∫ ∞

0

dp p4

Ep
NF(p) (8.42)

where Ng = N2 − 1 is the number of gluons, which is eight for SU(3).
When mf = 0 the integral in (8.42) can be evaluated in closed form. The
contribution to the pressure is

P0f (mf = 0) = N

(
7π2T 4

180
+

μ2
fT

2

6
+

μ4
f

12π2

)
(8.43)

The exchange corrections to the ideal gas pressure are of order g2. The
relevant diagrams are shown below:

−1
2 − 1

2 + 1
12 + 1

8 (8.44)

The diagram with the quark loop is analyzed exactly as the QED dia-
gram in (5.39) but with the replacement e2 → g2 Tr GaGa = 1

2g
2Ng. Then

(5.58) to (5.61) can be taken over straightforwardly. The ghost dia-
gram and the two pure gluon diagrams can be evaluated by means that
should now be familiar. Since these are two-loop diagrams, the unrenor-
malized contributions will have parts that are quadratic and linear in
the massless boson occupation probability (eβω − 1)−1. (Parts that are
T -independent only renormalize the vacuum energy and these are dis-
carded.) The subtraction procedure eliminates the linear parts. The three
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diagrams contribute, in respective order,

P gluon
2 = g2NNg

(∫
d3p

(2π)3
1
ω

1
eβω − 1

)2(
−1

4
+

9
4
− 3
)

= − g2

144
NNgT

4 (8.45)

This result is gauge invariant, although the individual diagrams are not.
As in QED and in massless λφ4 theory, the next contributions are not

of order g4; they are of order g4 ln g2 and g3. These come from the set of
ring diagrams

1
2

[
1
2

Π

Π

− 1
3

Π

ΠΠ

+ · · ·
]

where

Π = + − 1
2 − 1

2

(8.46)

The analysis proceeds exactly in parallel with that in subsection 5.5.2.
What is needed is the static infrared limit of Πμν . This will be discussed
more thoroughly in a later section, and for now we simply quote the result
at T > 0,

P
(1)
ring =

Ng

12π
Tm3

el (8.47)

where

m2
el = F (n = 0,k → 0) = −Π00(n = 0,k → 0)

= g2

⎛⎝1
3
NT 2 +

1
2π2

∑
f

∫ ∞

0

dp

Ep
(p2 + E2

p)NF(p)

⎞⎠ (8.48)

is the square of the inverse screening length for color charge. When all
quark masses can be neglected, we have

m2
el = g2

⎡⎣(1
3
N +

1
6
Nf

)
T 2 +

1
2π2

∑
f

μ2
f

⎤⎦ (8.49)

It should be noted that (8.47) and (8.48) have been obtained in the
covariant gauges, in the Coulomb gauge, and in the temporal axial gauge
(Aa

0 = 0). If, in addition, the lowest-order momentum dependence of Π00
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is retained,

−Π00 = m2
el − 1

4Ng2|k|T + · · · (8.50)

then one obtains a g4 ln g2 term not present in QED [11],

P
(2)
ring =

NNg

65π2
T 2m2

el g
2 ln g2 (8.51)

However, this term is not precisely defined until the full order-g4 contri-
bution at finite temperature is determined. This will be discussed in the
next section.

At T = 0, the three loop diagrams that are not already included in the
ring sum are

+ + (8.52)

The first two diagrams are analogous to those of QED, (5.77), but the
last is peculiar to QCD on account of the three-gluon coupling. These
diagrams are technically quite involved, owing to overlapping ultraviolet
divergences. The interested reader is referred to Freedman and McLerran
[12] and Baluni [13] for their evaluations. The result of summing the ring
diagrams (8.46) together with (8.52) is

Pring + P4 =
1

4π2

⎧⎨⎩∑
f

μ4
f

[
Ng

11N − 2Nf

3

(
α(M)

4π

)2

ln

(
μ2
f

M2

)

+Ng

(
−2.250N + 0.409Nf − 3.697 − (4.236)

N

)
×
(
α(M)

4π

)2
]
− (μ2)2Ng

[
2 ln

(
α(M)

4π

)
− 0.476

]

×
(
α(M)

4π

)2

−NgF̄ (μ)
(
α(M)

4π

)2
}

(8.53)

where μ = (μu, μd, μs, . . .) and

F̄ (μ) = −2μ2
∑
f

μ2
f ln

(
μ2
f

μ2

)
+

2
3

∑
i>j

[
(μi − μj)4 ln

(
|μ2

i − μ2
j |

μiμj

)

+ 4μiμj(μ2
i + μ2

j ) ln
(

(μi + μj)2

μiμj

)
− (μ4

i − μ4
j ) ln

(
μi

μj

) ]
(8.54)

These formulae were obtained in the Landau gauge using the momen-
tum subtraction scheme; that is, the gluon self-energy was renormalized
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in such a way that F (k̄2 = M2,μ = 0) = G(k̄2 = M2,μ = 0) = 0. The
corresponding formulae for nonzero quark masses have not been
computed.

It should be noticed that the pressure in (8.53) depends explicitly
on the renormalization energy scale M . To avoid the large logarithms,
ln(μ2

f /M
2), that would appear if μf → ∞ while M is fixed, we should

choose M in an optimum way. There is an arbitrariness in this, but a
natural choice would be M2 = μ2 and another would be M2 = μ2/Nf . Of
course, if we could sum all orders of perturbation theory it would not mat-
ter. Truncating at a finite order means that we should choose an optimum
M to reduce the importance of the terms neglected.

The QCD coupling g is not a fixed quantity. It depends on the
gauge and on the renormalization prescription. This dependence is not
apparent at order g2 but first arises at order g4. Thus, consider two
gauges and/or prescriptions labeled i and j. One can show that (see for
example [14])

g2
i = g2

j (1 + Aijg
2
j + · · · ) (8.55)

where Aij is a computable number. The QCD scale Λ thus also depends
on the gauge and/or prescription. Putting together (8.28), (8.39), and
(8.55) we find that

Λi

Λj
= exp

(
Aij

2β0

)
(8.56)

These features of QCD must be kept in mind when using high-order per-
turbation theory. For example, the numerical coefficient of α2 in (8.53) is
gauge and prescription dependent, in just such a way that when (8.55) is
used the pressure is independent of gauge and prescription to this order
(see also Section 8.2).

