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VARIATIONS ON A THEME OF KRONECKER 

BY 

DAVID W. BOYD 

In 1857, Kronecker [10] showed that if 0 i , . . . , 0n are the roots of the 
polynomial P(z) = zn + c^""1 + • • • + cn, where cl9..., cn are integers with 
cn7* 0, and if |0X| < 1 , . . . , |0n|< 1, then 0 1 ? . . . , 0n are roots of unity. The proof 
is short and ingenious: Consider the polynomials Pm(z) whose roots are 
0J\ . . . , 0™ for m = 1,2, The condition on the size of the roots and the fact 
that the ct are integers implies that there can only be a finite number of 
different Pm. Thus two distinct powers of each root must coincide and this 
means that each root is a root of unity. 

In 1933, Lehmer [11] asked whether the following improvement of 
Kronecker's theorem might be true: let ft(P) denote the product 
Umaxfl^l,!). 

(L) Is there a constant e0>0, independent of n such that if ft(P)<l + e0, 
then 0 1 ? . . . , 0n are roots of unity? 

The lack of dependence of e0 on n is what makes this suggestion so intriguing. 
For example, Pn(z) = z n - 2 has its roots arbitrarily close to \z\ = l without 
being roots of unity; however ft(Pn) = 2 for all n, so there is no conflict with 
(L). 

Another possible way to improve Kronecker's theorem would be to place a 
condition on M(P) = maxi |0f|. If (L) is correct then the best possible result 
would be that 

(SZ) There is a constant c such that M(P)<l + c/n implies that 0l9..., 0n 

are roots of unity. 

This is a conjecture made by Schinzel and Zassenhaus [14]. 
Both of these questions are still unsettled but considerable progress has been 

made in the recent past, some of which will be described here. For the 
remainder of the paper we will assume that P is irreducible since it is clear that 
there is no loss of generality in doing so. Then 0 = 01? 0 2 , . . . , 0n are the 
conjugates of an algebraic integer of degree n. 

If 0 is a root of unity and 0 ^ 1 , then P is a reciprocal polynomial, i.e. 
P(z) = ztlP(z~1). This suggests that the problem may be more accessible for 
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non-reciprocal polynomials and this is indeed the case. In fact, the questions 
have been answered completely in this situation by Smyth [16]. He showed that 
£l(P) > 0O and that M(P) > 1 + (log 0o)/n when P is a non-reciprocal polynomial. 
Here 0O = 1.3247 . . . is the real root of P0(z) = z3 - z - 1 , and since ft(P0) = 0O, 
Smyth's result concerning Cl(P) is best possible. The result concerning M(P) 
improves an earlier result of Cassels [6], that M ( P ) > 1 + 1/lOn for non-
reciprocal P. 

The number 0O is the smallest element of the set S of Pisot-Vijayaraghavan 
numbers, a result due to Siegel [15]. S is the set of algebraic integers 0 > 1 
whose other conjugates lie strictly within the unit circle. A remarkable prop
erty of S, established by Salem [12], is that S is a closed subset of the real line. 
The fact that inf S = min S > 1 is an immediate consequence, but of course the 
exact determination of min S requires a more detailed study. Dufresnoy and 
Pisot [9] have gone even further and determined the smallest limit point of S 
(it is the famous golden section), and have found all points of S less than this 
limit point. The paper [4] is an elaboration of the ideas of [9]. 

In view of Smyth's result, it would be interesting to explore the connection 
between S and the set f̂  of values of fî(P), as P varies over all the 
non-reciprocal polynomials. In particular, what is the smallest limit point of 
fli? That some fairly small limit points exist can be established by a lemma 
proved in [3]. We showed there that if p(w, z) is a polynomial in two variables 
then 

(1) lim \og\p{e'1™\e2™')\dt= 1 
0 

Since Jensen's formula shows that 

(2) logft(P)= flog 

f\fc niog|p(e2™,e2wit)l<fc 
Jo Jo 

it follows from (1) that if Pn(z) = l-z + zn then 

(3) logfl(Pn)-^(27r)-2 p d s p l o g l l - ^ + é^ldf. 
Jo Jo 

Applying Jensen's formula again to the right member of (3) shows that 

(4) n(Pn) -> expf TT'1 J " - log(2 sin(f/2)) dt\ = 1.38135 . . . . 

This number does not appear to be algebraic. Are there smaller limit points of 

Now we turn to the questions (L) and (SZ) for reciprocal polynomials. The 
best result in the direction of (L) is due to Blanksby and Montgomery [1], 
namely that ft(P)<l + (52n logon) - 1 implies that 0 is a root of unity. As a 
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corollary, one obtains the result that M ( P ) < l + (30n 2 log6n) - 1 implies that 0 
is a root of unity. Their result was obtained by an analysis using multiple 
Fourier series. Recently, Stewart [17] has obtained their result, with a slightly 
worse constant, by using Baker's extrapolation method. 

