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The motion of the three-phase contact line between two immiscible fluids and a solid
surface arises in a variety of wetting phenomena and technological applications. One
challenge in continuum theory is the effective representation of molecular motion close
to the contact line. Here, we characterize the molecular processes of the moving contact
line to assess the accuracy of two different continuum two-phase models. Specifically,
molecular dynamics simulations of a two-dimensional droplet between two moving plates
are used to create reference data for different capillary numbers and contact angles. We use
a simple-point-charge/extended water model. This model provides a very small slip and a
more realistic representation of the molecular physics than Lennard-Jones models. The
Cahn–Hilliard phase-field model and the volume-of-fluid model are calibrated against the
drop displacement from molecular dynamics reference data. It is shown that the calibrated
continuum models can accurately capture droplet displacement and droplet break-up for
different capillary numbers and contact angles. However, we also observe differences
between continuum and atomistic simulations in describing the transient and unsteady
droplet behaviour, in particular, close to dynamical wetting transitions. The molecular
dynamics of the sheared droplet provide insight into the line friction experienced by the
advancing and receding contact lines. The presented results will serve as a stepping stone
towards developing accurate continuum models for nanoscale hydrodynamics.
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1. Introduction

The motion of a two-phase interface over a solid surface has turned out to be a challenging
problem for continuum fluid mechanics (CFM) models. This is most evident for models
that assume a sharp interface between the phases and the no-slip velocity condition at the
solid surface. Under these classical assumptions, one ends up naturally with an immobile
line at which both fluid phases meet with the solid, the so-called contact line. Clearly, a
fixed contact line is in contradiction with, for example, our observations of a spreading
drop on a surface, or of a liquid imbibition into a porous medium. This theoretical
issue was identified already half a century ago by Huh & Scriven (1971) as a stress
singularity at the contact line. Motivated by the importance of the moving contact line
in applications such as printing (Kumar 2015), CO2 storage and water management in fuel
cells (Singh et al. 2019), a number of approaches have been suggested for overcoming
the stress singularity in Navier–Stokes based solvers. The extensive work on the topic
(Bonn et al. 2009; Snoeijer & Andreotti 2013; Sui, Ding & Spelt 2014) suggests that
there exists no single continuum approach for describing the moving contact line. Instead,
different models are suitable depending on the application and the representation of
interfacial physics, and each model comes with its own sets of empirical parameters.
Certain guidelines are required to determine these parameters.

Despite the vast amount of theoretical developments that have been presented (Voinov
1976; Cox 1986; Shikhmurzaev 1994, 1997; Kalliadasis, Bielarz & Homsy 2000; Pismen
& Pomeau 2000; Eggers 2004; Flitton & King 2004; Snoeijer 2006; Wilson et al. 2006;
Pismen & Eggers 2008; Snoeijer & Eggers 2010; Chan, Snoeijer & Eggers 2012; Nold
et al. 2018; Chan et al. 2020), a theoretical consensus is yet to be reached. To a large
extent, progress is hindered by a lack of understanding of the nanoscale physics of
wetting phenomena (Afkhami, Gambaryan-Roisman & Pismen 2020; Afkhami 2022). For
example, a fundamental question relates to the nanoscopic contact angle. The typical
choice until now has been a constant equilibrium angle (Kronbichler & Kreiss 2017).
However, recent experimental (Deng et al. 2016) and numerical (Fernández-Toledano,
Blake & De Coninck 2021) evidence suggests a contact line velocity-dependent dynamic
contact angle even at nanoscale. The development of more accurate measurement
techniques is ongoing (Thormann et al. 2008; Eriksson et al. 2019); however, as of yet, we
lack a complete insight into interface shape and velocity field near moving contact lines
in nanoscale. Atomistic simulations have provided significant insight into the molecular
physics at this scale (Gentner, Ogonowski & De Coninck 2003; Smith et al. 2016, 2018;
Perumanath et al. 2019; Lācis et al. 2020), although most systems used so far have been
based on idealized force models between the liquid and the substrate.

In practice, there are few common approaches to model numerically moving contact
lines in standard continuum methods. For sharp interface models, such as volume-of-fluid
(VOF) and level-set (LS), the movement of the contact line is typically allowed by an
explicit Navier-slip condition (Navier 1823; Spelt 2005) or by an implicit numerical slip
at the contact line (Renardy, Renardy & Li 2001; Afkhami, Zaleski & Bussmann 2009).
For diffuse interface models, such as the Cahn–Hilliard phase-field (PF) model (Jacqmin
2000), the contact line advances through diffusion even in the no-slip scenario. The lattice
Boltzmann method (LBM) can be leveraged to solve different types of flow problems.
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Nanoscale sheared droplet

The standard application of the LBM typically uses Shan & Chen (1993) or Gunstensen
et al. (1991) models. It is argued that in the Shan–Chen model, the contact line moves
through phase change (Kamali et al. 2011), similar to the LBM with thermodynamically
consistent potentials (Briant, Wagner & Yeomans 2004). The LBM has also been used to
solve PF equations (Briant & Yeomans 2004); consequently, the motion of the contact line
then occurs through diffusion. In the current work, we focus particularly on two of these
models, namely, geometric VOF and Cahn–Hilliard PF models.

For the VOF method, different components to model the contact line (static, dynamic
angle, hysteresis window, Navier slip, etc.) have been proposed over time. A recent
comparison between different options can be found in Legendre & Maglio (2015). They
concluded that the models incorporating dynamic contact angle better represent the
experiments of a spreading drop. For the PF model, there are guidelines to select the
model parameters through calibration with experiments (Yue & Feng 2011). A part of
the calibration is choosing the diffuse interface thickness in a manner to satisfy the
so-called sharp interface limit (Yue, Zhou & Feng 2010; Magaletti et al. 2013; Xu, Di
& Yu 2018). With this approach, a good agreement between PF simulations and capillary
rise experiments has been demonstrated.

In general, however, the connection between the selected CFM models and molecular
reality is not clear. It is not known how to choose the model parameters for an accurate
representation of nanoscopic physics that determines the moving contact line speed. To
address this, comparisons between molecular dynamics (MD) simulations and the chosen
CFM models have been carried out (Qian, Wang & Sheng 2003; Barclay & Lukes 2019;
Mohand et al. 2019). The typical MD work considers Lennard-Jones types of surfaces
with large slip lengths. Only more recently have water MD simulations been carried out
by some of us (Johansson & Hess 2018; Lācis et al. 2020) over surfaces with negligible
slip.

In this work, we generate benchmark data from MD simulations of wetting over no-slip
surfaces. These conditions can be reproduced employing simple-point-charge/extended
(SPC/E) water on a smooth silica-like substrate (Johansson, Carlson & Hess 2015). We
choose a forced wetting set-up (Blake et al. 2015) – instead of a capillary-driven one
(Villanueva & Amberg 2006) – due to the more versatile control of the wetting process.
In particular, we choose a sheared droplet configuration (see figure 1a), which is a
well-studied canonical problem (Jacqmin 2004; Sbragaglia, Sugiyama & Biferale 2008;
Gao & Lu 2013; Wang & McCarthy 2013) allowing simultaneous access to both receding
and advancing contact lines. Furthermore, depending on the wall velocity Uw, the system
either (i) stabilizes at a steady state (if Uw < Uw,c) or (ii) exhibits a non-trivial unsteady
behaviour (if Uw > Uw,c). Here, Uw,c is the critical wall velocity describing the boundary
between (i) and (ii). Hence the sheared droplet configuration provides rich interfacial
dynamics that are challenging to capture with CFM models.

By assuming a negligible slippage, the space of input parameters is essentially reduced
to wall velocities (Uw) and equilibrium contact angles between water and silica (θ0). We
then adopt a two-step approach. In the first step, we calibrate the continuum simulations
against MD for a given pair (Uw, θ0). This yields the necessary PF and VOF parameters
that best reproduce the steady droplet displacement measured from MD. In the second
step, we fix the calibrated PF and VOF parameters and assess the predictive capability
of the CFM models for different Uw by characterizing the interface shape and the drop
displacement both in the stable and unstable regimes. This is an extension of the work
presented by Lācis et al. (2020), who evaluated CFM model performance in matching the
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Figure 1. (a) Dimensions and properties of the sheared-droplet configuration considered in the current work.
(b) Close-up of the molecular system near the moving contact lines. Overlying solid mesh illustrates the binning
boundaries for the collection of flow data from MD simulations.

MD results for a single steady wall velocity (Uw < Uw,c) and a single equilibrium contact
angle.

The MD of the sheared droplet reported herein provide insight into the friction
experienced by the advancing and receding contact lines. We demonstrate asymmetric
features of advancing and receding lines, and report evidence of large-scale temporal
‘stick-slip’ like oscillations. These observations not only enhance our physical
understanding of moving contact lines, but also aid the development needed to increase
the accuracy of continuum models.

The paper is organized as follows. In § 2, we describe the flow configuration and
CFM models, and demonstrate the effect of the unknown parameters. The reference MD
simulations of the sheared droplet system are described in § 3. We calibrate the CFM
models against MD in § 4. Predictions from CFM are evaluated against MD in § 5. Then,
in § 6, we provide insights into the molecular physics of the sheared droplet system.
Following that, in § 7, limitations of CFM models, fluid slippage, friction and potential
future modelling directions are discussed. We conclude the paper in § 8. In Appendices
A–F, important physical and technical details are provided.

2. Flow configuration and continuum models

We consider a two-dimensional system that is periodic in the streamwise direction and
bounded in the vertical direction by two parallel horizontal plates located at y = 0 and
y = H. A liquid drop of density ρ� and viscosity μ� is sandwiched between the plates
such that its maximum width is W. The drop is surrounded by water vapour with density
ρv and viscosity μv . The surface tension between the phases is constant and denoted by σ .
The numerical values of the geometry and fluid properties are reported in figure 1(a).

We study the response of the droplet to two parameters: (i) Uw, the constant velocity of
the upper and lower walls moving in opposite directions, and (ii) the equilibrium contact
angle θ0. The former is discussed interchangeably in its non-dimensional form, using the
capillary number

Ca = 2μ�Uw

σ
. (2.1)

The capillary number corresponding to critical wall velocity Uw,c is Cac.
For small Ca, the liquid slips on the solid, resulting in a steady deformed droplet shape as

shown in figure 2(a). Above a certain critical capillary number Cac, the liquid is deformed
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Nanoscale sheared droplet
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Figure 2. (a) Drop displacement measurement at the left (�xl) and right (�xr) sides at selected time
instances. The interface angle is defined with respect to the horizontal line and is sampled as a function
of the vertical coordinate θ( y). Note that θ( y) is measured only for Ca < Cac, while �x is measured
for all Uw. (b) Variations of drop displacement �x = (�xl + �xr)/2 over time in VOF simulations for
λ = 0.47, 0.66, 0.94, 1.87, 3.74 nm (increasing with the arrow). The equilibrium contact angle is θ0 = 95◦,
and the capillary number is Ca = 0.20 < Cac.

to such a degree that its interface to the surrounding vapour breaks, leaving behind
multiple disconnected liquid droplets. The second control parameter, θ0, is a measure of
the surface’s affinity to water. In hydrophilic conditions (θ0 < 90◦), the affinity is strong,
resulting in a larger droplet deformation compared to hydrophobic conditions (θ0 > 90◦).
Under dynamic conditions, the contact line can be different from the equilibrium one. For
advancing contact lines (marked ‘A’ in figure 2a), the liquid displaces the vapour, while
for receding contact lines (marked ‘R’ in figure 2a), the vapour displaces the liquid. Both
these processes are largely determined by molecular interactions between the water and
the substrate as depicted in figure 1(b).

The drop deformation induced by the moving walls is characterized with measures
defined in figure 2(a). As a global measure, we introduce drop displacement of the left
(�xl) and right (�xr) two-phase interface, respectively. For more detailed characterization,
we also evaluate the interface angle θ( y) for steady configurations. It is obtained from the
slope of each linear segment on the interface.

In the continuum setting, the flow and pressure fields (u, p) are obtained by solving
the incompressible Navier–Stokes equations in the domain containing both phases. In two
dimensions, the equations are

ρ(x, y)
[
∂u
∂t

+ (u · ∇) u
]

= −∇p + ∇ · [
μ(x, y)

{∇u + (∇u)T}] + f σ , (2.2)

∇ · u = 0. (2.3)

Here, f σ is the surface tension force, and ρ(x, y) and μ(x, y) are spatially dependent
density and viscosity, respectively. The functions ρ(x, y) and μ(x, y) take liquid and
vapour values in the region occupied by each phase, and undergo a sharp transition at
the boundary between the phases. In this transition region, the volume force f σ is applied
to model the force induced by the surface tension.

Zero wall-normal velocity, uy = 0, is imposed on the moving impermeable walls. For
the tangential velocity component, we impose a Navier-slip boundary condition

ux = uw + �s
∂ux

∂n
, (2.4)

where �s is the slip length, uw is the wall velocity (Uw at the top wall and −Uw at the
bottom wall), and n is the wall-normal coordinate. Although it is expected that �s = 0 for
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the chosen liquid–solid combination, the implementation of the CFM models allows for
tests with non-zero value.

Equations (2.2) and (2.3) with corresponding boundary conditions are shared between
the Cahn–Hilliard PF model and the geometric VOF model. However, the way surface
tension and evolution of the two-phase interface are treated differs.