8.4 Higher orders at finite temperature

As we have seen previously, the simplest possible interaction yields a
contribution to the pressure that is of order g2. Owing to the summation
implied by the ring diagrams, there are then contributions of order g3 and
g4 ln g2. By now it should be clear that one cannot determine the order
of a diagram by simply counting the number of interaction vertices, if
the diagram requires resummed gluons. This resummation procedure has
the great advantage of curing potential infrared divergences, as already
seen in Chapters 3 and 5, because in effect the resummation induces a
mass which is the static infrared limit of the self-energy. Calculations of
the pressure to order g4 and order g5 have used the following strategy
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in order to improve the convergence of the perturbation expansion. One
redefines the Lagrangian according to

L → (L + 1
2m

2
elA

a
0A

a
0δp0,0

)− 1
2m

2
elA

a
0A

a
0δp0,0 (8.57)

where L is the original Lagrangian in frequency–momentum space, A0

is the zeroth component of the color gauge field, and p0 = 2πnTi is the
zeroth component of its momentum. With this redefinition, the term in
parentheses becomes the unperturbed Lagrangian and the other term cre-
ates a thermal counterterm, necessary to avoid double-counting. Following
this scheme, the g4 term receives contributions from the sub-leading part
of the two-loop diagrams as well as from the leading part of the three-loop
diagrams. The complete finite-temperature g4 result for gauge fields with
fermions was obtained by Arnold and Zhai [14] and it is (for zero chemical
potential)

P = dAT
4π

2

9

{
1
5

(
1 +

7dF

4dA

)
−
( g

4π

)2
(
CA +

5
2
SF

)
+

16√
3

( g

4π

)3
(CA + SF)3/2

+ 48
( g

4π

)4
CA(CA + SF) ln

(
g

2π

√
CA + SF

3

)

−
( g

4π

)4
C2

A

[
22
3

ln
(

M

4πT

)
+

38
3
ζ ′(−3)
ζ(−3)

− 148
3

ζ ′(−1)
ζ(−1)

− 4γE +
64
5

]
−
( g

4π

)4
CASF

[
47
3

ln
(

M

4πT

)
+

1
3
ζ ′(−3)
ζ(−3)

− 74
3
ζ ′(−1)
ζ(−1)

− 8γE +
1759
60

+
37
5

ln 2
]

−
( g

4π

)4
S2

F

[
−20

3
ln
(

M

4πT

)
+

8
3
ζ ′(−3)
ζ(−3)

− 16
3
ζ ′(−1)
ζ(−1)

− 4γE − 1
3

+
88
5

ln 2
]
−
( g

4π

)4
S2F

(
−105

4
+ 24 ln 2

)}
(8.58)

In the equation above, ζ is Riemann’s zeta function, γE is Euler’s constant,
and M is the renormalization scale in the modified minimal subtraction
scheme, MS. For SU(N) with Nf fermions one may write dA = N2 − 1,
CA = N , dF = NNf , SF = Nf/2, S2F = (N2 − 1)Nf/4N .
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The extension of those techniques to one order higher by Zhai and
Kastening [16] yields the g5 term:

P5 =
( g

4π

)5
(
CA + SF

3

)1/2

×
{
C2

A

[
176 ln

(
M

4πT

)
+ 176γE − 24π2 − 494 + 264 ln 2

]
+ CASF

[
112 ln

(
M

4πT

)
+ 112γE + 72 − 128 ln 2

]
+ S2

F

[
−64 ln

(
M

4πT

)
− 64γE + 32 − 128 ln 2

]
− 144S2F

}
(8.59)

As will be discussed in Section 8.7, the hopes of pursuing an order-by-
order expansion in finite-temperature QCD are too optimistic. The ana-
lytic expansion has serious infrared problems. Postponing a discussion of
these aspects, it suffices here to say that for the pressure, this problem
is met at order g6. Kajantie et al. [17] evaluated perturbatively the last
calculable contribution, that of order g6 ln(1/g2). This result is partly a
conjecture, as this order receives a contribution from the complete O(g6)
term. However, without going into the details, general arguments based
on the pattern of singularity cancellation order by order can be given in
order to make progress. The interested reader may consult the quoted
reference for a discussion of these technical aspects. The pressure at order
g6 ln(1/g2) with Nf flavors is given by these authors as

P6 =
8π2

45
T 4

(
αs(M)

π

)3
{[

−659.2− 65.89Nf − 7.653N2
f + 742.5

(
1 +

1
6
Nf

)
×
(

1 − 2
33

Nf

)
ln
(

M

2πT

)]
ln
[
αs

π

(
1 +

1
6
Nf

)]
− 475.6 ln

(αs

π

)
+ qa(Nf) ln2

(
M

2πT

)
+ qb(Nf) ln

(
M

2πT

)
+ qc(Nf)

}
(8.60)

where qa(Nf), qb(Nf), qc(Nf) are polynomials in Nf . The polynomials qa,b
may be written down using the cancellation pattern alluded to earlier:

qa(Nf) = −1815
16

(
1 +

5
12

Nf

)(
1 − 2

33
Nf

)2

qb(Nf) = 2932.9 + 42.83Nf − 16.48N2
f + 0.2767N3

f (8.61)

The last polynomial, qc(Nf), is the one that receives a nonperturbative
contribution and is as yet uncalculated.
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Fig. 8.1. Perturbative results for the pressure at various orders, including g6

with an optimal constant, normalized to the noninteracting Stefan–Boltzmann
value PSB (Kajantie et al. [17]), against the scaled temperature.

It is instructive to examine the convergence of the perturbative expan-
sion term by term. This is shown in Figure 8.1 for the pure gluon case
with N = 3 and Nf = 0. The ratio of the pressure and its value in the
Stefan–Boltzmann limit is plotted against the reduced temperature. At
high temperatures, the pressure tends to the Stefan–Boltzmann limit.

8.5 Gluon propagator and linear response

In applying linear response theory to nonabelian gauge theories one must
be careful to distinguish between gauge-invariant, physically observable,
quantities and gauge-noninvariant quantities. The latter may still be rele-
vant, though, provided that we can construct some observable out of them.
This can be demonstrated with color electric screening.

The components of the color electric field,

Ea
i = F a

i0 = ∂iA
a
0 − ∂0A

a
i − gfabcAb

iA
c
0 (8.62)

are not gauge invariant, unlike the electric field of QED, which is gauge
invariant. Thus color electric screening as a physical phenomenon cannot
be demonstrated on the basis of the color electric field alone. However,
screening can be examined by computing the free energy V of a static,
color-singlet (total color charge zero), quark–antiquark pair as a function
of separation R. This can be done most directly in the temporal axial
gauge (TAG) Aa

0 = 0, for in this gauge the electric field is

Ea = −∂Aa

∂t
TAG (8.63)
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Then the analysis of Section 6.3 can be applied, with the result that the
static dielectric function is (cf. (6.64))

ε(q) = 1 +
F (0,q)

q2 , TAG (8.64)

The scalar function F must be computed in TAG. Referring to (6.58) and
(8.46) (except that in the latter there is no ghost diagram) one finds that,
for the pure TAG gluon contribution† [19],

Πmat
00 (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
[
4 − (q2 − 2kq0 − q2

0)(2k + q0)2

2k2(k + q0)2
+

(2k + q0)2

2kq

+
(

1 +
(k2 + (k + q0)2 − q2)2

4k2(k + q0)2

)
ln
(
R+

R−

)]
(8.65)

Πmat
ii (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

×Re
[
12 − 2

(k + q0)2

(
8k2 − q2 − q4

4k2
+ 9q0(q0 + 2k)

