SOME REMARKS ON A PAPER OF WONG

R. Houston and S.K. Kaul

1. The aim of this note is to point out a mistake in the proof of Theorem 2 of Wong's paper [1]. We first give an example to show that the theorem as stated is not true.

Example 1. Consider the cartesian plane and the graph H with equation $y = \sqrt{x^2 + 1}$. For each n let f denote a graph which is such that *

- (1) $|f_n(x) H(x)| < 1/n$ for all x, n = 1, 2, ...
- (2) $f_n(x)$ intersects f(x) = x exactly once and in a point with abscissa greater than n.
- (3) $f_{p}(x)$ is continuous.

Then each f is a continuous function of reals into itself. The metric d defined by

d (x, y) =
$$\begin{cases} |x - y| & \text{if } |x - y| \le 1 \\ 1 & \text{if } |x - y| > 1 \end{cases}$$

is a bounded complete metric for the reals equivalent to the usual metric. It is easy to see that $\{f_n : n = 1, 2 \dots\}$ is a Cauchy sequence, converging to H under the sup. norm topology. Each f_n has a fixed point but H does not. This completes the example.

As a special case in the above example, we may consider

$$f_{n}(x) = \begin{cases} H(x) & x \le n \\ H(n) & n \le x \le n + \frac{1}{2} \\ g_{n}(x) & n + \frac{1}{2} \le x \le n + 1 \\ H(x) & x \ge n + 1 \end{cases}$$

where $g_n(x)$ is the line segment connection the points $(n + \gamma_{\lambda}, H(n))$ and (n+1, H(n + 1)).

747

2. Let X be a compact metric space with metric ρ . Let X* be the set of all continuous functions from X into itself, and define for any f, $g \in X*$,

d (f, g) = sup
$$\rho$$
 (f (x), g (x))
x \in X

Then d is a complete metric on X^* . Let

$$F = \{f \in X^* : f(x) = x \text{ for some } x \in X\}$$
.

THEOREM 1. F is a closed subset of X^* .

<u>Proof</u>. Let $\{f_n\}$ be a Cauchy sequence of functions in F. Since X* is complete, $\{f_n\}$ converges to a function $f \in X^*$. We show that $f \in F$.

Let x_n be any fixed point of f_n , n = 1, 2, ... Since X is compact, $\{f(x_n) : n = 1, 2, ...\}$ has a convergent subsequence $\{f(x_n) : k = 1, 2, ...\}$ converging, say, to $x \in X$. Since $\{f_n\}$ is a Cauchy sequence it is easy to check that $\{f_n(x_n) : k = 1, 2, ...\}$ also converges to x. That is, $\{x_n : k = 1, 2, ...\}$ converges to x. Hence f(x) = x and $f \in F$. This completes the proof.

3. Let X be a topological space, and X* be the space of all continuous functions of X into itself with the compact open topology [2]. Let $F = \{f \in X^* : f(x) = x \text{ for some } x \in X\}$.

THEOREM 2. If X is compact and Hausdorff, then F is closed.

<u>Proof</u>. We show that the complement of F is open. Suppose $f \in X^*$ - F. Then $f(x) \neq x$ for any $x \in X$. Hence for any $x \in X$ there exist open sets U_x and V_x containing x and f(x) respectively such that \overline{U}_x is compact, $\overline{U}_x \cap V_x = \emptyset$ and $f(\overline{U}_x) \subset V_x$. Then

$$f \in M(\widetilde{U}_x, V_x) = \{g \in X^* : g(\widetilde{U}_x) \subset V_x \} .$$

Choosing such pairs for each point $x \in X$, we get an open covering $\{U_x : x \in X\}$ of X, which has a finite subcover $\{U_x : i = 1, 2, ..., n\}$.

748

Let $\{V_{x_i} : i = 1, 2, ..., n\}$ be the corresponding members of $\{V_x : x \in X\}$. Then $V_x = \frac{n}{2} \cdot M(\overline{W} - W_x)$

$$V = \bigcap_{i=1}^{n} M(\overline{U}_{x_{i}}, V_{x_{i}})$$

is an open set containing f. Furthermore if $g \in V$ then for any $x \in X$, $g(x) \neq x$. Hence $f \in V \subset X^*$ - F and X^* - F is an open set. This completes the proof.

REFERENCES

- 1. J.S.W. Wong, Some remarks on transformations in a metric space. Canad. Math. Bull. 8 (1965) 659-666.
- 2. S.T. Hu, Elements of general topology (Holden-Day, 1964).

University of Saskatchewan Regina