2.1. Geometric volume-of-fluid model
In this model, a phase variable C(x, y) is defined as 0 in the gas and 1 in the liquid.
The phase variable thus represents the liquid volume fraction in each cell. It satisfies the
convection equation

∂C
∂t

= −u · ∇C. (2.5)

The surface tension force is applied by the continuous surface force (CSF) method
(Brackbill, Kothe & Zemach 1992):

f σ = −σκ∇C, (2.6)

where κ is the curvature of the interface.
As a boundary condition for the phase variable, we impose a dynamic contact angle

θnum. The contact angle is the angle between the interface (n̂i) and wall (n̂) normals, so

n̂i · n̂ = cos(θnum), where n̂i = − ∇C
|∇C| , (2.7)

and the sign might vary depending on convention. The relationship for θnum is inspired by
Cox’s theory, as described and evaluated by Legendre & Maglio (2015). It takes the form

G(θnum) = G(θ0) + Cacl ln
(

Δ/2
λ

)
, (2.8)

where G is a monotonically increasing function, λ is a microscopic cut-off length scale,
and Δ is the wall-normal cell height. We confirm the grid convergence reported by
Legendre & Maglio (2015) in Appendix A.1. The capillary number Cacl is based on
the velocity of the contact line with respect to the wall. It is estimated by interpolating
the velocity field linearly at the first grid cell. For the most hydrophobic and hydrophilic
configurations, only the constant wall velocity was used for increased robustness.

The geometric VOF model is solved with an open-source finite volume code, called
the PArallel, Robust, Interface Simulator (PARIS) (Aniszewski et al. 2021). The full set
of equations (2.2), (2.3), (2.5) and (2.6) together with the boundary conditions ((2.4),
(2.7) and periodic inlet/outlet) are discretized on a regular cuboid grid with a staggered
spatial representation. The cell spacing is constant in all directions. More details about
the numerical method are given in Appendix A.1. In order to compute the curvature
near the wall for very hydrophobic droplets (θ0 = 127◦), we use a high-order scheme to
approximate derivatives (Appendix A.2 provides further details).

The only unknown free parameter for VOF simulations is the length scale λ. To test
the effect of λ, we select θ0 = 95◦ and Ca = 0.20 < Cac. The evolution of the drop
displacement �x in time for λ values 0.47 nm, 0.66 nm, 0.94 nm, 1.87 nm, and 3.74 nm is
shown in figure 2(b). Due to symmetry, �xl = �xr = �x in the CFM simulations, which
we have verified numerically. We observe that larger λ correspond to smaller steady �x.
As λ is increased, the contact angle at the surface (2.8) and thus the interface shape (2.7)
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Nanoscale sheared droplet

near the wall are modified. The interface curvature is modified in such a way that the
surface tension force across the interface opposes the friction force from the wall, which
leads to a smaller �x. The �x for the initial time agrees between all λ values. In this short
period, the contact line does not slip with respect to the substrate, and the slope of �x(t)
is equivalent to the wall separation velocity (2Uw).

2.2. Cahn–Hilliard PF model
We choose a model of a binary mixture with a classical fourth-order polynomial potential
Ψ (see (B1) in Appendix B) (Jacqmin 2000; Carlson 2012). To describe the evolution of
both phases, the PF model uses a phase variable C(x, y) ranging from 1 in the liquid to −1
in the vapour. At the interface, the function exhibits a smooth transition. The variable C is
governed by a convection–diffusion equation

∂C
∂t

= ∇ · [M∇φ] − u · ∇C. (2.9)

Here, M is the PF mobility and φ is the chemical potential. The latter is defined as

φ = 2
√

2
3

σ

ε
Ψ ′(C) − 2

√
2

3
σε∇2C. (2.10)

The chemical potential (2.10) contains the surface tension (σ ) and the interface thickness
(ε). The derivation of (2.9) and (2.10) is standard and can be found in Carlson (2012)
and Jacqmin (2000). The surface tension σ is a physical parameter and is set to a value
corresponding to the water liquid–vapour interface. The constants M and ε, on other hand,
are typically treated as numerical parameters. Having solved for function C, the surface
tension force in (2.2) is inserted as

f σ = φ ∇C. (2.11)

The Cahn–Hilliard equation (2.9) is a fourth-order partial differential equation, thus two
boundary conditions are needed on solid walls. The lowest-order boundary condition is

− μf ε

(
∂C
∂t

+ u · ∇C
)

= 2
√

2
3

σε ∇C · n̂ − σ cos(θ0) g′(C), (2.12)

where μf is contact line friction, and g is switch function (B2). Equation (2.12) is also
known as the non-equilibrium wetting condition and requires the equilibrium contact
angle θ0 as an input. Setting a non-zero μf yields a dynamic contact angle different from
θ0 (Jacqmin 2000; Qian et al. 2003; Carlson, Do-Quang & Amberg 2011). The second
boundary condition on solid walls is ∇φ · n̂ = 0, which states that there is no diffusive
flux through the walls.

The full system of fluid and PF equations (2.2), (2.3), (2.9) and (2.10), together with the
boundary conditions, is discretized and solved using open-source code FreeFEM (Hecht
2012). Adaptive mesh is used near the two-phase interface to capture the variation of
the function C. More details about the PF equations and simulations can be found in
Appendix B.

The PF model has three unknown free parameters: the PF mobility M, the contact line
friction μf , and the interface thickness ε. To provide an intuition about each parameter,
we vary them one at a time. As before, θ0 = 95◦ and Ca = 0.20. Figure 3(a) shows
�x for μf = 0, ε = 0.7 nm and M = (3.5; 7.0; 10.5; 14.0; 17.5) × 10−16 m4 (N s)−1.
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Figure 3. Drop displacement �x over time in PF simulations, varying PF mobility (a), contact line friction (b),
and interface thickness (c). In (a), μf = 0, ε = 0.7 nm and PF mobility is M = (3.5; 7.0; 10.5; 14.0; 17.5) ×
10−16 m4 (N s)−1. In (b), ε = 0.7 nm, M = 1.75 × 10−15 m4 (N s)−1 and contact line friction is μf =
(0.0; 0.5; 1.0; 1.5; 2.0) μ�. In (c), μf = 0, M = 1.08 × 10−15 m4 (N s)−1 and interface thickness is ε =
(0.18; 0.35; 0.70; 1.40; 2.80) nm. Varying parameters are increasing along the black arrows in all panels. In
all simulations, the equilibrium contact angle is θ0 = 95◦ and the wall velocity is Uw = 6.67 m s−1.

We observe that the final steady �x value is reduced as M is increased, i.e. smaller
deformation with increased diffusion. In figure 3(b), the displacement for ε = 0.7 nm,
M = 1.75 × 10−15 m4 (N s)−1 and μf = (0.0; 0.5; 1.0; 1.5; 2.0) μ� is shown. Here, �x
increases with μf , therefore the contact line friction has an opposite effect compared to
mobility. This competition has been previously clearly showcased by Yue & Feng (2011).
Finally, the evolution of �x in time for ε = (0.18; 0.35; 0.70; 1.40; 2.80) nm is shown in
figure 3(c) with μf = 0 and M = 1.08 × 10−15 m4 (N s)−1. It can be observed that – in
contrast to the M and μf variations – notable differences are present for initial times. As ε

is decreased (in the direction against the arrow), the steady �x value is converging. This
is a signature of the sharp interface limit (Yue et al. 2010; Xu et al. 2018). For enriched
understanding, in Appendix F we report streamlines from PF near a receding contact line
for similar parameter variations.

3. Molecular dynamics simulations of the sheared droplet

We describe the polar molecules of the water droplet using the SPC/E model. This is
the simplest model allowing hydrogen bonds with the solid substrate. It also offers an
accurate description of water bulk and interfacial properties, and retains a relatively low
computational cost. The bounding walls are formed as mono-layers of SiO2 quadrupoles
(figure 4a) that are restrained into a hexagonal lattice. A quasi-two-dimensional system
with depth 4.68 nm (figure 4c) is constructed. Albeit the composition of walls is
structurally unrealistic, this simple surrogate configuration allows emulating the two
fundamental electrostatic interactions characteristic to hydrophilic substrates (Johansson
& Hess 2018). The first is the hydrogen bond between water and silica (dotted line in
figure 4b). The second interaction is the adsorption of water molecules on the substrate.
The adsorption occurs due to the attraction between water oxygen and silicon atoms
(dashed line in figure 4b). The strong electrostatic interaction is responsible for a very
small hydrodynamic slip at the wall. Note that the current MD configuration does not
include any chemical reactions that would occur at a real crystalline or amorphous silica
surface.

The strength of the water–substrate interaction can be tuned by adjusting the charge
distribution in SiO2 (figure 4a). Different interaction strengths will result in different
equilibrium contact angles θ0. We simulate the system via atomistic MD in the NVT
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Figure 4. (a) Molecular geometry of silica quadrupoles. (b) Water molecules adsorbing (bonds sketched with
dashed lines) and forming hydrogen bond (sketched with dotted line) with silica substrate. (c) Top view of the
contact line region, showing the lattice of silica quadrupoles and water up to ≈1.5 nm above the lower periodic
boundary (blue line in b).

ensemble, using well-established force fields and thermostats. Details regarding the
physical and numerical simulation set-up can be found in Appendix C.1.

3.1. Equilibration runs
First, we measure the equilibrium properties of the water drop between two static
plates and generate thermodynamically consistent initial conditions. This is done through
so-called equilibration runs (see Appendix C.2). During the run time of the MD
simulation, we collect flow data in regular 0.2 nm × 0.2 nm bins for a time interval
12.5 ps. This yields instantaneous density ρi(x, y, t) and flow velocity ui

x(x, y, t), ui
y(x, y, t)

data as functions of space and time. After the initial transient, ρi(x, y, t) is averaged over
time to reduce noise in the liquid–vapour interface shape. The interface shape is extracted
based on this averaged density, i.e. ρ(x, y). The interface position is determined by seeking
the location where the liquid density transitions from bulk density to very small vapour
density. Examples of density distributions are shown in figures 5(e, f ). More details on
interface extraction are provided in C.3.

To determine the equilibrium contact angle, we extrapolate the interface angle towards
a hydrodynamic wall position. We assume that the wall position is at the centre of the
bin coloured in red in figures 5(a–d). The q values are tuned to yield θ0 = 127◦, 95◦,
69◦ and 38◦. This allows us to investigate hydrophobic, neutral and hydrophilic wetting
conditions. In parallel to θ0 extraction, we also identify the first reliable bin for interface
shape measurement. This bin is shown in green in figures 5(a–d). The interface angle
computed from points closer to the wall exhibits extreme deviation from continuum
description (figure 20d). Consequently, for comparisons with CFM predictions (presented
later), we always extract the interface shape from MD simulations neglecting the unreliable
data points.

In previous investigations, density variations have been observed for Lennard-Jones
(L-J) liquids near solid walls and two-phase interfaces (Bugel, Galliéro & Caltagirone
2011; Stephan et al. 2018). We determine the extent of ρ oscillations near the wall in
our MD system. The water liquid density distribution along the height of the channel is
computed as

ρy( y) =
xr∫

xl

ρ(x, y) dx. (3.1)
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Figure 5. Liquid water density variation near the bottom wall for equilibrium angles (a) θ0 = 127◦, (b) 95◦,
(c) 69◦, and (d) 38◦. Dashed black lines illustrate the boundaries of the bins. The bin filled with red shows the
selected location of the solid wall, while the bin filled with green shows the first reliable interface measurement.
Water density distributions along the green bin for θ0 = 95◦ configuration are shown (e) over the full span of x
coordinates, and (f ) near the left liquid–vapour interface.

Here, the boundaries for integration xl and xr are selected for each θ0 to fall within
the liquid phase for all y coordinates. The close-up of ρy( y) near the bottom wall is
shown in figures 5(a–d). Oscillations in ρ have smaller amplitude and occur over smaller
distances than observed typically in L-J systems. The small layering is an outcome of the
combination of the SPC/E water model and the SiO2 surface model. For the same value of
θ0, the layering would propagate further into the liquid phase if an L-J surface were used
instead of SiO2.

3.2. Dynamic configuration
Having obtained the initial state from the equilibrium simulations, we turn to the dynamic
configuration. Since the configuration is symmetric in a continuum sense, the final �x is
obtained as an average between the left (�xl) and right (�xr) interfaces. We determine
the drop displacement using the first reliable bins near the top and bottom walls (figure 5,
green bins). Since there are no interface data near the hydrodynamic wall, the final steady
drop displacement is obtained by extrapolating the interface shape. We use polynomial
extrapolation as detailed in Appendix C.4.

Figure 6(a) shows �x(t) for θ0 = 95◦ for different capillary numbers, starting at Ca =
0.05 and then increased incrementally by �Ca = 0.05. For all Ca up to and including
Ca = 0.25, we observed a stable configuration. The obtained steady drop displacements
for θ0 = 95◦ are summarized in the second row of table 1. The table also reports
displacement for the other equilibrium contact angles. Different Ca values are gradually
tested until at least three simulations in a stable regime are gathered. For all θ0, as expected,
we observe that �x increases with Ca.

The largest stable Ca = 0.25 at θ0 = 95◦ exhibits oscillations similar to the so-called
‘stick-slip’ behaviour (Orejon, Sefiane & Shanahan 2011; Varma, Roy & Puthenveettil
2021). For a prolonged time, the contact line shows more resistance towards movement
(i.e. stick). This period is followed by another in which the contact line exhibits less
resistance towards movement (i.e. slip). We show a zoomed view of �x(t) for Ca = 0.25
in figure 6(c), where the stick-slip behaviour is identified with red arrows. Note that the
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Figure 6. Time evolution of �x from MD with θ0 = 95◦ for simulations reaching steady state. In (a), Ca
increases along the black arrow, starting at Ca = 0.05 with increments of 0.05. Windows of ±5 nm around
the steady mean value are shown for (b) Ca = 0.20 and (c) Ca = 0.25. With red arrows we indicate thermal
oscillations and motion similar to stick-slip.