− 5q2

4k2
(q0 + 2k)q0 +

3q2
0

2k2
(q0 + 2k)2

)
+

1
2kq

{
− q2 + 10k2 + 10(k + q0)2

− 1
2k2(k + q0)2

[k2 + (k + q0)2 − q2]2

× [3k2 + 3(k + q0)2 + 1
2q

2]
}

ln
(
R+

R−

)]
(8.66)

where q = |q|, q0 = 2πnTi, R± = q2 − 2kq0 − q2
0 ± 2kq, and Re means

that the even part of the following function of q0 shoud be taken. The
quark matter contributions are given by (5.51) with the substitution

† The axial-gauge pole 1/(n · p) can be handled in one-loop diagrams with the principal
value (PV ) prescription. For example,

P.V.
1

n · p = lim
ε→0

1

2

(
1

n · p + iε
+

1

n · p− iε

)
see [18]. This makes sense in TAG at T > 0 only after analytic continuation of p0 and
replacement of frequency sums by contour integrals.
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e2 → 1
2g

2. In the following discussion, we will need only the static limit
of the vacuum contribution,

F vac(0, q) =
g2

48π2
(11N − 2Nf)q2 ln

(
q2

M2

)
TAG (8.67)

Recall that Πμν is related to F and G in TAG just as in (5.46).
Consider the vacuum dielectric function. Inserting (8.67) into (8.64),

we obtain the vacuum-polarization-corrected effective charge

ḡ2(q) =
g2

ε(q)
=

g2

1 + (g2/48π2)(11N − 2Nf) ln(q2/M2)

=
48π2

(11N − 2Nf) ln(q2/Λ2)
(8.68)

which is the same as the renormalization-group charge.
The situation in other gauges is not so simple. Consider the set of

covariant gauges (COVG). Then from (8.62) the color electric field has
terms that are linear or quadratic in the vector potential. To find the linear
response to an applied color electric field (such as that due to stationary
quarks) we need to compute the correlation function between two electric
field operators, and that entails knowledge of not only the propagator but
also the three- and four-point gluon functions

〈AμAνAα〉 〈AμAνAσAγ〉
There is also the complication of the ghost field. What happens if we
neglect the nonlinearity in (8.62) and naively apply (8.64)? From (8.19)
we have

F vac(0, q) =
g2

48π2

[(
13
12

− 3
2
ρ

)
N − 2Nf

]
q2 ln

(
q2

M2

)
COVG (8.69)

This does not yield the correct renormalization-group-improved charge,
nor does it yield the correct vacuum-polarization-corrected potential
between stationary quarks. This should be expected. In Section 8.2 we
found that knowledge of the gluon propagator alone was not sufficient to
determine the β-function in the covariant gauges, although it was suffi-
cient in the axial gauges.

Computation of the free energy, as a function of separation, of the static
quark–antiquark pair at T > 0 (in TAG) proceeds just as in QED. At large
separation,

V (R) =
Q1 ·Q2

4π
e−melR

R
(8.70)
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In the color-singlet state, the product of charges is Q1 ·Q2 = −g2Ng/2N .
Since (8.70) is physically measurable (at least in principle!), mel must be
gauge invariant. In TAG, it is given by

m2
el = F (0,q → 0) TAG (8.71)

which is an exact relation.
To one-loop order, all gauges receive the same contribution to Πμν from

dynamical quarks. To focus on the essentials, we shall consider a quark-
free world in the remainder of this section.

In the Feynman gauge (FG, ρ = 1), the T > 0 contribution to the gluon
self-energy is

Πmat
00 (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
{

4 +
1
qk

[(q0 + 2k)2 − 2q2] ln
(
R+

R−

)}
(8.72)

Πmat
ii (q0, q) =

g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
[
4 +

1
qk

(
4q2

0 − 4kq0 − 4k2 − 3q2
)
ln
(
R+

R−

)]
(8.73)

These are not the same as (8.65) and (8.66). Thus Πμν , and the functions
F and G, are not gauge invariant in nonabelian gauge theories.

From the perspective of screening, the interesting limit is q0 = 0, |q| =
q → 0 . One finds that in TAG

F (0, q → 0) = −Π00(0, q → 0)

= 1
3g

2NT 2 − 1
4g

2NTq − 11
48

g2

π2
Nq2 ln

(
q2

T 2

)
+ · · ·

(8.74)
G(0, q → 0) = 1

2Πii(0, q → 0) = − 5
16g

2NTq + · · · (8.75)

and in FG

F (0, q → 0) = −Π00(0, q → 0) = 1
3g

2NT 2 − 1
4g

2NTq + · · · (8.76)

G(0, q → 0) = 1
2Πii(0, q → 0) = − 3

16g
2NTq + · · · (8.77)

There are a number of interesting aspects to these results. The first two
terms of (8.74) and (8.76) are identical. This would not have been expected
on the basis of our earlier discussion of electric screening. The reason that
they are, and must be, the same is that these first two terms of F give rise
to the order g3 and order g4 ln g2 terms in the pressure via summation
of the ring diagrams (recall Section 6.5). The coefficients of all terms in
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the pressure up to (but not including) g4 must be gauge independent, on
account of (8.55). The third term of (8.74) combines with the vacuum
contribution to yield

11
48

g2

π2
Nq2 ln

(
T 2

M2

)
So again we see that we should choose M proportional to T to eliminate
potentially large logarithms at high temperature. The first nonzero term
of G is gauge dependent. This will be discussed further in Section 8.7.

Plasma oscillations may be discussed in a manner parallel to the dis-
cussion in Section 6.6. In TAG, a physical gauge with the proper number
of gluon-polarization degrees of freedom and no ghosts, one finds that
the long-wavelength dispersion relations for transverse and longitudinal
oscillations are

ω2
T = ω2

P + 6
5k

2 + · · ·
ω2

L = ω2
P + 3

5k
2 + · · ·

(8.78)

where ω2
P = g2NT 2/9. These waves are damped with damping constant

γT = γL = g2NT/24π. The short-wavelength longitudinal oscillations are
overdamped and do not propagate. The transverse oscillations have the
spectrum

ω2
T = k2 + 3

2ω
2
P + · · · (8.79)

and to order g2 are not damped by thermal effects.
A proper linear response analysis has also been done in another gauge,

the Coulomb gauge [20]. The results are identical to (8.78) and (8.79).
If one tries to do a cheap analysis in an unphysical gauge by simply
searching for the poles of the gluon propagator, one obtains certain erro-
neous results. For example, in the Feynman gauge one recovers (8.78)
and (8.79), but the damping constant is a factor 5 too large and of the
opposite (wrong) sign. In addition, short-wavelength longitudinal waves
propagate with ω2

L = k2 + · · · , which is unphysical.
It must be acknowledged that, at this time, color plasma waves are

an enigma. Whether they represent physically observable phenomena has
not been rigorously established.

8.6 Instantons

Instantons are nonperturbative solutions of the classical field equations
which carry topological charge. After their discovery by Belavin et al.
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[21] it was hoped that they would provide a means of understanding con-
finement. That has turned out not to be the case. In QCD their effects
are reliably computed only at short distance (or high temperature). In
this domain, it has been found that they are always dominated by per-
turbative corrections. For this reason, and because the mathematics of
instantons can become quite involved, this brief section will present only
an overview.