The result concerning M(P) has recently been improved by Dobrowolski [8]. 
He has been able to show that 

(5) M(P)< l + (logrc)/6n2 

implies that 0 is a root of unity. His strikingly elementary proof is reminiscent 
of Kronecker's original proof of his theorem. He observes that if 

Sk = 01 + - • - + 0n, 

then Skp = Sk (modp), for any prime p. Choosing a prime which satisfies 
3n < p < 6 n , he is able to show that (5) implies \Skp -Sk\ <p and hence Skp = Sk 

for fc = 1, 2 , . . . , n. But then 0 and 0P are roots of the same irreducible 
polynomial, and this implies that 0 is a root of unity. 

By analogy with Smyth's result, one might expect that fî(P) would be 
smallest for polynomials having exactly one root outside the unit circle. In fact, 
the smallest known value of fl(P) > 1 is attained for such a polynomial, first 
exhibited by Lehmer in [11]: 

(6) P(z) = z10 + z9-z7-z6-z5-z4-z3 + z + l. 

This has exactly one root c r ^ l outside |z| = l,. and thus ft(P) = or1 = 
1.1762808. . . . 

The set of a > 1 which satisfy a reciprocal polynomial all of whose remaining 
roots lie in |z| < 1 is denoted T, and called the set of Salem numbers. For such a 
polynomial, one has Cl(P) = tr, so an immediate consequence of an affirmative 
answer to (L) would be that inf T > 1, but even this is not known. 

In fact, basically the only fact known about the distribution of T is due to 
Salem [13], who showed that each point of S is a limit point of T. To do this, 
he showed that if P is the minimal polynomial of 0 in S (with P ^ z2 — qz +1, 
q > 3 ) , and if 

(7) Qtiz) = x™P(z)±znP(z-\ 

then Q* has at most one root 0* > 1 outside the unit circle, and that 0* —» 0 as 
m-»oo. The number 0* is thus either a Salem number, or is of the form 
(q + (q2-4)1 / 2)/2, with q > 2 , and so (7) can be thought of as a construction for 
producing members of T from members of S. 

We recently showed [2] that, in fact, all Salem numbers are produced in this 
way. The study of the set T thus reduces to the study of {0^ : m > 1}. We have 
been able to show that if m > 2, then 0* -> oo as 0 -> ». Also, there is a finite 
algorithm for determining all 0^, m > 2 which lie in an interval disjoint from 
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{1}US. For example, there are 41 Salem numbers of the form 62 in 
[9/8,13/10], the smallest of which is o^ [4]. 

The situation is quite different for Of, and any a in T is represented 
infinitely often in the form Of for arbitrarily large OeS, and with Qt having an 
arbitrary "extraneous" factor K(z) whose roots are simple roots of unity. Thus, 
the connection between S and T is, at this time, not sufficient to establish that 
inf T > 1. Intuitively, it seems to suggest that the set S U T is closed. 

Returning to the general question (L), it seems plausible to me that 
inf (Î(P) = inf T, although there is very little evidence to support this. Stewart 
and te Riele carried out a complete survey of reciprocal polynomials with 
coefficients ±1 or 0, with degrees <20 and 1.175<iî(P)< 1.25, without finding 
a smaller value of ft(P) than <rl9 and incidentally without finding any Salem 
numbers which are not on the list given in [2]. (There are four further numbers 
to add to the list in [2] which may be found in [4]). 

If the feelings expressed in [2] are correct, then 60 = inf S should be the 
smallest limit point of T. The same cannot be said of the set ft2 of values of 
fl(P), as P varies over all reciprocal polynomials (with integer coefficients of 
course). For example, if Pn = z 2 n - z n + 1 - z n - z n - 1 + l , then 

limft(Pn) = exp{7T-1 r / 3 l o g ( b ( 0 + (M0 2 - l ) 1 / 2 ) dt] 
(8) l Jo J 

= 1.2857348.. . < 0O, 

where b(t) = @) +cos I This limit point was discovered independently by the 
author and C. J. Smyth (who considered instead Pn = z 2 n - z 2 n _ 1 - z n - z + l ) . 
The result (8) can be proved in the same way as (4). An even smaller limit 
point is obtained from Pn = z 2 n - z 2 n _ 1 - z n + 1 4 - z n - z n _ 1 - z + l for which 
fl(Pn)—» 1.255425 . . . (an approximate numerical value of an expression simi
lar to (8)). 

To conclude, let me suggest some problems for the reader. Let ftlk be the 
set of numbers fi(P) where P is non-reciprocal, has exactly fc roots outside the 
unit circle, and is not of the form Q(z r) for any r> 1. Is £luk a closed set? Let 
inf (lltk = blk. Is blk an increasing sequence? The work of Cantor [5] on PV 
fc-tuples should be useful here. The work of Chamfy [7] on the Schur-
Dufresnoy-Pisot algorithm may also have some bearing on these questions. 

Let fl2,k be the corresponding set with P required to be reciprocal rather 
than non-reciprocal, and let b2k = inf Ct2k. Is Cllk U ft2,k closed? Is b2,k in
creasing? Since flM = S and ft2,i

= T the first question is unanswered even for 
fc = 1. It appears that completely new methods will be needed to answer these 
questions. 
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