θ0 Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 Sim. 6

Ca �x Ca �x Ca �x Ca �x Ca �x Ca �x

127◦ 0.150 3.01 0.300 5.13 0.600 11.7a 0.900 24.9b 1.080 unst. — —
95◦ 0.050 3.40 0.100 5.93 0.150 9.11 0.200 13.9a 0.250 21.8b 0.300 unst.
69◦ 0.030 4.09 0.050 6.45 0.060 7.73 0.080 11.6 0.100 17.0a 0.150 unst.
38◦ 0.010 2.73 0.015 5.31a 0.020 7.35b 0.030 unst. 0.050 unst. — —

Table 1. Overview of MD simulations carried out in this work. For each simulation, Ca and steady �x (in
nm) are given. If simulation is unstable, then ‘unst.’ is reported instead of a �x value.

aCalibration simulation.
bStick-slip like behaviour.

partial stick-slip effect for (Ca, θ0) = (0.25, 90◦) is distinct from the oscillations observed
for Ca = 0.20. We show the enlarged view of �x versus time for Ca = 0.20 in figure 6(b),
where the red arrows depict the oscillation magnitude and time scale. We observe that
the oscillations at Ca = 0.20 are much smaller in magnitude and span smaller time scales
compared to the stick-slip-like motion (figure 6c). More discussion on the physics behind
these oscillations is provided in § 6.2. Similar oscillations with increased magnitude
are observed also for θ0 = 127◦ at Ca = 0.90 and θ0 = 38◦ at Ca = 0.02. Simulations
exhibiting stick-slip oscillations are indicated with a superscript b in table 1.

3.3. Droplet break-up
As Ca is increased further, �x(t) measured from MD does not stabilize around some finite
value. Instead, �x(t) grows continuously. An example of �x(t) at (Ca, θ0) = (0.30, 95◦)
is shown in figure 7. At 10 ns, the drop is only moderately deformed (figure 7a). At 23 ns
(figure 7b), there are two drops at the top and bottom walls, connected by thin thread
of liquid water. Then at around 23.5 ns break-up occurs, and at 24 ns we observe two
completely separated drops (figure 7c). Note that at the break-up instant, the slope of
�x(t) changes distinctively. This is due to the absence of the surface tension force that was
resisting the displacement. For the two separate drops, there is no competition between the
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Figure 7. Drop displacement in MD with θ0 = 95◦ at Ca = 0.30. In insets (a–c), we show the drop shape at
three selected time instances. The selected time is shown by a green circle with an arrow pointing to the inset.
The green dashed line corresponds to the relative wall speed 2Uw.

friction at the top and bottom contact lines. Instead, the friction at the contact lines now
ensures that the two drops follow the wall velocity and separate with speed 2Uw. Hence
the critical capillary number Cac lies in between Ca = 0.25 and Ca = 0.30. In the sheared
droplet configuration, the exact value of Cac is determined by the most unstable contact
line (either advancing or receding). For investigations of individual contact lines, other
types of experiments should be performed, such as plunging/withdrawn plate (Eggers
2005) or hydrodynamic assist (Afkhami et al. 2018; Liu, Carvalho & Kumar 2019a;
Fullana, Zaleski & Popinet 2020).

4. Calibrating CFM models against MD

The aim of this section is to identify the free parameters in PF and VOF such that the
displacement �x obtained from the continuum models matches the displacement obtained
from MD simulations. The four calibration pairs (Ca, θ0) are (marked with superscript a
in table 1) (0.60, 127◦), (0.20, 95◦), (0.10, 69◦) and (0.015, 38◦). For each θ0, we have
chosen the largest steady Ca value available from MD simulations. If the chosen steady
Ca value leads to large stick-slip like oscillations of �x (such as observed in figure 6c),
then we select the previous (smaller) steady Ca value. The unsteady simulations are not
suitable for calibration, because �x(t) grows in time (figure 7).

Before calibration, we have to make sure that the same system – in terms of geometry
and fluid properties – is represented in CFM and MD. The dimensions and physical
properties are reported in figure 1(a). The bulk liquid density is obtained by taking an
average of ρy over the height of the channel:

ρ� =
∫ yt

yb

ρy( y) dy ≈ 990 kg m−3. (4.1)

This density is valid for all equilibrium angles. Viscosity and surface tension of liquid
SPC/E water are taken from previous work (Lācis et al. 2020). The viscosity measurement
of the vapour SPC/E phase from MD is impractical. Therefore, both viscosity and density
of the vapour are determined from engineering tables (Appendix D). For VOF simulations,
we increase the vapour density to ρVOF

v = 9.9 kg m−3. This ensures numerical stability of
the simulations, while keeping the influence of the vapour inertia negligible.

The size of the channel in the x direction (the distance between periodic boundary
conditions) is matched with the distance between the left and right periodic boundary
conditions in the MD system. The channel height is based on the chosen hydrodynamic
wall position at the centre of the red bin (figures 5a–d), which results in H = 29.22 nm.
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θ0 Ca �x Δ/2 λ �s �x ε �s M × 1016 μf /μ� �x
(nm) (nm) (nm) (nm) (nm) (nm) (nm) (m4 N−1 s−1) (nm)

127◦ 0.60 11.73 0.457 4.325 0.44 11.53 0.7 0.44 235.5 0 11.74
95◦ 0.20 13.89 0.457 0.935 0.00 13.81 0.7 0.00 10.80 0 13.89
69◦ 0.10 16.98 0.457 0.313 0.00 16.75 0.7 0.00 3.500 2.361 16.99
38◦ 0.015 5.31 0.457 0.146 0.00 5.38 0.7 0.00 3.500 11.84 5.31

Table 2. Results of CFM calibration against MD. For each (Ca, θ0) pair, we report MD reference data (steady
displacement �x) in the third column. In the following four columns, we report VOF parameters (2.4) and
(2.8), and resulting steady displacements. In the final five columns, PF parameters (2.4), (2.9) and (2.12), and
resulting displacements, are given.

This position is the subject of an investigation in itself (Herrero et al. 2019) and is discussed
further in Appendix E.

The slip length (2.4) used in CFM models in principle can be related directly to MD
simulations. Previous work (Huang et al. 2008) has demonstrated that the slip length of the
MD system follows a quasi-universal relationship with respect to equilibrium contact angle
θ0. However, for the chosen MD system (SPC/E water on the SiO2 surrogate wall), accurate
slip length quantification has not yet been done. To obtain an indication about the validity
of �s = 0 for the selected MD system, we compare streamwise velocities near the wall
between PF and MD (Appendix E). Through this comparison, we found that �s = 0 holds
for θ0 = 38◦–95◦, while for θ0 = 127◦, the appropriate choice is �s = 0.44 nm. These
values are used in both VOF and PF as input parameters without any additional fitting; see
the sixth and ninth columns of table 2. Note that �s in VOF is fixed and distinct from λ –
the length scale in condition (2.8), which is used for calibration.

4.1. VOF calibration
Figure 8 compares �x obtained from VOF (red) and MD (black) for the four calibration
configurations. We have adjusted the parameter λ in (2.8) to find the best fit of �x as
t → ∞. We observe that the droplet displacement from VOF stabilizes at values that agree
well with the atomistic simulations, with the most challenging calibration configuration
being θ0 = 127◦ (figure 8a). The λ values that reproduce the displacement obtained from
MD are listed in the sixth column of table 2. For the hydrophobic configurations, we
obtained λ = 4.325 nm for θ0 = 127◦ and λ = 0.935 nm for θ0 = 95◦. We observe that for
θ0 = 95◦, λ is roughly four times smaller than for θ0 = 127◦. Naively, λ can be regarded
as a slip-related length scale near the contact line. Larger λ for θ0 = 127◦ then suggest
smaller friction, in line with the findings from PF calibration (§ 4.2).

For θ0 = 69◦ and 38◦, we found even smaller λ values, 0.313 nm and 0.146 nm,
respectively. Qualitatively, this continuous behaviour of decaying λ for smaller θ0 follows
the contact line friction argument presented later (§ 4.2). It is also interesting to note
that the obtained λ values from this calibration procedure are of order 0.1–4 nm. This
is similar to what is used by Legendre & Maglio (2015), who set λ = 1 nm in macroscopic
simulations. The mesh spacing in the VOF simulations is Δ/2 = 0.457 nm. For θ0 = 38◦
and 69◦, we have λ < Δ/2 (table 2). On the other hand, for θ0 = 95◦ and 127◦, we have
λ > Δ/2 (table 2). Here, the sign of the logarithm in (2.8) is negative. This is typically not
the case when applying Cox inspired relationships such as (2.8). Therefore, imposed θnum
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Figure 8. Time evolution of �x in MD, PF and VOF for all calibration configurations.

for θ0 = 95◦ and 127◦ should be viewed as a numerical parameter to tweak the curvature
near the wall.

4.2. PF calibration
The droplet displacement �x produced by PF (green) and MD (black) are compared
in figure 8 for the calibration configurations. The interface thickness, mobility and line
friction that provide the best match with the displacement obtained from MD are listed in
table 2. For PF, different combinations of parameters may provide a good fit; therefore it
is prudent to have physically motivated guidelines.

4.2.1. PF calibration proposed in the literature
For the Cahn–Hilliard PF model, there is a standard calibration procedure proposed by Yue
et al. (2010) and Yue & Feng (2011). The sequential steps are: (i) choosing the interface
thickness ε that is suitable to describe the physical problem; (ii) setting the PF mobility
M according to the sharp interface limit (Yue et al. 2010); and (iii) calibrating the contact
line friction μf against experiments.

The interface thickness has to be smaller than the important physical length scales in
the chosen system, which for the sheared droplet configuration are the water drop height
H = 29.22 nm and width W ≈ 38 nm (figure 1a). Based on this, the interface thickness is
set to ε = 0.7 nm. According to the sharp interface limit (Yue et al. 2010), the criterion for
choosing M is

M > 1/16ε2/
√

μvμ�. (4.2)
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μf /μ� in PF

θ0 Ca �x (MD) 0 0.1 0.2 0.3 2.36 11.84

127◦ 0.60 11.73 nm unst. unst. unst. unst. unst. unst.
95◦ 0.20 13.89 nm 20.36 21.21 22.18 23.26 unst. unst.
69◦ 0.10 16.98 nm 11.00 11.23 11.43 11.64 16.99 unst.
38◦ 0.015 5.31 nm 2.54 2.56 2.58 2.60 3.08 5.31

Table 3. Calibrating PF with MD by changing μf (strategy proposed by Yue & Feng 2011). In the third column,
we show the reference �x from MD. To the right, we show steady �x (in nm) obtained from PF for specified
μf /μ�. If no steady state exists, then we write ‘unst.’. In all simulations, M = 3.5 × 10−16 m4 N−1 s−1 and
ε = 0.7 nm.

Inserting the chosen values for interface thickness, vapour viscosity and liquid viscosity,
we obtain M > 3.21 × 10−16 m4 N−1 s−1. In the MD simulations, we do not observe any
physical effect that would hint towards a large M value. Therefore, for all θ0 in this section,
we select M = 3.5 × 10−16 m4 N−1 s−1, which is close to the lower limit.

The last step is to carry out simulations with different μf until a steady state is attained
that matches the displacement obtained from MD. Table 3 summarizes the displacement
obtained for each calibration pair (Ca, θ0) at μf = 0, 0.1, 0.2, 0.3, 2.36, 11.84. The fourth
column of table 3 shows the displacements for μf = 0. We observe that no steady solution
has been obtained for θ0 = 127◦. The steady �x obtained for θ0 = 95◦ overestimates the
MD value (third column of table 3) by roughly 50 %. Increasing μf only deteriorates the
agreement. Therefore, we conclude that the matching procedure proposed by Yue & Feng
(2011) is not adequate to calibrate the PF model for the chosen nanoscale configuration at
θ0 = 127◦ and 95◦.

For θ0 = 69◦ and 38◦, on the other hand, μf = 0 results in an underestimated drop
displacement (table 3) compared to MD. We observe that the required PF contact line
friction for θ0 = 38◦ (μf = 11.84μ�) is roughly five times larger than the one for θ0 =
69◦ (μf = 2.36μ�). More hydrophilic θ0 entails a stronger affinity between the liquid and
the wall. Stronger affinity, in turn, can yield larger friction, which is consistent with the
obtained μf values.

4.2.2. Calibrating PF by adjusting mobility for θ0 = 127◦ and 95◦
A way to reduce friction near the contact line is to increase M (figure 3a) and thus allow for
more diffusion. Therefore, we impose μf = 0 and increase M for θ0 = 127◦ and 95◦ until
the steady �x from the PF agrees with MD. The required PF mobility values are reported
in table 2. We observe that for θ0 = 95◦, a three times larger M is required compared to the
M set by the sharp interface limit (see the tenth column of table 2), whereas for θ0 = 127◦,
the M value has to be increased by a factor of hundred.

Note that this calibration procedure is compatible with the sharp interface limit. The
condition (4.2) can be rewritten in terms of interface thickness as ε < 4 M1/2μ

1/4
v μ

1/4
� .

As we increased M, the interface thickness ε = 0.7 nm was kept constant, therefore the
condition is satisfied. However, this calibration procedure produces a noticeable diffusion
near the contact line (figure 23c), which is not observed in the MD simulations.
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Figure 9. Time evolution of �x in MD, PF and VOF for Ca ∈ (0.05, 0.30), with equilibrium contact angle
θ0 = 95◦. The calibrated functions �x(t) from PF and VOF are shown in (d) with green and red lines,
respectively. The a priori measurements of �x(t) from MD (§ 3) are shown with a black line. This colour
code is retained for all comparisons that follow.