Instantons contribute to the partition function in addition to all per-
turbative contributions. Although not quantitatively important in their
own right, these nonperturbative solutions are of course interesting in
principle. They have also been used in a more phenomenological way to
understand various aspects of chiral symmetry breaking and restoration
and hadronic structure.

Consider an SU(2) gauge field theory without quarks. It is advantageous
in this context to work in Euclidean space, with Greek indices running
from 1 to 4. Define the matrix functions

Aμ = −ig
(

1
2σ

a
)
Aa

μ

Fμν = −ig
(

1
2σ

a
)
F a
μν

(8.80)

The action is

S =
1

2g2

∫
d4xTr(FμνF

μν) (8.81)

and the classical equations of motion are

∂μFμν + [Aμ, Fμν ] = 0 (8.82)

We make the ansatz that

Aμ = iσ̄μνa
ν (8.83)

where aν is spacetime dependent, and we define the following objects:

σij = −i
[

1
2σi,

1
2σj
]

σi4 = 1
2σi

σμν = −σνμ

σ̄ij = σij

σ̄i4 = −σi4

(8.84)

With a dual defined by

∗σμν = 1
2εμναβσ

αβ
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we find that
∗σμν = σμν self-dual
∗σ̄μν = −σ̄μν antiself-dual (8.85)

The equations of motion are satisfied when

aμ = ∂μ ln φ

∂2φ = 0
(8.86)

This solution is said to be self-dual because ∗Fμν = Fμν . An antiself-dual
solution (with ∗Fμν = −Fμν) is obtained with

Aμ = iσμνa
ν (8.87)

In both cases the classical action can be expressed as

S =
1

2g2

∫
d4x ∂2∂2 ln φ (8.88)

For the solution of Laplace’s equation we have

φ(x) = 1 +
n∑

i=1

λ2
i

(x− yi)2
(8.89)

where each λi is a real number and each yi is a fixed vector. Clearly yi
represents the position of some object and λi its size. When this solution
is used in the self-dual ansatz, it is said to represent n instantons; when it
is used in the antiself-dual ansatz it is said to represent n anti-instantons.
The instantons and anti-instantons represent tunnelings between different
states.

These field configurations can be characterized by a topological charge
q, a gauge invariant, called a Pontryagin index:

q =
1

16π2

∫
d4xTr (∗FμνF

μν) (8.90)

A direct calculation shows that q = n for the n-instanton solution and
q = −n for the n-anti-instanton solution. There is no known exact solu-
tion for n instantons and n′ anti-instantons. It is not possible to change
the Pontryagin index by a smooth deformation of the gauge field. Since
perturbative calculations always start with Aμ = 0 and q = 0, the instan-
tons and anti-instantons make topologically distinct contributions to the
functional integral.

When computing the partition function at T = 0 (useful for calculat-
ing vacuum correlation functions), the most straightforward approach is
to treat the instantons and anti-instantons as individual, noninteracting
objects (the dilute gas approximation, DGA). Only instantons with q = 1
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and anti-instantons with q = −1 are included. One-loop quantum correc-
tions can be included by writing

Aμ = Acl
μ + A′

μ

where Acl
μ is the classical solution, expanding the Lagrangian in powers

of A′
μ and dropping terms cubic and quartic in A′

μ. That is, the quantum
fluctuations must be calculated in the presence of a background instan-
ton (or anti-instanton) field. For SU(N), the SU(2) instantons must be
embedded in the appropriate fashion. The calculations of t’Hooft [22],
in particular, are a tour de force of mathematical physics. The result is
simple and elegant. It is (assuming no state mixing)

ln ZDGA = 2CNV β

∫ ∞

0

dλ

λ5

(
4π2

g2

)2N

exp
(
−8π2

ḡ2

)
(8.91)

We make the following remarks.

1 The exponential of the classical action is evident.
2 The factor V β is the total spacetime volume.
3 The factor 2 arises because both instantons and anti-instantons are

included.
4 The factor CN is group-theoretic in origin. In the Pauli–Villars regular-

ization scheme,

CN =
4
π2

exp [−0.433 − 0.292(N − 2 −Nf)]
(N − 1)!(N − 2)!

(8.92)

5 Integration over scale size λ must be done. The power −5 of λ arises
from the scale size and from the four components of the position coor-
dinate. It also is required so that ln Z is dimensionless.

6 Quantum fluctuations amount to replacing the coupling constant g2

with the renormalization-group running coupling

ḡ2 =
24π2

(11N − 2Nf) ln(1/λΛR)
(8.93)

in the exponential factor, although this replacement is presumed to
happen (at the next order) in the pre-exponential factor as well. Here
ΛR is the QCD scale parameter in the Pauli–Villars scheme.

7 There should be an additional factor in ln ZDGA, which is∏
f

(mfλ)

for each light quark (mf < λ−1) flavor. Light quarks greatly suppress
instantons.
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8 The integral over λ does not exist: it diverges for large λ. Thus one
must go beyond the dilute gas approximation in the QCD vacuum and
confront the infrared confinement problem.

The way to avoid point 8 is to focus on a physical circumstance which
provides a natural cutoff on instanton size λ. For example, we could
consider computing instanton-induced corrections to the process e+e− →
hadron jets at high energy. A cutoff would then be supplied by the center-
of-mass energy

√
s; the dominant contribution should come from instan-

ton scale sizes λ ≈ 1/
√
s. Another circumstance, of interest to us, is the

contribution of instantons to the thermodynamic potential of a high-
temperature quark–gluon plasma. At high temperatures, color electric
fields should be screened just as in QED plasma. The temperature should
provide an infrared cutoff on instanton sizes.

It is possible to generalize these solutions to finite temperature. We
still work in Euclidean space but x4 is replaced by the variable τ . The
instanton solutions must now be periodic in τ with period β. This is
accomplished by making the field φ periodic [23]. The n = 1 solution goes
over into

φ = 1 + λ2
∞∑

k=−∞

[
(x − y1)2 + (τ − τ1 − kβ)2

]−1

= 1 +
πTλ2

|x − y1|
sinh(2πT |x − y1|)

cosh(2πT |x − y1|) − cos[2πT (τ − τ1)]
(8.94)

Here, y1 and 0 ≤ τ1 ≤ β represent the position of the instanton, while
the summation over k replicates it periodically along the imaginary time
axis. Surprisingly, the finite-temperature instanton and anti-instanton
have exactly the same classical action, 8π2/g2, as the T = 0 instanton
and anti-instanton.