5. Predictions from PF and VOF models

We have shown that continuum systems can be tuned to match the final steady droplet
displacement computed from MD simulations. It is also necessary to understand how well
the CFM models capture other key features of the system, including the interface shape and
the time-dependent transient behaviour of the droplet. Moreover, an important practical
aspect is the accuracy of the CFM when it comes to predicting the droplet behaviour to
characterize the sheared droplet system quantitatively for a range of capillary numbers.
Specifically, in this section, we fix the parameters for PF and VOF to values reported in
table 2.

5.1. Time evolution of drop displacement
Figure 9 shows the droplet displacement as a function of time for a fixed θ0 = 95◦ but
different Ca. Figure 9(d) is identical to figure 8(b) and corresponds to the conditions for
which the system was calibrated, i.e. Ca = 0.20. We observe that both PF and VOF capture
the transient dynamics very well overall. The PF model is slightly slower (predicts smaller
�x at the same time instant) than VOF and MD.

Figures 9(a,b,c,e) show the transient behaviour of CFM models in off-calibration
conditions for Ca = 0.05, 0.10, 0.15 and 0.25. For moderate capillary numbers Ca � 0.10,
we observe qualitatively similar behaviour as for Ca = 0.20. The CFM models predict the
transient and steady �x values rather accurately. The PF, however, is always slightly slower
compared to the VOF model. For Ca = 0.05, the steady �x value is slightly lower in CFM
models than in MD. The PF model is slower in the transient compared to the VOF, and the
agreement with MD is arguably worse.
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Figure 10. Steady interface shape from MD, PF, and VOF simulations, θ0 = 95◦. Equilibrium angles and
solid wall locations are shown with black dotted and dashed lines, respectively.

To conclude the θ0 = 95◦ investigations, we consider the CFM model predictions for
the unsteady configuration with Ca = 0.30 (figure 9f ). The results from PF, VOF and MD
are indistinguishable for the first 5 ns, showing excellent predictive capability. For later
times, VOF simulation over-predicts and PF simulation under-predicts the �x observed
from MD. This is in line with observations in steady situations (figures 9a–e). Both VOF
and PF exhibit the rapid change of slope at around 23.5 ns, corresponding to the drop
break-up (discussed in § 3).

We have carried out the same investigation for θ0 = 38◦, 95◦ and 127◦. Qualitatively
similar results to those observed in figure 9 are obtained; see supplementary figures 1–3
available at https://doi.org/10.1017/jfm.2022.219.

5.2. Interface shape
For interface shape comparisons, the data are presented as the variation of the angle along
the interface θ(y) (figure 2a). Figure 10 compares θ( y) obtained from MD, PF and VOF for
θ0 = 95◦ and different Ca. The equilibrium angles at the bottom and top walls are shown
with black dotted lines, while the hydrodynamic wall positions are presented with black
dashed lines. The interface shapes in both calibration (Ca = 0.20) and in off-calibration
conditions (Ca = 0.05, 0.10, 0.15 and 0.25) are similar between the models. We observe
that both PF and VOF exhibit more pronounced differences from MD at the top wall (near
the advancing contact line). At Ca = 0.25 (figure 10e), the CFM model predictions are
notably different from MD data compared to the other capillary numbers. The loss of
accuracy could arise from the large �x oscillations in MD at Ca = 0.25 (§§ 3 and 6.2)
that are not captured with the CFM models.

The MD data in figure 10 do not extend all the way to the wall, so the exact value
of the dynamic contact angle is not known. At θ0 = 95◦, the dynamic contact angle in
PF simulations is equal to the equilibrium angle since μf = 0 (table 2). For VOF, the
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Figure 11. Steady �x as a function of Ca for all θ0.

dynamic contact angle is different from θ0. However, the angle is larger (smaller) than
the equilibrium angle for the receding (advancing) contact line. This is opposite to the
understanding arising from analysis of uncompensated Young stress. The source of this
effect is the value λ = 0.935 nm > 0.467 nm = Δ/2 (table 2).

We have repeated this comparison of interface shapes at different Ca values between
MD, PF and VOF for equilibrium contact angles θ0 = 127◦, 69◦ and 38◦. The results are
reported in supplementary figures 4–6 and are similar to what is presented above.

5.3. Steady drop displacement
Figure 11 shows the steady displacement as function of Ca for different θ0. As expected,
the MD, PF and VOF points collapse for the calibration configurations (marked with
vertical arrows). For the θ0 = 127◦ configuration, the PF and VOF models overestimate
the steady displacement for large Ca. A possible reason behind the discrepancy between
PF, VOF and MD could be the slip length �s. It has been determined for Ca = 0.60 and
kept constant for runs with different Ca. In general, the slip length can increase for larger
wall shear stress (Thompson & Troian 1997). This, consequently, would reduce �x and
possibly move the PF and VOF predictions closer to the MD results. For θ0 = 38◦, the
agreement between PF, VOF and MD diverges as we increase Ca > 0.02. A reason for the
disagreement could be the increased contact line friction (§ 6.1) at receding contact line,
from which a liquid film is formed (§ 5.5 and figure 14). This asymmetry is not taken into
account in the CFM simulations.

5.4. Critical capillary number
Figure 12 shows the critical capillary number, Cac, as a function of θ0 from the three
methods. To determine Cac for a given θ0, we take the mean of the largest steady (Cas)
and smallest unsteady (Cau) capillary numbers that were simulated, i.e.

Cac = Cau + Cas

2
± Cau − Cas

2
. (5.1)

The uncertainty is determined as half of the difference between these capillary numbers.
To reduce �Cac in CFM, we sample the Ca space with smaller intervals. It can be
observed from figure 12 that Cac increases for larger θ0, which has also been reported in
previous numerical (Sbragaglia et al. 2008) and analytical (Hocking 2001; Eggers 2004)
investigations.

We did not manage to run any VOF simulations for θ0 = 127◦ and Ca � 0.80. Due to a
large λ (table 2), the dynamic angle for Ca � 0.80 falls outside the physically admissible
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Figure 12. Critical capillary number Cac as a function of θ0.

range (0◦, 180◦). Consequently, in figure 12 we compare only PF predictions with the MD
data at θ0 = 127◦. The PF model slightly under-predicts the Cac value. This discrepancy
could again be due to the uncertainty in the slip length �s.

Figure 12 shows that predictions of Cac for 95◦ and 69◦ agree with MD results within
the accuracy bounds of MD. For θ0 = 38◦, however, discrepancies are observed, where
Cac values computed from both CFM models are larger compared to the MD results. Note
that the differences at 38◦ are enhanced due to the logarithmic scale of the Cac axis in
figure 12.

5.5. Above the critical capillary number
In this subsection, we investigate the accuracy of the CFM models for predicting the
unsteady breakage of the droplet. This constitutes the most challenging test of the CFM
models in off-calibration conditions. Two configurations are selected with Ca > Cac,
namely, θ0 = 95◦ at Ca = 0.30, and θ0 = 38◦ at Ca = 0.05.

Figure 13 shows the drop shape at four time instances for (Ca, θ0) = (0.30, 95◦). We
observe that the three models provide similar deformed states at t ≈ 5 ns and t ≈ 10 ns;
see the top two rows in figure 13. The time instance just before and right after the break-up
is shown in the third and fourth rows of figure 13. The thread connecting the lower and
upper drops is very thin in the MD and VOF simulations, compared to PF. In addition, the
thread in VOF is comparably long and exhibits grid-to-grid like oscillations. There are also
pronounced differences in the neck of each satellite drop – the region in which the thread
transitions to the drop shape. The PF simulations show the thickest neck (figure 13g),
followed by MD with a slightly thinner neck (figure 13c) and VOF with a very small
drop neck (figure 13k). The time instants at which the break-up occurs are remarkably
similar: tMD

b = 23.41 ns for MD, tPF
b = 24.37 ns for PF, and tVF

b = 23.23 ns for VOF. For
a complete time-dependent animation of MD, PF and VOF simulations side by side, see
supplementary movie 1.

We turn our attention to θ0 = 38◦ and Ca = 0.05. To avoid a premature break-up of the
liquid bridge in the PF simulation, we use ε = 0.35 nm for this particular simulation since
in this unsteady example, a third length scale – width of the liquid bridge in the deformed
state – becomes important. Droplet shapes at five time instances from MD, PF and VOF
are shown in figure 14. We observe that initially (top two rows in figure 14) the drop is
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(a) MD, t = 5.05 ns

(b) MD, t = 10.09 ns

(c) MD, t = 23.38 ns

(d) MD, t = 23.41 ns

(e) PF, t = 5.11 ns

( f ) PF, t = 10.23 ns

(g) PF, t = 24.34 ns

(h) PF, t = 24.37 ns

(i) VOF, t = 5.17 ns

( j) VOF, t = 10.26 ns

(k) VOF, t = 23.14 ns

(l) VOF, t = 23.23 ns

Figure 13. Snapshots of interface shape evolution over time from MD (a–d), PF (e–h) and VOF (i–l), with
equilibrium contact angle θ0 = 95◦ and capillary number Ca = 0.30.

(a) MD, t = 3.43 ns

(b) MD, t = 10.24 ns

(c) MD, t = 33.73 ns

(d) MD, t = 72.86 ns

( f ) PF, t = 3.51 ns

(g) PF, t = 9.12 ns

(h) PF, t = 48.74 ns

(i) PF, t = 93.45 ns

(k) VOF, t = 3.51 ns

(l) VOF, t = 8.15 ns

(m) VOF, t = 28.40 ns

(n) VOF, t = 54.79 ns

(e) MD, t = 107.8 ns ( j) PF, t = 137.5 ns (o) VOF, t = 85.64 ns

Figure 14. Snapshots of interface shape evolution over time from MD (a–e), PF ( f –j), and VOF (k–o), with
equilibrium contact angle θ0 = 38◦ and capillary number Ca = 0.05. For PF, we have ε = 0.35 nm.

deforming only slightly. After a certain time (figures 14c,h,m), a liquid film is generated at
the receding contact lines of the drop. Very similar drop shapes are observed in MD, PF
and VOF at different time instances. The VOF simulation takes roughly 5 ns less to form
a film similar to one observed in MD. For PF, one has to wait for around 15 ns more than
in MD. As time progresses, the liquid film becomes longer (figures 14d,i,n), and the liquid
bridge becomes thinner. We also note that the tip of the film forms a thicker drop-like
region. Finally, the liquid film from the periodic image merges with the liquid bridge
(figures 14e,j,o). For MD and VOF simulations, the coalescence occurs only near one
of the walls. For PF, on the other hand, a symmetric configuration is obtained with fully
wetted top and bottom walls. Animations of the simulations can be found in supplementary
movie 2.
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θ0 127◦ 95◦ 69◦ 38◦

PF μf /μ� (adv and rec) 0.00 0.00 2.361 11.84
MD μf /μ� (adv) 0.79 ± 0.019 3.21 ± 0.059 7.20 ± 0.24 7.48 ± 1.04
MD μf /μ� (rec) 0.093 ± 0.030 3.20 ± 0.13 7.48 ± 0.38 20.5 ± 1.64

Table 4. Comparison of contact line friction used in PF simulations and values obtained directly from MD
results. For PF, the same contact line friction is used for advancing and receding contact lines, while in MD,
the contact line friction can be different.

6. Molecular physics of the sheared droplet

In this section, we present molecular phenomena of the sheared droplet that are particularly
challenging to deal with in a continuum model. First, we present contact line friction
measurements directly from MD, and asymmetry between advancing and receding lines
for hydrophilic and hydrophobic configurations. Second, we discuss the nature of the
stick-slip like oscillations. Finally, we show the inevitable three-dimensional nature of the
drop break-up.

6.1. Contact line friction measurements from MD
To extract the μf from MD, we use the formula proposed by Yue & Feng (2011):[√

2
3

μf

μ�

sin θ

]
Ca = cos θ0 − cos θ. (6.1)

Here, θ is the dynamic contact angle at the wall. This expression is an approximation of the
wetting boundary condition (2.12) in case of no-slip and small capillary number. Note that
there are alternative approaches to determine contact line friction, for example, based on
equilibrium simulations, as proposed by Fernández-Toledano, Blake & De Coninck (2019)
and Fernández-Toledano et al. (2020). For this work, however, we have determined that a
non-equilibrium approach based on fitting (6.1) to MD data is the most efficient approach.

To determine the μf from (6.1), the dynamic contact angle θ has to be determined first
for each Ca value. We extract the dynamic contact angle above the first reliable bin (green
bins in figures 5a–d). To reduce the noise, we use polynomial interpolation of the interface
shape to read the dynamic contact angle at the chosen location. For consistency, we also
re-evaluate θ0 at the same distance from the wall. The obtained dynamic contact angles for
all θ0 values are gathered in figure 15. For each θ , we also display error bars, obtained by
adding ±2 to the polynomial order of the interpolation. As expected, when Ca increases,
so does the deviation of θ from θ0.

We use a least-squares fit to match (6.1) to θ measurements. The fit provides μf /μ�

values and error intervals. We fit the measurements taken at the top-left/bottom-right
and top-right/bottom-left contact lines separately. This allows the observation of an
asymmetric line friction. The obtained best-fit lines for all equilibrium contact lines are
shown in figure 15. The contact line frictions are listed in table 4 along with previously
reported μf from calibration of PF simulations.

We observe that larger line friction parameters are measured for smaller θ0. This
observation is consistent with the molecular kinetic theory (MKT). It states that the line
friction scales with the work of adhesion needed to desorb water molecules from the
substrate, which in turn increases as the surface becomes more hydrophilic (Blake &
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Figure 15. Measured dynamic contact angles θ for different Ca along with uncertainty intervals for advancing
(red squares) and receding (blue rhombus) contact lines. The dashed lines are the best least-squares fits of (6.1).
The equilibrium contact angles are (a) θ0 = 127◦, (b) 95◦, (c) 69◦, and (d) 38◦.

Haynes 1969). Interestingly, we observe a difference between advancing and receding
line friction for θ0 = 127◦ and 38◦. Future dedicated work is required to investigate
this asymmetry in depth, in particular, to determine if the asymmetry depends on the
position of the hydrodynamic wall. The observation of asymmetry is not specific to (6.1).
A linearized MKT model – where line friction is defined in a slightly different way –
would not change the conclusions. The line frictions obtained by fitting expression (6.1)
directly to MD data are larger than the ones obtained through calibration of PF against MD
(table 4). This fact seems to entail some missing physical effects in the PF model. Ideally
– in a potentially more advanced PF model – one would employ μf obtained from MD
directly in the PF boundary condition (2.12).

6.2. Stick-slip like oscillations
To differentiate between fluctuations caused by molecular-scale motion and large stick-slip
like oscillations, we define three reference length scales. The characteristic length scale of
interface fluctuations far from contact lines can be estimated by balancing the thermal
energy kBT with the energy due to surface tension σ l2th, giving lth = √

kBT/σ 
 0.27 nm.
The other two scales are the van der Waals diameter of SPC/E water molecules σSPC/E 

0.32 nm, and the hexagonal lattice spacing of the substrate dhex = 0.45 nm. We then
compute the root-mean-square for fluctuations of the contact line displacement RMSF =
(〈�x2〉 − 〈�x〉2)1/2 for each of the four contact lines, both at equilibrium and under shear
conditions. For θ0 = 95◦, we show the obtained RMSF values as a function of Ca in
figure 16(a).

We observe that for Ca < 0.25, the RMSF is comparable with dhex, hinting that the
observed fluctuations for moderate capillary numbers are caused by the same process
producing fluctuations at the equilibrium, that is, the local thermal-induced pinning
(de-pinning) of the contact line on (from) adsorption sites close to the average contact

940 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.219


Nanoscale sheared droplet

(a) (b)

26

24

22

20

18

2220181614

10

5

0

20

15

25

0 0.05 0.10 0.15 0.20 0.25

Ca t (ns)

R
M

S
F

 (
n

m
)

�
x 

(n
m

)

x = 2Uwt

x = –Uwt

x = +Uwt

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1.0

dhex : SiO2 lattice spacing

σSPC/E : SPC/E vdW diameter

lth : thermal length scale

left

right

mean

wall

1.2

θ0 = 95°

Figure 16. (a) Root-mean-square fluctuations (RMSF) of all four contact lines against capillary number for
θ0 = 95◦. The error bars show a conservative estimate of the standard error. The spacing in the hexagonal silica
lattice (blue dashed line), the van der Waals (vdW) diameter of the SPC/E water molecules (red dot-dashed
line), and the length scale of thermal fluctuations (green dotted line) are shown. (b) Drop displacement over
time for θ0 = 95◦ and Ca = 0.25. The mean (�x), left (�xl) and right (�xr) displacements are shown. A
close-up on a time interval showing pinning/depinning is shown in the inset. The green dotted lines show
the slope corresponding to wall velocity: at the beginning of the simulation, both advancing and receding
contact lines stick to the wall and thus move apart from each other with velocity 2Uw; during stick-slip
events, the receding contact line sticks to the wall while the advancing line maintains a steady motion, thus
the displacement matches the velocity of a single wall Uw.

line position. It is worth noticing that the scale of these fluctuations is larger than
that expected on the interface far from contact lines. This observation is confirmed
by examining the RMSF across the whole interface at equilibrium (see supplementary
figures 7–10). Note that for some contact angles, the fluctuations in equilibrium
simulations are smaller compared to dhex.

We examine more closely the MD simulation with θ0 = 95◦ at Ca = 0.25 (figure 6a),
which shows a much larger contact line RMSF, incompatible with lattice spacing driven
fluctuations. The speed of the drop displacement during the stick-slip like motion is much
smaller than Uw (figure 16b). We conclude that the contact line does not entirely pin when
resisting motion and only partially slips when complying with it. Moreover, for most of
the time evolution, �xl and �xr are synchronized in an oscillatory motion. However, there
are a few time intervals (between 17 and 20 ns, and between 45 and 47 ns) where indeed
complete stick-slip occurs. In these intervals, the advancing and receding speeds match the
magnitude of wall velocity; see the inset of figure 16(b).

It appears that local (pinning/depinning) and global (oscillations) processes co-exist.
Pinning/de-pinning can be explained by the fact that Ca is close to the critical
capillary number Cac. The physical interpretation of the global oscillations is more
delicate. In our modelling approach, we have assumed implicitly that the contact line
motion is over-damped. This means that there should be a (possibly nonlinear) direct
relation between force and speed, in which the proportionality constant is the contact
line friction. This may not be true for large wall velocities. In such a case, the effects of the
neighbouring flow inertia come into play. In this scenario, the coupling between positions
and forces is more complex. The stochastic forcing produced by thermal fluctuations of the
microscopic contact angle is no longer completely dissipated. Instead, these may excite
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y
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z
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(b)(a)

Figure 17. Detailed views of the molecular system upon breakage for θ0 = 95◦ and Ca = 0.4, observed at
t = 9.45 ns: (a) overview from the side, and (b) close-up on the neck region. Two transparent periodic images
are added at the sides. The close-up (b) is obtained by positioning the camera orthogonal to the thin thread in
(a).

oscillation modes of the whole interface. Stick-slip has been theorized for flat surfaces
and homogeneous fluids under some flow conditions (Hocking 2001; Eggers 2005; Varma
et al. 2021). However, to the best of the authors’ knowledge, it has not been observed
directly.

The selected standard CFM models are not capable of describing stick-slip like
oscillations. The Navier–Stokes equations, underlying the PF and VOF models, are
inherently deterministic, where all the thermal oscillations are averaged out. To model
stick-slip like processes in a continuum model, a possible approach could be to introduce
random fluctuations on the imposed θ0. The distribution of the contact angle oscillations
has been identified previously (Smith et al. 2016). Fluctuations of the contact angle would
in turn induce oscillations in �x(t).

6.3. Three-dimensional nature of drop break-up
In figures 13(d,h), we have observed that the interface shapes obtained from MD and PF
display more diffuse regions at the tip of the broken thread. It is tempting to conclude that
PF captures the MD behaviour correctly. However, the MD snapshots in figure 13 have
been averaged in the spanwise z direction, while PF simulation is a purely two-dimensional
(2-D) result.

To obtain a better physical understanding of the exact break-up process, we investigate
the molecular field of the MD system exactly at the break-up. In figure 17, we show water
molecule locations for θ0 = 95◦ at Ca = 0.4 shortly before the break-up. Observing the
drop from the side (figure 17a), it seems that the thread is not interrupted. In reality,
the thin thread develops three-dimensional (3-D) holes (figure 17b) before disconnecting
completely. Averaging in the z direction results in a lower density (than the bulk), thus
giving the impression of a diffuse interface (figure 13e).

It is also worth noticing that the formation of these 3-D threads occurs very quickly. The
time that it takes for the threads to form is around 50 ps before the actual break-up. The
break-up itself occurs after a few nanoseconds from the instant the 2-D neck starts to form.
We can thus infer that for the chosen combination of a molecular system and domain size,
there exists a time scale separation between 2-D and 3-D breakage dynamics. This in turn
suggests that the selected MD system dimensions are reasonable to produce 2-D results
and can be compared directly with 2-D CFM simulations.
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7. Discussion

Based on the data presented in the previous sections, we discuss the accuracy, limitations
and future development directions of CFM models when it comes to modelling the
molecular physics in a nanoscale channel.

7.1. Challenges of the chosen CFM models
For θ0 = 127◦, we observed differences in the steady drop displacement for Ca > 0.6;
see figure 11(a). In general, very high contact angles are challenging to model using the
particular CFM parameters that we have chosen for calibration. For VOF, it is important
to consider condition (2.8) as a numerical model that allows adjustment of the interface
curvature at the contact line. For θ0 = 127◦, this was achieved by increasing λ to values
larger than the grid size, i.e. λ > Δ/2 (table 2). This leads to a negative logarithm in
condition (2.8). This means that for the bottom-left receding contact line (figure 2a),
where Cacl is negative, we have G(θnum) > G(θ0) and thus θnum > θ0. In other words,
the imposed numerical contact angle is increased such that the curvature at the receding
contact line results in a sufficiently large positive forcing in the x direction on the fluid.
The imposed numerical contact angle therefore does not approximate the true dynamical
contact angle of the system. For PF, the mobility parameter M is calibrated (§ 4.2.2) to
increase contact line velocity for high θ0. Here, mobility is considered as a numerical
tuning parameter to match the droplet displacement and does not correspond to the actual
molecular diffusion at the interface (see Appendix F and figures 23a–c).

Very low contact angles impose other challenges for CFM. For θ0 = 38◦, we observed
that steady drop displacement diverged (figure 11d) between the three models. Indeed,
the prediction of a critical capillary number showed deviations between the methods
(figure 12). In addition, the time that it takes for the drop to evolve in different shapes
(figure 14) is different in all simulation methods. This is despite the fact that the λ obtained
through VOF calibration (§ 4.1) is reasonable (λ < Δ/2) and the standard PF calibration
procedure (§ 4.2.1) works well. By investigating MD data directly, asymmetric contact line
friction was observed (table 4). For θ0 = 38◦, we observed significantly larger μf for the
receding contact line compared to that for the advancing contact line. In the CFM models,
on the other hand, the contact line properties (μf for PF and λ for VOF) were the same for
both advancing and receding sides. Since the receding contact line becomes unstable first
(figure 14), this is the likely reason for the CFM model inaccuracy.

Finally, there are limitations of the chosen CFM at very low and high Ca values. At high
Ca values (close to Cac), we observed enhanced oscillations of �x(t) (figures 6(c) and 16,
superscript b in table 1). More detailed analyses of these oscillations were presented in
§ 6.2 for θ0 = 95◦. The CFM model does not include the intrinsic oscillations present
in the molecular reality. Consequently, the agreement between CFM and MD in drop
time evolution (figure 9(e) and supplementary figure 6) is degraded. This could also
be a potential source of increased discrepancy between interface shapes from CFM and
MD (figure 10e). Also, for low Ca values (for example, Ca = 0.05 in figure 9a), we
have observed a relatively large difference between CFM models and MD results. The
underlying cause for this inaccuracy is the relatively small drop displacement. As seen
in figure 6(a), the MD oscillations have roughly the same magnitude for all Ca values.
Consequently, the signal-to-noise ratio in MD is much smaller for smaller Ca values, and
the large oscillations can give the impression of larger inaccuracy in CFM models.
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7.2. Fluid slippage and contact line friction
In this work, the nanoscale molecular system has a negligible hydrodynamic slip. It was
observed that the slip length �s exhibits only small variations in θ0. Below bulk liquid,
the slip length had to be 0.44 nm for θ0 = 127◦, and 0 nm for all other θ0. As discussed
in § 7.1, for low-friction configurations, θ0 > 90◦, it was necessary to adjust λ and M to
further enhance contact line movement relative to the wall. This serves as a hint that the
friction near the contact line is much smaller compared to what is modelled through bulk
slip length �s. In general, however, other physical mechanisms that are intrinsic to the
contact line are expected to co-exist with molecular slippage.

We have extracted contact line friction directly from MD (table 4). For hydrophilic
substrates, a particularly high friction value was obtained. This is consistent with the
formation of a microscopic water film for a relatively small capillary number (i.e. θrec ∼ 0
for Ca � 1). On the other hand, the interpretation for the almost vanishing receding
friction on the θ0 = 127◦ surface is less obvious. To the best of the authors’ knowledge,
nowhere before has an asymmetric behaviour been reported. It is tempting to explain
the asymmetry by stating that hydrophilic surfaces are easier to wet rather than de-wet,
and vice versa for hydrophobic surfaces. This puts the classical view – that hydrophilic
substrates are high-friction surfaces and hydrophobic substrates are low-friction surfaces
– under doubt. Indeed, it is not clear whether the value of contact line friction can
be predicted from θ0 alone (Liu, Yu & Wang 2019b; Wang 2019). Reasoning with the
frame of mind of KMT instead, line friction asymmetry hints at some complex physics
modulating adsorption/desorption of molecules at the contact line. Fluid/surface interface
energy alone is not sufficient to describe asymmetry between adsorption and desorption.
More in-depth examination of sub-continuum fluid displacement near contact lines will
be required to arrive at a physical understanding of this process. When the asymmetry is
understood, it is straightforward to impose different μf values in PF and different λ values
in VOF for advancing and receding contact lines.

7.3. Potential modelling directions
It has been proposed previously that a better way to model the moving contact line is to
use the so-called generalized Navier boundary condition (GNBC), as first hinted by Blake
(1993). This approach was later evaluated against MD simulations (Qian et al. 2003; Qian,
Wang & Sheng 2006; Mohand et al. 2019), and good agreement has been found. However,
recently Lācis et al. (2020) have tried to match GNBC with MD simulations exhibiting
negligible slip but were not successful in demonstrating any advantage of GNBC against
no-slip and Navier-slip boundary conditions.

In this work, we also use substrate with negligible hydrodynamic slip (�s = 0.44 nm
for θ0 = 127◦, and �s = 0.0 nm for θ0 = 38◦–95◦). Previously (Lācis et al. 2020), for
θ0 = 95◦ we extracted �s = 0.17 nm, which is close to what we have in the current work.
However, the most important overlap between our current and previous (Lācis et al. 2020)
work is that the slip length imposed at the solid wall is constant over the surface. This is
the main reason why the GNBC for the selected system (Lācis et al. 2020) did not exhibit
any advantage. Very small slip length corresponds to very large friction at the contact line.
Consequently, the addition of uncompensated Young’s stress does not lead to significantly
modified flow near the contact line.