It is necessary to compute the one-loop quantum correction in the back-
ground field of an instanton or anti-instanton at finite temperature. This
is a formidable task but has been done by Pisarski and Yaffe [24]. The
result is that the integrand in (8.91) is multiplied by a cutoff factor

exp
[−1

3(2N + Nf)π2T 2λ2
]

(8.95)

at large λ. This means that the λ integration is now both infrared and
ultraviolet convergent. Finite temperature suppresses large instantons as
expected. The lack of appearance of the coupling constant in the cutoff is
simply understood as follows. At T = 0, quantum corrections replace the
coupling constant in the classical action with the renormalization-group
running coupling. Therefore we may postulate that at finite temperature
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the running coupling would be replaced by the static screened charge

8π2

ḡ2
=

8π2

g2
+
(

11N
6

− Nf

3

)
ln
(

q2

M2

)
+

8π2m2
el

g2q2
(8.96)

where m2
el is given by (8.49). The screening factor (8.95) is reproduced by

the m2
el/g

2 term in (8.96) if we make the replacement q2 → 4/λ2.
Instanton effects are greatest in a world without light quarks, on

account of point 7 above. Then the contribution to the pressure is

PDGA = 2CN

∫ ∞

0

dλ

λ5

(
4π2

ḡ2

)2N

exp
(
−8π2

ḡ2
− 2

3
N(πTλ)2

)
(8.97)

which can be integrated to give

PDGA = T 4

(
ΛR

T

)11N/3 2N∑
l=0

al(N)
[
ln
(

T

ΛR

)]l
(8.98)

The coefficients al(N) depend on N and must be computed numerically.
The most noteworthy feature of PDGA is that it decreases dramatically
with increasing temperature. For instance, for SU(3) it falls as Λ11

R /T 7,
modulo logarithms. Comparison of these results with the perturbation
theory results is left as an exercise.

Extensive numerical studies have been performed of an instanton-liquid
description of QCD at zero and finite temperature. The reader is referred
to the review of Schäfer and Shuryak [25].

8.7 Infrared problems

It would seem that if only we had the strength and willpower, we could
continue to calculate corrections to P and Πμν to arbitrary order in g.
However, a barrier that arises at order g6 for P and at order g4 for Πμν

was identified by Lindé [26].
Let us investigate the infrared convergence of the (l + 1)-loop diagram

(l > 0)

1 2 · · · � � + 1

There are 2l three-gluon vertices and 3l propagators. The dominant
infrared behavior arises from the n = 0 mode sums. To estimate, we dis-
pense with the complicated tensorial structure of the propagator and the
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vertex and write

g2l

(
T

∫
d3p

)l+1

p2l (p2 + m2)−3l (8.99)

The first and third factors arise from the vertices, the second factor from
the loop integration, and the last factor from the propagators. We have
introduced a possible static infrared cutoff m. We may wish to identify
m with the “electric mass” m2

el = F (0,0) or with the “magnetic mass”
m2

mag = G(0,0). In any case, (8.99) is of order

g2lT 4 for l = 1, 2
g6T 4 ln(T/m) for l = 3
g6T 4(g2T/m)l−3 for l > 3

(8.100)

We have placed an ultraviolet cutoff T on the momentum integration.
This cutoff should arise automatically when summing over all modes n.

The interesting aspect of (8.100) is that if m = 0 and l > 2, then the
diagram is infrared divergent. Now it may happen that when all diagrams
of the same order are added together the coefficients of the infrared diver-
gent parts are zero, although there is no symmetry to suggest that this is
the case. The possibility is difficult to verify or deny, owing to the com-
plexity of the diagrams. If we take m = mel ∼ gT then no problem arises.
At one-loop order, mmag vanishes in all gauges; the next possibility is that
mmag ∼ g2T . Substitution in (8.100) then suggests that all loops with l >
3 contribute to order g6! It is not known how to sum all such diagrams,
thus making it impractical even in principle to calculate analytically the
coefficient of the order-g6 term in P .

The same difficulty arises if we attempt to compute the static infrared
limit of the gluon self-energy. For example, the diagram

1 2 · · · � � + 1

at q0 = 0, q → 0 is of order

g4T 2 ln(T/m) for l = 1
g4T 2(g2T/m)l−1 for l > 1 (8.101)

So, the infrared problem arises for Πμν at order g4. Suppose, for the
purpose of illustration, that m2

mag = cg4T 2. Then (8.101) suggests that to
compute c we must sum an infinite set of diagrams. The constant c would
then arise self-consistently. The magnetic contribution to the sum of ring
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diagrams would be proportional to m3
magT ∼ g6T 4. This is another way of

viewing the qualitatively different infrared effects that may arise at order
g6 in the pressure.

The static infrared problem in the above diagrams occurs when the
momentum p ≤ g2T . Another way to see this is to examine the fac-
tor [p2 + G(0, p)]−1 in the propagator. This changes sign as p → 0; in
TAG, G(0, p) → −(5/16)g2NTp and for the case of an arbitrary COVG,
G(0, p) → −{[8 + (ρ + 1)2]/64}g2NTp.

The resolution of this problem, as suggested by Braaten [27], involves
effective-field-theory methods coupled with lattice gauge calculations.
However, it probably does not have much quantitative impact on ther-
modynamic functions like P at extremely high temperatures since it first
occurs at order g6 and g(T ) → 0 as T → ∞.

8.8 Strange quark matter

Strange particles, like kaons and hyperons, do not play any role in daily
life; that is to say, they are not stable particles and they are not found in
atomic nuclei. Generally, they are only produced in high-energy reactions,
and subsequently decay into nonstrange particles via the weak interac-
tions. Could the situation be different in cold and dense quark matter?
For cold neutron matter the baryon density is approximately

n = 2
∫

d3p

(2π)3
θ(pF − p) =

p3
F

3π2
(8.102)

where the Fermi momentum is p2
F = μ2 −m2

N . One may estimate the den-
sity at which neutrons overlap in coordinate space by multiplying this
density by the volume of a nucleon, taking the nucleon radius to be 0.8
fm. Although very crude, this estimate determines the critical chemi-
cal potential as 1050 MeV, where a qualitative change in the nature of
hadronic matter ought to occur. Since each quark carries one-third of a
baryon charge, the quark chemical potential would be 350 MeV. This is
larger than the generally accepted strange quark mass (see Table 8.2)
and so allows for the possibility of the existence of strange quarks even
when T = 0. Strange quarks might be produced and eventually come to
equilibrium via the weak interactions d ↔ u + e + ν̄e, s ↔ u + e + ν̄e, and
s + u ↔ u + d , provided that the circumstances are right. Indeed, it may
very well be energetically favorable for some u and d quarks to be con-
verted into s quarks at high density. The situation would be analogous
to the presence of neutrons in nuclei. In free space, a neutron decays
weakly into a proton, an electron, and an antineutrino. That does not
happen in radioactively stable nuclei or in nuclear matter, because the
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Pauli exclusion principle forbids the addition of a proton with an energy
below the Fermi energy.

Let us assume chemical equilibrium under the weak interactions among
u, d, s quarks and electrons. Then the aforementioned reactions imply that

μu + μe = μd = μs (8.103)

For the present discussion the neutrinos may be neglected. We require
that bulk matter be electrically neutral. Then we have the constraint

2
3nu − 1

3nd − 1
3ns − ne = 0 (8.104)

The densities are functions of the chemical potentials. Together, (8.103)
and (8.104) allow only one independent chemical potential.

For simplicity, first analyze the thermodynamics neglecting perturba-
tive interactions among the quarks. For the large chemical potentials of
interest it is reasonable to set me = mu = md = 0. However, ms is not so
small and must be kept nonzero. The thermodynamic potential is a sum
of contributions from each species:

Ωe = − μ4
e

12π2
Ωu = − μ4

u

4π2
Ωd = − μ4

d

4π2

Ωs = − 1
4π2

[
μs

√
μ2
s −m2

s

(
μ2
s − 2.5m2

s

)
+ 1.5m4

s ln

(
μs +

√
μ2
s −m2

s

ms

)] (8.105)

The energy density carried by the fermions is added to that associated
with the vacuum, sometimes referred to as the MIT bag model constant,
B, yielding a total energy density

ε =
∑
i

(Ωi + μini) + B (8.106)

The baryon number density is

nB = 1
3(nu + nd + ns) (8.107)

The quark matter is in stable mechanical equilibrium when P = 0. Includ-
ing the bag pressure, this means

P =
∑
i

Pi −B = −
∑
i

Ωi −B = 0 (8.108)

With the set of equations above, all parameters can be calculated for a
given choice of ms and B. The result of such calculations is shown in
Figure 8.2.

https://doi.org/10.1017/9781009401968.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.009


8.8 Strange quark matter 165

Fig. 8.2. Contours of fixed energy per baryon (in MeV) for strange quark matter
in the B1/4−ms plane; B is the bag model constant.

It is known that nonstrange quark matter is unbound. It must have an
energy per baryon of at least 930 MeV + Δ in order that ordinary atomic
nuclei do not decay into nonstrange quark matter, which has never been
observed. A detailed calculation suggests Δ = 4 MeV [28]. A straightfor-
ward calculation then leads to a minimum value Bmin = (145 MeV)4: this
is the minimum value of the bag constant needed for atomic nuclei to be
stable (in the T = 0 case, and neglecting interaction between the quarks).
Considering Figure 8.2, normal atomic nuclei do not exist for values of
B < Bmin. To the left of the 939 MeV contour, strange quark matter would
be stable against decay into nucleons. The analysis outlined above is for
degenerate, noninteracting, quark matter in bulk. Calculations including
exchange corrections to order αs have also been done. Farhi and Jaffe [28]
found that the inclusion of exchange interactions up to order αs effectively
lowers Bmin to smaller values.

The question arises of why ordinary nuclei have not decayed into strange
quark matter, if it is more stable? The answer is that the conversion of
many u and d quarks into s quarks requires a very high order of the weak
interaction; thus the probability for this to happen is essentially zero.
It is for this reason that nuclei may have been mistakenly taken to be
the ground state of hadronic matter. Searches for strange quark matter
in terrestrial experiments and in astrophysical observations have been
ongoing. The effects of finite temperature and of finite size on the stability
have been evaluated [29]. The fact that strange matter might be self-
bound is in itself a fascinating proposition. The theoretical uncertainties
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surrounding it will surely decrease as our ability to perform numerical
lattice gauge calculations at finite density grows.

8.9 Color superconductivity

The experimental discovery of superconductivity by Kamerlingh Onnes
in 1911 was totally unexpected. It defied fundamental theoretical under-
standing until the Nobel-prize-winning work of Bardeen, Cooper, and
Schrieffer (BCS) in 1957. The discovery of high-Tc materials in 1986 was
also totally unexpected; its theoretical understanding is still a topic of
research. Superconductivity has many applications nowadays, primarily
in magnets used in research and in medicine. Conventional superconduc-
tivity arises from the pairing of electrons with equal but nearly oppo-
site momentum near the Fermi surface. This pairing occurs because of
a very weak attraction originating in phonon exchange, despite the fact
that electrons experience a repulsive Coulomb interaction. This is one
of the reasons why it took so long to work out a fundamental theoret-
ical description of superconductivity. In QCD the situation is different.
In a cold quark gas, single-gluon exchange is attractive for two quarks in
a state that is antisymmetric in color, the 3̄ channel. The possibility of
color superconductivity therefore exists, and indeed it happens.

Color superconductivity was first studied by Barrois [30] and Frautschi
[31]. Further studies were reported by Bailin and Love [32], but it was
not until 1998 that the field exploded in a flood of research papers led by
Alford, Rajagopal, and Wilczek [33], and Rapp et al. [34]. These studies
can be categorized into one of two classes: weak coupling methods using
the fundamental QCD Lagrangian, valid at asymptotically high densities;
and phenomenological methods using four-quark interactions, some moti-
vated by instantons, which are intended for application at densities not
much greater than those in ordinary atomic nuclei.

In order to allow for the pairing of quarks, we follow the path pio-
neered by Nambu and by Gorkov [35]. An eight-component Dirac field is
introduced as

Ψ =
(
ψ, ψ̄T

)
where T denotes the transpose. The inverse propagator is an 8 × 8 matrix
in Dirac space:

G−1(p) = G−1
0 (p) + Σ(p) =

( p−m + μγ0 Δ̄
Δ ( p + m− μγ0)T

)
(8.109)

Here Δ̄ = γ0Δ†γ0 and Δ is an object with color, flavor, and Dirac indices,
which have been suppressed. Setting Δ = 0 yields the free propagator
for this eight-component field. The self-energy contribution to the block
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diagonal components is neglected in order to focus on the coupling term,
which gives rise to a gap and to superconductivity. In this section the
chemical potential is separated out explicitly and is not subsumed into
p0.

In order to demonstrate the existence of superconductivity at high den-
sity we first focus on two flavors of massless u and d quarks with com-
mon chemical potential μ. This is referred to as the 2SC phase. The
assumptions that are usually made are: (i) the gap matrix is antisym-
metric in both flavor and color, which is the channel in which single-
gluon exchange is attractive; (ii) condensation occurs in the channel with
zero angular momentum, J = 0; (iii) the gap has positive parity, which is
favored by the relatively weak instanton-induced interactions; (iv) chiral
symmetry-breaking condensates coupling left- and right-handed quarks
are neglected. Given these assumptions, the gap matrix takes the form

Δab
ij (p) = (λ2)

ab (τ2)ij C γ5 [Δ+(p)P+(p) + Δ−(p)P−(p)] (8.110)

where C = iγ0γ2 is essentially the charge conjugation operator and makes
the operand into a scalar rather than a pseudoscalar; a, b are color indices,
i, j are flavor indices, and Dirac indices are suppressed. The operators P+

and P− project onto particles and antiparticles, respectively:

P±(p) = 1
2(1 ± γ0γ · p̂) (8.111)

Thus Δ+ describes the modification of the propagator due to particle–
particle pairing, whereas Δ− describes that due to antiparticle–
antiparticle pairing. Particles and antiparticles are in this situation dis-
tinguished by the sign of the chemical potential.