Nevertheless, there are no solid arguments as to why the effective friction exactly at
the contact line should be the same as below the bulk liquid. It could very well be
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that the effective slippage (friction) exactly at the contact line must be prescribed larger
(smaller) compared to below the bulk liquid. This has the potential for improving both
PF and VOF ability to match the MD results. An alternative approach to prescribing
larger friction in VOF simulations would be to use so-called staggered slip or negative
slip (Hartmann et al. 2021). Another effect, which was not considered in this work, is
so-called disjoining pressure (Pismen & Pomeau 2000). Including it would also allow for
direct modification of contact line motion. Furthermore, more detailed studies of local
rheological effects (including the orientation parameter of water) could provide insight
of detailed mechanisms governing film formation and contact line friction. An accurate
description of Navier-slip related friction near the contact line could improve results
attainable also using the GNBC condition. This is because the friction parameter is an
important input in the GNBC. An infinite friction parameter renders GNBC ineffective,
whereas gradually reducing the friction parameter (increasing slip) would amplify the
GNBC effect on the velocity near the contact line.

Another aspect is that the MD results hint towards asymmetric properties of advancing
and receding contact lines. Consequently, contact line friction and possibly local slip
length could be different. This enlarges the parameter space enormously. Fundamental
investigations into the possible cause of asymmetry between the adsorption and desorption
process would be welcome. These could potentially shed more light on what input
should be given to CFM models to match the molecular reality. Alternatively, some
kind of hybrid methods that allow the matching between MD and Navier–Stokes solvers
(Hadjiconstantinou 1999; Zhang, Borg & Reese 2017; Borg et al. 2018) could be used.
These approaches would alleviate the need to understand the asymmetric properties of the
contact line and provide direct coupling between MD and CFM solvers.

Finally, there are other CFM models available that could be benchmarked against the
molecular data produced through this work. For example, there exist different PF models,
such as van der Waals (Laurila et al. 2012) or Cahn–Allen (Eggleston, McFadden &
Voorhees 2001). The level-set model (Tornberg & Engquist 2000) or lattice Boltzman
method (Chen et al. 2014) are other potential candidates for the simulation of multiphase
flows; for instance, Latva-Kokko & Rothman (2007) showed how a no-slip LBM model
is able to capture automatically the speed-dependent dynamic contact angle and the
interface-local slip length. The number of freely adjustable parameters differs between
all alternatives. However, the issue of the appropriate velocity boundary condition will
be shared between all of models based on single continuum description. A good recent
classification of multiphase models can be found in work by Soligo, Roccon & Soldati
(2021). It must be recognized that the hybrid models (Zhang et al. 2017; Liu et al. 2021)
alleviate the need to understand the fundamental mechanisms near the moving contact
line, and provide a way to couple MD and CFM directly. This is another alternative that
should be considered for efficient simulations of multiphase systems. If the stick-slip
like oscillations of the contact line are important, then some other means of continuum
modelling can be pursued. For example, the fluctuating hydrodynamic interfaces model
proposed by Flekkøy & Rothman (1996) and Smith et al. (2016) could be evaluated as a
suitable choice. Finally, we mention the possibility of regularizing the contact line stress
singularity via Brinkman’s model for porous surfaces (Devauchelle, Josserand & Zaleski
2007).

Despite the missing physical mechanisms in PF and VOF, we have demonstrated
that sufficiently accurate predictions of interface shape, drop displacement and critical
capillary number can be obtained. The only prerequisite is that the PF and VOF
simulations have to be calibrated with the MD once for given θ0.
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8. Conclusions

We have calibrated a standard Cahn–Hilliard PF model, as well as a standard geometric
volume-of-fluid model with Cox-like wetting condition, against MD simulations of
water over a no-slip substrate. The no-slip behaviour in the MD system is an outcome
of electrostatic bonds between polar water molecules and polar wall molecules. Two
parameters (mobility M and contact line friction μf ) were adjusted in PF simulations, and
one parameter (Cox cut-off length scale λ) in VOF simulations. Four different equilibrium
contact angles (θ0 = 127◦, 95◦, 69◦ and 38◦) were investigated. For each θ0, the largest
steady stick-slip free simulation was selected for calibration. The PF and VOF models were
calibrated to match the steady �x – single scalar macroscopic measurement – observed in
MD. Using the calibrated parameters, a series of simulations was carried out for other
solid wall velocities. We demonstrated that CFM simulations can sufficiently accurately
predict the drop displacement without any additional adjustments. The critical capillary
number predictions from CFM models also displayed good agreement with MD data.

In addition, we have showcased predictions for two unsteady sheared droplet
configurations of θ0 = 95◦ and θ0 = 38◦. The CFM models predicted all qualitative
features of the MD simulations. For θ0 = 95◦, drop displacement and break-up in half were
predicted. For θ0 = 38◦, thin film deposition and coalescence with the periodic image were
predicted. Despite the quantitative differences in the time instances of the similar shapes,
the CFM predictions exhibited good agreement with MD results.

We identified molecular physics that to the best of the authors’ knowledge have not been
previously reported. We extracted line friction directly from MD and compared it with the
PF calibration results. The MD results showed the same trend as obtained with PF. In
addition, the resulting contact line friction μf values were asymmetric between advancing
and receding contact lines for θ0 = 127◦ and 38◦.

Finally, we have discussed the variations of PF and VOF parameters for matching the
MD results for all θ0 values. We identified that the currently chosen CFM models seem to
be lacking a way to describe reduced friction near the contact line for θ0 � 95◦. A possible
future direction to remedy this shortcoming would be to introduce larger slippage (lower
friction) locally near the contact line. In a continuum setting, this could correspond to
having a spatially varying slip. In addition, we anticipate that the asymmetric behaviour of
the advancing and receding contact lines is the source of the inaccuracies in PF and VOF
when predicting the θ0 = 38◦ results.

We have demonstrated that by calibrating the CFM once for each θ0 by targeting a single
global measure �x, it is possible to obtain many accurate predictions of interface shape
�x as a function of Ca, and also prediction of Cac. This is despite the fact that the selected
MD configuration exhibits practically negligible slippage. The selected CFM models seem
to perform very well for close to neutral and slightly hydrophobic configurations (θ0 = 95◦
and 69◦). On the other hand, more deviations were observed for hydrophobic (θ0 = 127◦)
and hydrophilic (θ0 = 38◦) configurations. These accuracy limits must be kept in mind if
these CFM models are applied in similar conditions.

The results of this study continue to enrich our understanding of connections between
continuum mechanics simulations and molecular reality. We believe that this work
provides important insights into PF and VOF models, associated open questions, and the
required calibration procedures. Properly calibrated, both PF and VOF can serve as useful
tools for investigations of technological applications.

Supplementary material and movies. Supplementary figures, movies and data files for easier figure
reproductions are available at https://doi.org/10.1017/jfm.2022.219.
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Appendix A. Details of the geometric volume-of-fluid model

In this appendix, we provide additional details of the VOF model. First, we describe
the numerical implementation of the solver. After that, customization for the θ0 = 127◦
configuration is explained.

A.1. Numerical implementation
All VOF simulations used a resolution of Nx = 256 (Δx = 0.624 nm) cells in the
streamwise direction, and Ny = 32 (Δ = Δy = 0.913 nm) in the wall-normal direction.
PARIS solves the general 3-D equations. The 2-D behaviour was obtained using a thin
domain, two cells wide in the spanwise direction (with periodic boundary conditions). We
performed the simulations using a first-order time scheme, and the pressure was computed
using the HYPRE library. Momentum was advected with a second-order central difference
scheme. Equation (2.5) was solved using the built-in implementation of the algorithm by
Weymouth & Yue (2010), computing the fluxes of C on the faces of each cell, and updating
C accordingly. The equation for the dynamic contact angle (2.8) was solved using the
implementation reported by Sundin, Zaleski & Bagheri (2021). Boundary conditions were
implemented through a ghost layer (a layer of cells outside the computational domain
where numerical quantities can be imposed).

The curvature of the interface was calculated using height functions. Height functions
give the distance to the interface from a reference plane aligned with the grid. The values
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Figure 18. (a) VOF refinement study, showing drop displacement for Nx = 256 and Ny = 32 cells (solid
lines) and Nx = 512 and Ny = 64 cells (dashed lines) for Ca = 0.05 and 0.15. (b) Curvatures estimated by
the analytical relations (A2) and (A3) (solid and dashed lines, respectively).

of the height function in specific cells, called heights, are computed by integrating C.
Wall-parallel (wall-normal) heights provide interface x coordinates (y coordinates) for
equidistant y locations (x locations) corresponding to the simulation mesh. The dynamic
contact angle was imposed by prescribing wall-parallel heights in the ghost layer (Afkhami
& Bussmann 2008). The value of C in the ghost layer was also set according to the
dynamic contact angle to give a consistent interface normal for the flux computations.
In the simulations, we imposed a density ratio of 0.01 to make the simulations stable. We
consider this sufficient to reproduce the main features of the water liquid–vapour system.

To evaluate the grid independence of the simulations, we performed a grid refinement
study. A refined grid with Nx = 512 and Ny = 64 was used for θ0 = 95◦, with Ca = 0.05
and 0.15. The time series of the drop displacements are presented in figure 18(a). For
Ca = 0.05, the drop displacement changed by 1.3 %, and for Ca = 0.15 it changed by
2.4 %. Accordingly, the simulations seem more sensitive to the grid for higher capillary
numbers. The difference could appear because of the refinement of the velocity field and
because the condition for the dynamic contact angle (2.8) does not completely remove
the grid dependence (Legendre & Maglio 2015). Nevertheless, we consider the observed
convergence sufficient.

A.2. Customisation for θ0 = 127◦

Using wall-parallel heights in the ghost layer limits the maximum absolute value of the
curvature at the contact lines. This curvature corresponds to a maximum forcing on the
fluid (|f σ |, (2.6)). The expression for the curvature is

κ = d2h/dy2

(1 + (dh/dy)2)3/2 , (A1)

where h = h( y) is the height function giving the x location of the interface. The sign of
κ also depends on the interface orientation; for brevity, this discussion is not included
(see Aniszewski et al. 2021). The derivatives are computed with central finite differences.
We denote the value of the heights h0, h1 and h2 in the ghost, first and second cell layers
above the wall, respectively. From the definition of the angle, h0 = h1 + Δy/ tan(θ) (the
sign in front of tan(θ) depends on the interface orientation). We assume that h2 ≈ h1.
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The curvature in the first cell layer becomes

κnum = (h2 − 2h1 + h0)/Δ
2
y

(1 + (h2 − h0)2/(2Δy)2)3/2 ≈ 1
Δy

1/ tan(θ)

(1 + 1/(4 tan2(θ)))3/2 , (A2)

shown in figure 18(b) (solid line). The approximation of κnum is zero for θ = 0◦, 90◦ and
180 ◦. As shown in the figure, |κnum| has one maximum in each of the intervals 0◦ < θ <

90◦ and 90◦ < θ < 180◦. For θ0 = 127◦, a minimum separation velocity was achieved
for a steady-state receding contact line angle smaller than 180 ◦, as expected from (A2).
However, this minimum was not low enough to match the target displacement from MD.

To match the MD results, we allowed the usage of the height of the third cell layer, h3.
The finite-difference scheme of the second derivative was left unchanged. The order of the
first derivative, on the other hand, was increased, resulting in

κnum = (h2 − 2h1 + h0)/Δ
2
y

(1 + (−h3 + 6h2 − 3h1 − 2h0)2/(6Δy)2)3/2 ≈ 1
Δy

1/ tan(θ)

(1 + 1/(9 tan2(θ)))3/2 ,

(A3)

where we assumed h3 ≈ h2 ≈ h1. This expression results in significantly higher curvatures
for extreme angles (figure 18b, dashed line). We were then able to match the MD result.

Another possible remedy would be to impose the angle by wall-normal heights.
However, in many instances for θ0 = 127◦, not enough wall-normal heights could be
computed at receding or advancing contact lines for curvature calculations. The current
solution is therefore more robust. Wall-normal heights could be a viable solution if
resolution is increased significantly.

Appendix B. Details of the Cahn–Hilliard PF model

In this appendix, we provide additional details of the Cahn–Hilliard PF model used in this
work. The model is introduced briefly in § 2.2. The standard double-well potential is

Ψ (C) = (C + 1)2 (C − 1)2 /4. (B1)

The wetting boundary condition (2.12) contains the so-called switch function, defined as

g(C) = 0.5 − 0.75C + 0.25C3. (B2)

This expression serves as a window function that ensures that the wetting boundary
condition is applied only at the contact line. Furthermore, the cubic expression (B2) is
not empirical. Instead, it is derived as the equilibrium solution of PF equations based on
the selected potential (B1) and hyperbolic tangent variation of C across the interface.

The density and viscosity in the momentum equation (2.2) are spatially dependent. In
the PF model, we define these fluid parameters through linear combination based on PF
variable C as

ρ(C) = ρ�

C + 1
2

− ρv

C − 1
2

and μ(C) = μ�

C + 1
2

− μv

C − 1
2

. (B3a,b)

Recall that ρ� and μ� are the density and viscosity of the liquid component, and ρv and
μv are the density and viscosity of the vapour component.