The self-energy satisfies the Schwinger–Dyson equation,

Σ(k) = −g2T
∑
n

∫
d3p

(2π)3
Γa
μ(k, p)G(p)Γb

ν(k, p)Dμν
ab (k − p) (8.112)

which is written in Minkowski space; the factor Γa
μ(k, p) comes from the

fully dressed quark–gluon vertex. At very high densities, where the run-
ning coupling becomes arbitrarily small, Γa

μ(k, p) can be replaced by the
bare vertex:

Γa
μ = −

(
1
2λ

aγμ 0
0 −(1

2λ
aγμ)T

)
(8.113)

Then the Schwinger–Dyson equation determines the gap function:

Δ(k) = g2T
∑
n

∫
d3p

(2π)3

(
γμ

λa

2

)
T

G21(p)
(
γν

λa

2

)
Dμν(k − p) (8.114)
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The 2, 1 component of the quark propagator has entered here. With the
given ansatz for the gap matrix, (8.110), we get

G21(p) = −λ2 τ2 C γ5

[
Δ+(p)P−(p)

p2
0 − (|p| − μ)2 − Δ2

+(p)

+
Δ−(p)P+(p)

p2
0 − (|p| + μ)2 − Δ2−(p)

]
(8.115)

The flavor factor τ2 cancels on both sides of the gap equation; so does the
color factor λ2, because(

1
2λ

a
)
T
λ2

(
1
2λ

a
)

= −N + 1
2N

λ2

After substitution one finds a pair of coupled gap equations,

Δ±(k) = −g2

3
T
∑
n

∫
d3p

(2π)3
Dμν(k − p)

×
{

Tr [γμP−(p)γνP±(k)]
Δ+(p)

p2
0 − (|p| − μ)2 − Δ2

+(p)

+ Tr [γμP+(p)γνP∓(k)]
Δ−(p)

p2
0 − (|p| + μ)2 − Δ2−(p)

}
(8.116)

to be solved for the gaps Δ±. In order to take into account static or
dynamic screening of the color fields, the one-loop dressed gluon propa-
gator in a covariant gauge is used, as given in Section 8.5.

For the scattering of quarks near the Fermi surface, which is relevant
for determining the gaps, the energy transfer is negligible compared with
the momentum transfer. With q ≡ k − p, this means that |q0| � |q|. Then
q0 may be taken to zero wherever possible in the numerators of the gap
equations, but not in the denominators since there may be a near singu-
larity in the infrared. The Landau- and Coulomb-gauge gluon propagators
give the same answer in this limit:

Δ±(k) =
g2

3
T
∑
n

∫
d3p

(2π)3

×
{

Δ±(p)
p2
0 − (|p| ∓ μ)2 − Δ2±(p)

(
3 − k̂ · p̂
q2 −G(q)

+
1 + k̂ · p̂
q2 − F (q)

)

+
Δ∓(p)

p2
0 − (|p| ± μ)2 − Δ2∓(p)

(
1 + k̂ · p̂
q2 −G(q)

+
1 − k̂ · p̂
q2 − F (q)

)}
(8.117)
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These gaps are gauge independent only in this kinematic limit. This is a
consequence of the fact that the gaps are determined by the scattering of
quarks that are almost on-shell. Of course, any physical observable must
be gauge independent. If one is working to higher order in the interactions,
the approximations made above would not be acceptable.

Only the first term in the gap equation has a singularity on the Fermi
surface, and so we keep it but drop the second term. This gives rise to
a single integral equation to be solved for Δ ≡ Δ+, the gap for quasi-
particles and their holes near the Fermi surface (we are not interested in
the gap for the antiparticles). In order to solve the integral equation for
the gap we make a further physically motivated approximation. Since the
participating quarks are those on or very near the Fermi surface, they
all have essentially the Fermi momentum. Therefore we neglect the very
weak three-momentum dependence of the gap and write it as Δ(k0). We
also write p = pF + l, where pF is on the Fermi surface and l is per-
pendicular to it. For very large chemical potential and vanishingly small
temperature it is adequate to use l � μ and write the integration mea-
sure as μ2dl d(cos θ)dφ; furthermore, |q| = |k − p| ≈ √

2μ(1 − cos θ). The
Matsubara sum can be replaced by an integral over Euclidean momen-
tum p4 (see (3.71)). The integral over φ is trivial, and the integral over
l can be done by contour integration, picking up the pole of the diquark
propagator:

Δ(k4) =
g2μ2

12π2

∫ ∞

−∞
dp4

∫ 1

−1
d cos θ

Δ(p4)√
p2
4 + Δ2(p4)

×
[

3 − cos θ
q2
4 + 2μ2(1 − cos θ) + G(q)

+
1 + cos θ

q2
4 + 2μ2(1 − cos θ) + F (q)

]
(8.118)

Here F and G are evaluated with q4 = k4 − p4 and |q| =
√

2μ(1 − cos θ).
In principle this gap equation should now be solved with no further
approximations.

To get an idea of how the solution depends on the parameters we use
the approximate forms for F and G,

F (q) = m2
el G(q) = i

πq4
4|q|m

2
el (8.119)

in the limit 0 ≤ q4 � |q|. This means that the electric part of the inter-
action is screened on the momentum scale qel = mel while the magnetic
part is screened on the scale qmag = (πm2

elΔ/4)3/2. Integration over the
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angle θ gives the simplified gap equation

Δ(k4) =
g2

18π2

∫
dp4

Δ(p4)√
p2
4 + Δ2(p4)

×
[
ln
(

1 +
32μ3

πm2
el|k4 − p4|

)
+

3
2

ln
(

1 +
4μ2

m2
el

)]
(8.120)

This integral equation can be converted to a differential equation and
solved in the small-g approximation. The asymptotic solution is

Δ(k4) ≈ Δ0 sin
[

g

3
√

2π
ln
(
cμ

k4

)]
k4 > Δ0 (8.121)

where

Δ0 = 2cμ exp
(
− 3π2

√
2g

)
2c =

512
π

(
μ

mel

)5

= 512π4g−5 (Nf = 2)

The amazing feature about this result is that the gap depends exponen-
tially on 1/g, not on 1/g2 as it does in ordinary superconductivity. This
feature emerges from the longer-range nature of the color magnetic field
compared with the color electric field. This result was first obtained by
Son [36]. It has important implications for the numerical value of the gap,
and the critical temperature, since g should be small compared to unity
for the whole analysis to make sense.

Equation (8.120) is an approximation of (8.118). Numerical solution of
the latter equation for small g yields a gap that is well described by (8.121)
but with an overall coefficient that is smaller by a factor 0.28. However,
there are several approximations that would need to be relaxed in order to
obtain an accurate value of the coefficient of g−5 exp(−3π2/

√
2g) for the

gap. These include the diagonal contribution to the diquark self-energy
(which modifies the quasiparticle dispersion relation), a renormalization-
group improvement to obtain the proper choice of scale at which to eval-
uate the running coupling g → ḡ(μ), and the use of dressed vertices in
the Schwinger–Dyson equation. The first two of these have been done
individually, and the third not at all. If these effects are ignored, Δ0 at
first decreases with increasing μ, reaches a minimum of about 10 MeV at
μ = 1 TeV, and then increases logarithmically with μ. A plot of Δ0 versus
μ (Figure 8.3) gives the scale of the gap, although its absolute magnitude
is uncertain by a factor 2–4, increasingly so as μ decreases.
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Fig. 8.3. The gap for two-flavor color superconductivity.

When color superconductivity occurs, the thermodynamic potential is
lowered when compared with the case where pairing is absent. One may
readily write an approximate expression for the thermodynamic potential
that reproduces the Schwinger–Dyson equation used to obtain the gap
equations. It is [37]

Ω = Ω0 +
1
2
T
∑
n

∫
d3p

(2π)3
Tr
[
ln
(G
G 0

)
− GG−1

0 + 1
]

+
1
4
T 2
∑
n,n′

∫
d3p d3p′

(2π)6
Γa
μ(p, p′)G(p)Γb

ν(p
′, p)G(p′)Dμν

ab (p′ − p)

(8.122)

where Ω0 is the potential in the absence of pairing. Treating Ω as a func-
tional of G and requiring that it be an extremum results in G−1 − G−1

0 = Σ.
When evaluated at the extremum, the shift in the potential (relative to
no pairing) is

δΩ =
1
2
T
∑
n

∫
d3p

(2π)3
Tr
[
ln
(G
G 0

)
− 1

2
GG−1

0 +
1
2

]
(8.123)

Using the explicit form of the propagator and integrating over spatial
momentum, the zero-temperature shift in the energy density is

δΩ = 4
μ2

π2

∫
dp4

[√
p2
4 + Δ2(p4) − p4 − Δ2(p4)

2
√

p2
4 + Δ2(p4)

]
(8.124)
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This expression requires numerical solution, but a very good approxima-
tion is

δΩ(2SC) = −4
(
μ2Δ2

0

4π2

)
(8.125)

This was first obtained by Miransky, Shovkovy, and Wijewardhana [38].
The overall factor 4 comes from the pairing of four quarks in the 2SC
state.

Now we turn to the case of three flavors of massless quarks. Numerous
studies have shown that the energetically most favorable state is one in
which rotations of SU(3) color and SU(3) flavor are locked together. This
is referred to as color–flavor locking (CFL) [39]. The simplest ansatz for
the gap matrix is

Δab
ij (p) = (λI)

ab (λI)ij C γ5 [Δ+(p)P+(p) + Δ−(p)P−(p)] (8.126)

where λI is one of the three antisymmetric SU(3) matrices. The analysis
then closely parallels the case of 2SC. It turns out that there are eight
color–flavor combinations of quarks with gap Δ/21/3 and one with gap
2Δ/21/3, where Δ is the same function as in 2SC. To logarithmic accuracy
the CFL phase is favored over the 2SC phase at asymptotically high
density, as long as m2

s � 2μΔ0:

δΩ(CFL) = − 12
22/3

(
μ2Δ2

0

4π2

)
(8.127)

For these weak coupling estimates to be valid, one may require for example
that g < 0.8. This translates to μ > 100 GeV, a density not relevant for
any known terrestrial, astrophysical, or cosmological environment. What
is of most interest for neutron stars and high-energy heavy ion collisions
is the region of μ in the range from several hundred MeV to several
GeV (remember that μ is one-third of the baryon chemical potential)
and temperatures up to several hundred MeV. In this region of phase
space, weak-coupling calculations may be a guide but cannot provide
quantitative predictions. Therefore model studies have been done using
the Nambu–Jona–Lasinio (NJL) model and instanton models for quark
interactions. Figure 8.4 shows four likely phase diagrams depending on
the number of quark flavors and the values of their masses. Panel (a)
shows Nf = 2 flavors of massless quarks. At low density and temperature
there is a nuclear liquid–gas phase transition, to be discussed in Chapter
11: a curve showing a line of first-order phase transition terminates in a
second-order transition at the dot. A second curve separates hadronic and
nuclear matter from quark–gluon plasma (QGP) and cold quark matter;
the phase transition is second order above a critical point indicated by
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1st

liquid
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2nd
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T

T

m

(c) T

m

2SC

CFL

(d)

Fig. 8.4. A model study of the phase diagram (T as a function of μ) for strongly
interacting matter. The two upper panels are for two flavors of quarks; in (a)
both quarks are massless whereas in (b) their masses have a nonzero common
value. The two lower panels are for three flavors of quarks. In (c) they all are
massless, in (d) the up and down quark masses are equal and the strange quark
is given a heavier mass. (From Schäfer [40].)

the dot and first order below it. Color superconductivity (CSC) exists at
high density and small temperatures and is separated from an unpaired
quark–gluon plasma by a third curve, a line of second-order phase
transition.

Panel (b) is like panel (a) except that the up and down quark masses
are given a nonzero common value. In this case the line of first-order phase
transition terminates at the critical point; there are paths along which one
can go from nuclear or hadronic matter to quark–gluon plasma without
undergoing a phase transition.

Panel (c) shows a scenario for three massless quark flavors. There is
a line of first-order phase transition starting at μ = 0 and extending to
infinite density. At a given density, there is a high-temperature phase of
quark–gluon plasma and a low-temperature phase which is either nuclear
or hadronic or a CFL superconductor. Whether there is a sharp transition
between dense nuclear matter and the CFL phase is unclear, as indicated
by the dotted line.
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Panel (d) shows a scenario for equal nonzero up and down quark masses
and a heavier strange quark mass. The main difference between this panel
and panel (b) is that, for a given temperature, the 2SC phase is favored
at first and then the CFL phase is favored as the density increases. The
non-superconducting phases and their phase transitions will be addressed
more extensively in later chapters. The structure of strongly interacting
matter is very rich and interesting!

8.10 Exercises

8.1 Prove that the QCD field strength tensor is not invariant under an
infinitesimal gauge transformation, but that its square is.

8.2 Verify (8.26) by either of the two methods suggested.
8.3 Solve the renormalization-group equation for the covariant gauge

parameter ρ̄. Use (8.17), (8.18) with the one-loop results (8.22),
(8.28).

8.4 Make graphs of (8.31) and (8.33), and then plot equations (8.34) to
see how good an approximation they are.

8.5 Evaluate at least one of the non-quark two-loop diagrams for the
pressure and show that it contributes to (8.45) as stated.

8.6 In the calculation of the pressure at order g4 with fermions, enumer-
ate all the diagrams that contribute and determine their individual
combinatoric factors.

8.7 When evaluating the static (k0 = 0) limit of the gluon polarization
tensor Πμν , one encounters integrals of the type∫ ∞

0
dx
(

1
eax − 1

)
ln
(

1 + x

|1 − x|
)

(E8.1)

Derive the asymptotic a → 0 expansion for this integral, which is
π2

2a
+ ln

( a

2π

)
+ γE + O(a) Hint: Divide the range of integration into

(0, 1) and (1, ∞). Expand the logarithm in the integrand for each
range appropriately and integrate term by term. Take the leading
terms for a → 0 and sum the resulting series.

8.8 (8.100) was determined on the basis of loop diagrams containing
only three-point vertices. Can you find diagrams containing only
four-point vertices which give the same behavior?

8.9 Plot the pressure of pure gluons to order g3, with g2 running with
T according to the one-loop β-function. How much do the results
change when the two-loop β-function is used instead?

8.10 Compare numerically the contribution to the pressure from instan-
tons to the perturbative contribution at order g2.

8.11 Calculate the dispersion relations for quarks in the 2SC phase.
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