The introduced governing equations are linearized, written into the weak form, and
solved using an open-source finite-element software FreeFEM (Hecht 2012), which allows
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U. Lācis and others

Oxygen mass mO 9.95140 u
L-J well depth (silicon) εSi 0.2 kJ mol−1

L-J characteristic distance (silicon) σSi 0.45 nm
L-J well depth (oxygen) εO 0.65019 kJ mol−1

L-J characteristic distance (oxygen) σO 0.316557 nm
Si–O bond distance dso 0.151 nm
Hexagonal lattice spacing dhex 0.45 nm
Restraint force constant κO 105 kJ mol−1 nm−2

Table 5. Parametrization of the force field of silica quadrupoles (electrostatics excluded).

easy specification of finite-element weak form. Linear elements were used for the PF
variables, while the fluid flow was resolved using Taylor–Hood elements (quadratic for
velocity and linear for pressure). Mesh resolution was refined, and results were checked
for a few selected simulation cases. The production resolution selected and used for most
simulations is �s1 = 3.65 nm far from the interface, and down to �s2 = 0.24 nm within
the interface region. The constant time step was used through the simulation as �t = 0.002
dimensionless time units. For very small Ca, �t was reduced to ensure numerical stability.
For simulations with smaller ε, the mesh was refined at the interface to maintain roughly
the same amount of elements over the interface, and the time step was reduced to ensure
numerical stability. Exact numerical code used to produce the PF results is available freely
from the Github repository (Lācis & Bagheri 2020–2022). The data to reproduce the
figures in the main paper are available in supplementary file 1.

Appendix C. Details of MD simulations

In this appendix, we provide the details necessary for the reader to understand the
simulation procedure, interface extraction, and determination of equilibrium angle.

C.1. Numerical implementation
The thin quasi-2-D liquid meniscus (figure 1) is composed of 172 933 water molecules.
The parameters for the SPC/E model are taken from the OPLS-AA force field. The
parametrization of SiO2 quadrupoles is summarized in table 5. Silicon atoms are treated
as virtual sites without mass. Oxygen atoms are restrained to absolute coordinates by a
spring of constant κO. The usage of position restraints grants the substrate some flexibility
to reconfigure and accommodate water adsorption and desorption. All covalent bonds and
angles are treated as rigid constraints. Non-bonded parameters for the interactions between
different species are generated via the geometric combination rule. The time-marching step
is the same for equilibrium and non-equilibrium runs, δt = 2 fs. We use the leap-frog time
marching to update atomistic coordinates. All simulations have been pre-processed and
run with GROMACS 2020 (Abraham et al. 2015).

To obtain θ0 values stated in § 3, charge values (q1, q2, q3, q4) = (0.40, 0.60, 0.67, 0.74) e
were required. Here, e is the elementary electron charge. Ideal purely-repulsive
Lennard-Jones (L-J) walls are placed beyond the silica surfaces at the location of periodic
boundary condition. The L-J walls decouple periodic images along y. The starting
configuration for production runs is obtained by letting the droplet relax to its equilibrium
shape.
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Uw

(a) (b)

A

Ideal repulsive Lennard-Jones wall

B

dne

Figure 19. Position restraints and wall treatment. (a) References for restrained positions are visualized via
‘ball-and-stick’ representation, while actual atoms of SiO2 molecules are shown as transparent vdW spheres.
(b) Auxiliary interpolation procedure for non-equilibrium simulations to produce an effective wall velocity Uw.

The desired shear rate is produced by interpolating position restraints between two
reference configurations (figure 19b). The configuration A is the equilibrium one. In
configuration B, horizontal coordinates of the silica layer have been offset by +dne on
the top wall and by −dne on the bottom wall. The effective wall velocity is quantified as

Uw = δx
δt

= dne
δλ

δt
. (C1)

Here, δλ is the increment of an auxiliary variable λ ∈ [0, ∞) applied at each time step. The
value λ = 0 corresponds to configuration A, and λ = 1 to configuration B. The desired
wall velocity is obtained by setting the interpolation increment to δλ = Uw δt/dne.

All simulations are performed in the NVT ensemble at T = 300 K and fixing the extent
of the simulation box to (Lx, Ly, Lz) = (159.75, 30.634, 4.6765) nm. Periodic boundary
conditions are employed along the direction of flow homogeneity z and along the shear
direction x, while periodic image interactions along the vertical direction y are avoided
by placing ideal L-J walls at y = 0 and y = Ly (figure 19a). A Bussi–Donadio–Parrinello
thermostat (GROMACS ‘v-rescale’) is applied to both water and silica, with coupling time
0.1 ps for equilibration runs and 10 ps for non-equilibrium runs.

When performing non-equilibrium simulations of liquids, one has to bear in mind
that most standard choices for thermal coupling lead to either local flow hindering or
artificial cooling where the flow velocity is larger. We estimated the maximum local
temperature deviation for the probed range of capillary numbers, and we concluded that it
has only a marginal effect on steady regimes when surfaces are hydrophilic or moderately
hydrophobic. The estimate can be obtained as follows. Imagine a fluid composed of
spherical particles. Then temperature and kinetic energy (per particle) can be related at
equilibrium via the equipartition theorem

Ekpp = 1
2 m

(
〈c2

x〉 + 〈c2
y〉 + 〈c2

z 〉
)

= 3
2 kBT, (C2)

where c is the particle’s peculiar velocity. For a steady flow and in case of no-slip,
molecules close to a solid wall have a deterministic velocity component Uw in the x
direction. An equilibrium thermostat that is oblivious to hydrodynamics will attempt to
re-scale the kinetic energy per particle in order to match the prescribed temperature T0,
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defined as
3
2 kBT0 = 1

2 m
(

u2 + 〈c2
x〉 + 〈c2

y〉 + 〈c2
z 〉

)
. (C3)

The difference between imposed and effective temperature is

T0 − T = mu2

3kB

 m(γ /μ)2

12kB
Ca2 = Θ Ca2 > 0, (C4)

where Θ is a characteristic temperature differential that tunes how the system is cooled
down in the function of the imposed capillary number. For our molecular model, we
estimate Θ 
 0.78 K, which entails that to cool down the near-wall molecules by 1 K,
one needs to prescribe at least Ca 
 1.132. This rough calculation does not account for
the rotational degrees of freedom of water, and thus can be regarded as a conservative
estimate.

There exist several techniques for correctly thermalizing flow simulations. One among
the simplest consists in coupling only the solid substrate and letting the liquid thermalize
due to heat exchange. Trying this approach, we noticed that in the configurations with
θ0 � 95◦ (which are also problematic due to typically larger Ca), heat transfer between
silica and water is not large enough to effectively render the system isothermal. Other
techniques would employ either a profile-biased thermostat (Bernardi, Todd & Searles
2010) or a dissipative-particle-dynamics thermostat (Soddemann, Dünweg & Kremer
2003; Goga et al. 2012). However, these thermostats are not currently implemented in
GROMACS.

Hydrodynamic fields (density, velocity and temperature) are measured directly from
MD trajectories. Each quantity is averaged in space on a grid with spacing (hx, hy) 

(0.20, 0.20) nm (figure 1b), and over time by aggregating all measurements in consecutive
windows of 12.5 ps. Averaged and binned variables are saved to file ‘on-the-fly’
concurrently with the simulation, thus vastly reducing the output size. Saving all atomistic
trajectories would not be feasible. Consequently, the output of MD simulations is a range
of data files containing so-called frames, corresponding to the sequence in time of the
partially averaged MD data. Each frame contains the instantaneous field outputs ρi(x, y, t),
ui

x(x, y, t) and ui
y(x, y, t) as defined in § 3. Post-processing to obtain averages over time

intervals of several ns has been performed with in-house codes based on the freely
available repository (https://github.com/MicPellegrino/densmap.git). The exact scripts are
available upon reasonable request.

C.2. Equilibration runs and centre of mass correction
To determine that the signature of the initialization is fully disappeared, we first visually
inspect the time series of the relaxing contact angle. Based on the decay of the signal,
we have determined conservative cut-off times for different q values. Then we check a
posteriori the cross-correlation between the signals at each contact line. This is done
to ensure that any transient relaxation dynamic has disappeared and that the size of the
molecular system is large enough to effectively localize contact line motion. After the
cut-off time, we have continued the runs to collect a sufficient amount of statistics for the
measurements, at least 4 ns for all q values.

From MD simulations of the equilibrium configuration, we obtain many sequential
frames of hydrodynamic variables. To measure the geometrical features, such as the
local interface curvature, we average all frames in the equilibrium state by shifting
the centre of mass (COM) of the liquid droplet in each frame to the centre of

940 A10-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/MicPellegrino/densmap.git
https://doi.org/10.1017/jfm.2022.219


Nanoscale sheared droplet

the domain. The reason behind this procedure lies in the fact that COM correction is
turned off in the MD simulations themselves. Run-time COM correction potentially can
hinder relaxation in equilibrium simulations and create velocity measurement artefacts in
non-equilibrium ones. This averaging procedure is employed before interface extraction
for both equilibration and sheared MD runs.

C.3. Interface extraction and θ0 measurement
In this subsection, we describe the extraction of the interface shape from the water density
distribution ρ(x, y). The distribution for the equilibration run with θ0 = 95◦ along the bin
with vertical coordinate y ≈ 1.5 nm is shown in figures 5(e, f ). We consider two criteria to
define the exact xni coordinate of the interface, i.e.

ρ(xni, yn) = 0.5ρ� and ρ(xni, yn) = 0.5ρy( yn). (C5a,b)

These are based on global liquid density (C5a) and slice liquid density (C5b) at an nth
vertical bin with coordinate yn. If the sought density value is not located in any single
bin, then linear interpolation is used to find the exact coordinate. The interface extraction
according to (C5a) we call ‘global interface extraction’, and the obtained interface we call
the ‘global interface’. This is the approach used typically in literature. However, the density
layering (figure 20b) exhibits itself in the interface shape near the surface (figure 20a,
green line). The interface extracted according to (C5b) we call the ‘slice interface’. The
xni obtained from (C5b) show reduced layering influence (figure 20a, blue line). Further
away from the wall, results from (C5a,b) agree. From (C5b) it is also possible to define the
interface point for adsorbed water layer (figure 20a, y = 0.7 nm). However, this is only a
visual evaluation of both extraction procedures, and it is not yet clear if any one of those
is advantageous when comparing MD with CFM.

As the next step, we measure the equilibrium contact angle θ0. We use both interface
shapes extracted according to (C5). From the interface shape, we compute the interface
angle θ( y) along the height of the interface, as defined in figure 2(a). The angle is obtained
from the slope of the interface segments (encircled in green in figure 20a). Therefore, angle
measurements are located at the boundaries of the MD bins. The Young–Laplace equation
for constant surface tension is

�p = −σγ, (C6)

where �p is the pressure jump across the interface, and γ is the local curvature of the
interface. In equilibrium, we expect the pressure in the whole droplet to be constant and the
pressure in the vapour phase to be negligible. According to the Young–Laplace equation
(C6), this results in constant curvature along the interface. We can express the interface
angle as

θ(s) = c1s + c2, (C7)

where c1 and c2 are constants determined by boundary conditions, and s is the curvilinear
coordinate along the interface. For convenient comparison, we transfer θ( y) to θ(s). Since
the theoretical function is known, we fit the obtained MD results with (C7). We observe
that both global and slice interfaces deviate rapidly from linear relationships near the wall
(figure 20d). The same effect is observed in figure 20(a), where the interface segments
closest to the wall exhibit significantly different angles compared to segments ≈1.5 nm
above the wall. Therefore, we conclude that several interface points closest to the wall
cannot be used for a reliable comparison with continuum description.
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Figure 20. Equilibration MD run yielding θ0 = 95◦. Close-up near the bottom wall of extracted interface
shape (a) and liquid density variation (b). Interface angle variation (c) along the curvilinear coordinate s
excluding the interface measurements closest to the walls. Inset (d) shows the interface angle along the vertical
coordinate y with all interface points included. Dashed lines in (c,d) correspond to the measured equilibrium
contact angle θ0.

Next, we determine how many MD points near the wall need to be excluded. We do
this by gradually removing the closest interface points near the wall. The procedure is
carried out until the standard error of the linear fit (C7) reaches its minimum. This process
is applied to both global and slice interfaces. We observe that a larger number of points
have to be removed from the global interface shape to obtain the minimum in the standard
error. Therefore, for producing MD results in this work, we choose to focus only on the
slice interface. We postulate that the first remaining point on the interface is the first
reliable interface measurement for comparison with CFM. The obtained θ(s) from the slice
interface for the remaining interface points is presented in figure 20(c) with a blue line.
The corresponding best linear fit is given with a red dotted line. To obtain the equilibrium
angle θ0, we use the hydrodynamic wall position assumed in the main paper. The wall
position is shown in red in figure 20(b). We extrapolate the linear fit to the assumed
positions. The equilibrium angle is computed as an average of extrapolated values at the
top and bottom walls (figure 20c, red crosses). However, the total arc length of the interface
depends on the contact angle. Therefore, the equilibrium angle θ0 is obtained iteratively in
the following procedure. We first centre the MD data to ideal arc length for given θ0. Then
the agreement with the given θ0 is verified by extrapolating the best linear fit of the MD
data to wall locations. Finally, the next θ0 is set as the average of the previous estimate and
the current estimate. The final obtained equilibrium angle in figure 20(c) is presented with
black dotted lines. The inset (figure 20d) shows the angle deviation magnitude from the
linear expression near the wall. The deviation is much larger than the noise observed in
the bulk of the MD results. Consequently, the deviation near the wall cannot be explained
by the thermal fluctuations of MD. Therefore, some other molecular effects are in play.

The process of removing the unreliable MD interface points and determining the
equilibrium contact angle θ0 is repeated for all considered MD surface charges. Obtained
first reliable interface extraction bin locations for comparison with CFM are summarized
in the main paper (figures 5a–d), and the measured contact angles θ0 are 127◦, 95◦, 69◦
and 38◦, as stated in the main paper.

940 A10-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.219


Nanoscale sheared droplet

y (nm) Npx (nm)

y 
(n

m
)

0 5 10 5 102015 25 30

60

14.0

14.5

15.0

70

80

90

100

10

5

–5 0 5

0

20

30

15

25
θ0

180 – θ0Equilibrium

Chosen
polynomial
order

Sheared

Polynomial fit

Wall locations

�
x 

(n
m

)

(a) (b) (c)

θ 
(d

eg
.)

Figure 21. MD interface shape (a) and interface angle (b) for θ0 = 95◦ system at equilibrium and sheared
(Ca = 0.20) configurations. (c) Convergence of �x with respect to polynomial fit order Np. Wall locations are
shown with red dashed lines in (a,b). The polynomial fit used to obtain the drop displacement estimate is shown
with a purple dotted line (a). The equilibrium angle is shown with a black dotted line in (b). The purple crosses
in (b) represent possible contact angle measurements for a few Np values.

C.4. Polynomial extrapolation of MD interface shape
In this subsection, we describe how a polynomial fit is used to determine the final drop
displacement for comparison with CFM models. In addition, the usefulness of the fit
for extracting dynamic contact angle is assessed. Recall that through the extraction of
θ0 values (Appendix C.3), the first reliable bins for comparison with CFM have been
identified (shown with green in figures 5a–d). Consequently, there is a gap in interface
data near the walls. To illustrate this, we show the equilibrium and sheared (Ca = 0.20)
interface shapes for θ0 = 95◦ in figure 21(a). With red dashed lines, we show the assumed
wall positions. In CFM models, however, the interface shape continues to evolve smoothly
until meeting the wall. Consequently, when comparing MD with CFM models, the empty
data region near the wall is undesirable.

To remedy this issue, we introduce a fit of the interface shape. Unlike for the
equilibration run – for which the function corresponding to the interface shape was
known – the functional form of the dynamic interface is not known. Therefore, we choose
a polynomial with some order Np that is not yet known. To fix the Np parameter, a
convergence study of extrapolated drop displacement by varying the Np parameter is
carried out. The example result of the convergence study is shown in figure 21(c) for
θ0 = 95◦ and Ca = 0.20. Typically, we observe that initially there are large changes of
the extrapolated drop displacement. However, after some order, the magnitude of the
difference reduces. To settle on the final polynomial order, we use the following guidelines.
As a rule of thumb, we choose the order after which the drop displacement �x visually
seems to oscillate around some value. In addition, we introduce an arbitrary limit Np < 12
to avoid over-fitting the MD data. Finally, we evaluate the agreement with the interface
angle (figure 21b) and increase the order if the agreement is not satisfactory. The final
chosen polynomial order for Ca = 0.20 is Np = 7. The final obtained steady displacement
from MD is �x = 13.89 nm. The shape of the fitted polynomial for the interface is shown
in figure 21(a,b) with a purple dotted line.

While �x can be obtained by extrapolating the polynomial fit, this approach does
not give reliable measurements of the dynamic contact angle at the wall. To illustrate
this, in figure 21(b) we add two more polynomial fits with Np = 8 and Np = 11.

940 A10-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.219
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All three polynomial orders give very similar �x values (figure 21c). However, the
predicted advancing dynamic contact angles at the wall (purple crosses in figure 21b)
are significantly different. Similar differences have also been observed for receding
contact lines for other simulations. Consequently, the first reliable measurement of the
dynamic contact angle can be taken only at some distance from the wall (green crosses in
figure 21b). The polynomial extrapolation in the main paper is used to get a more accurate a
posteriori steady �x measurement and to read off the dynamic contact angle at the reliable
bin location. The convergence of �x is rechecked for each unsteady MD simulation by
following the guideline explained above.

Appendix D. Choice of vapour properties

According to empirical formulae (Engineering ToolBox 2004), the water vapour saturation
pressure (which is the same as the gas pressure in the absence of other gases) at T = 300 K
is

pwv = exp(77.345 + 0.0057 T − 7235/T)

T8.2 = 3523.88 Pa. (D1)

The water vapour density is

ρwv = 0.0022
pwv

T
= 0.0258 kg m−3. (D2)

The viscosity of water vapour (also called steam) can be looked up in tables (Engineering
ToolBox 2014). Linear interpolation between two given values closest to T = 300 K gives
us

μwv = μ20◦ + (μ50◦ − μ20◦)
323.15 K − T

30 K
= 1.04 × 10−5 Pa s. (D3)

These are the parameters reported in the main paper (figure 1). It was also checked that
the results are only weakly sensitive to the exact value of the vapour viscosity.

Appendix E. Wall location and no-slip condition

In this appendix, we motivate the choice of the hydrodynamic wall position and the
applicability of the no-slip condition. We also show that small changes in wall location
can influence results near the contact line significantly. Recall that the wall position in
CFM is set at the centre of the bin with coordinate y = 0.7 nm (black line in figure 22a). If
the chosen wall location is appropriate, then CFM should predict flow velocity accurately
even a very small distance above the wall. Therefore, we select the next bin with coordinate
y = 0.9 nm (green bin in figure 22a) to compare velocity distribution between the MD and
PF models. We omit VOF from the comparison for clarity, and we look at all calibration
simulations.

We extract ux from MD at the green bin. The MD velocity data are obtained with the help
of two averaging approaches. The first approach is the MD frame average over the steady
regime together with a correction for the COM, the same way as done in Appendix C.2.
This provides the global flow field data and interface shape. Locally, as we approach the
two-phase interface, the stochastic interface oscillations become present and can influence
the measurement of the hydrodynamic variables. To reduce this influence, we repeat the
averaging procedure over all frames in a steady regime, but instead of centring those
around the COM, we centre them around the instantaneous interface positions at the left
and right sides of the drop. Using this approach, we obtain a cleaner signal from MD
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Figure 22. (a) Assumed hydrodynamic wall position for the CFM simulations with respect to the molecular
picture. (b–e) Horizontal velocity ux over horizontal slice at the bin roughly corresponding to the liquid density
peak coloured green in (a). Results for θ0 = 127◦ (b), 95◦ (c), 69◦ (d) and 38◦ (e) are reported. Calibration Ca
numbers are stated in panel titles. Expected sensitivity to a slight shift in wall location is given as a grey shaded
region.

closer to the interface. To obtain a single velocity curve, we move the interface-averaged
results to the global interface location. Then we replace the velocity data from the COM
averaged data with the interface-averaged data until ≈10 nm away from the contact line.
The noisy data on the vapour side are neglected. Finally, to further reduce the noise in MD,
we make use of the symmetry in the system and take the mean between profiles obtained
at the bottom and top walls. The obtained MD streamwise velocity distribution is shown
in figures 22(b–e) with solid black lines. Contact angles and Ca numbers are presented in
the titles of individual panels.

For comparison, we extract the ux distribution along the x coordinate at the same y
location from all calibration no-slip PF simulations. The PF results for θ0 = 127◦ are
shown in figure 22(b) with a green solid line. We observe that PF results do not agree
with MD results over the full span of x coordinate. We repeat the PF simulation, by
gradually increasing the �s value until a good match is obtained. Through this, we obtain
�s = 0.44 nm. The PF velocity results with �s = 0.44 nm are shown in figure 22(b) with a
solid red line. Now, a good agreement between MD and PF is obtained.

For θ0 � 95◦ (figures 22c–e), we observe that agreement between PF velocity
predictions and MD results is good at �s = 0. Very good correspondence is obtained at
the centre of the drop. As contact line regions are approached, the agreement deteriorates.
However, the agreement below the liquid bulk is sufficient to conclude that the no-slip
condition (�s = 0) is appropriate for these contact angles.

The hydrodynamic wall position in the current work is essentially an assumption.
Therefore, we have also investigated the sensitivity of the velocity profile obtained from
PF to small perturbations in wall location. With grey areas (figures 22b–e) we show the
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regions in which the PF results would fall if the wall location were moved up or down
by 0.1 nm. These results are obtained by sampling 0.1 nm closer to or further away from
the solid wall. It was verified that this is equivalent to actually changing the wall position
and also the channel height. By looking at the grey regions, we observe that the variations
are very narrow for all θ0 values in the centre of the drop. However, approaching the
contact line region for θ0 = 95◦ and 69◦, the variation grows. This suggests that for the
description of the processes near the contact line, the exact location of the solid wall could
play a significant role.

It must be recognized that the slip length of MD systems has been studied extensively
before; see, for example, works by Thompson & Troian (1997) and Huang et al. (2008).
In particular, Huang et al. (2008) investigated the slip length of SPC/E water over a range
of surfaces, from silane monolayers to more common L-J models. They found that, up
to a good accuracy, �s ∼ (1 + cos θ0)

−2. It must be noted that, to the best of authors’
knowledge, a similar study in MD with surfaces that form hydrogen bonds with water has
not been carried out before, and it is out of scope of the current study. Nevertheless, the slip
length values obtained in the current work agree qualitatively with results of Huang et al.
(2008) – as θ0 increases, the slip length grows as well. However, the current inaccuracy of
wall location and selected binning resolution (0.2 nm) prohibits determination of the exact
slip length variation for contact angles θ0 = 38◦–95◦.

Finally, it is interesting to note that the liquid density variations (§ 3) do not impede
reliable flow velocity measurements. Reliable velocity measurements can be taken closer
to the wall if compared to reliable interface angle measurements (compare red and
green bin locations in figures 5a–d). In addition, through determining the validity of the
no-slip condition, we have demonstrated that PF can predict accurately the liquid velocity
distribution as close as 0.2 nm above the last oxygen atom of the solid substrate.

Appendix F. Streamlines from PF near the contact line

To deepen understanding of the influence of parameters M, μf and ε on the PF results,
the steady flow field in the vicinity of the receding contact line is investigated. For this,
the PF simulation with θ0 = 95◦ and Ca = 0.20 is run until the steady �x is reached. The
flow field at the last time instant is used to compute the streamlines. With black lines in
figure 23, we present streamlines near the bottom left receding contact line in a zoomed-in
window of roughly 12 nm × 7 nm. The two-phase interface, defined as C = 0, is presented
with a thick red line. The thick blue line identifies a streamline that originates from within
the liquid drop at a 0.5 nm distance from the bottom wall. This particular streamline can
be leveraged to compare the amount of streamline crossing and the amount of overshoot
at the two-phase interface.

In figures 23(a–c), the influence of PF mobility is shown. First, we investigate the flow
field with the smallest M (figure 23a). Overall, the streamlines are similar to the wedge
solution derived and presented by Huh & Scriven (1971), and the PF solution analysed
thoroughly by Seppecher (1996). On the large viscosity side (in the liquid part), there
is only one vortex, while on the small viscosity side (in the vapour part) there are two
adjacent vortices. Due to the diffuse nature of the model, the stagnation point is displaced
slightly to the left and above the contact line at the wall defined by C = 0. In addition,
it can be observed that the blue streamline approaches the two-phase interface, then turns
and follows the two-phase interface tangentially. By setting M ten times larger (figure 23b),
it can be observed that the streamline crossing over the interface is increased. The blue
streamline now crosses the interface (red line) and continues in the vapour phase, whereas
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(a) M = 3.5 × 10–16 m4 N–1 s–1
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(b) M = 3.5 × 10–15 m4 N–1 s–1 (c) M = 3.5 × 10–14 m4 N–1 s–1
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Figure 23. Streamlines from PF simulations near the bottom left receding contact line. All simulations use
equilibrium contact angle θ0 = 95◦ and capillary number Ca = 0.20. The blue streamline describes a fluid
parcel originating from within the liquid drop at 0.5 nm distance from the wall (a second blue streamline has
the same stream function value). The red isoline corresponds to the two-phase interface, defined as C = 0.
With the light blue colour we show the variations of the C function. PF mobility (a–c), contact line friction
(d–f ), and interface thickness (g–i) are varied. Other parameters in the corresponding row are kept constant.
In (a–c), μf = 0 and ε = 0.7 nm. Then ε = 0.7 nm and M = 1.75 × 10−15 m4 N−1s−1 are used in (d–f ). In
(g–i), we have μf = 0 and M = 1.08 × 10−15 m4 N−1 s−1.

a streamline originating at a slightly larger distance from the wall (see a black line that
partially overlaps with the blue line) turns and follows the interface tangentially in the
vapour side. For M a hundred times larger (figure 23c), the streamline crossing is increased
even more. The blue streamline proceeds straight into the vapour phase, and so do the
streamlines originating up to a distance of roughly 2 nm above the wall. The original
wedge flow pattern can barely be recognized.

Figures 23(d–f ) illustrate the effect of varying contact line friction μf . When there
is no friction (figure 23d), the contact angle at the wall is equal to θ0 and the marked
streamline overshoots the interface by around 1 nm and is pulled back within the liquid
drop higher above the wall. Increasing friction to μ� (figure 23e) leads to an overshoot
of the streamline around 2 nm. Higher above the wall, the streamline is pulled back and
continues parallel to the interface at roughly the same distance from the interface as
observed in figure 23(d). The contact angle at the wall deviates from θ0. For the largest
contact line friction (figure 23f ), we observe an even more pronounced contact angle
departure from θ0. In addition, the marked streamline crosses the interface and continues
in the vapour phase.

Finally, in figures 23(g–i), we exemplify the effect of the interface thickness. As ε is
reduced, the behaviour of the blue streamline changes from full crossover to vapour phase
(figure 23i), to a small overshoot of an order of nm (figure 23h) and finally to no crossing
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over the interface (figure 23g). The interface shape, on the other hand, remains practically
the same for ε = 0.70 nm and 0.18 nm, which is again a signature of the sharp interface
limit.
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