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Abstract
We provide general expressions for the joint distributions of the k most significant b-ary digits and of the k leading
continued fraction (CF) coefficients of outcomes of arbitrary continuous random variables. Our analysis highlights
the connections between the two problems. In particular, we give the general convergence law of the distribution
of the jth significant digit, which is the counterpart of the general convergence law of the distribution of the jth CF
coefficient (Gauss-Kuz’min law).We also particularise our general results for Benford and Pareto random variables.
The former particularisation allows us to show the central role played by Benford variables in the asymptotics
of the general expressions, among several other results, including the analogue of Benford’s law for CFs. The
particularisation for Pareto variables—which include Benford variables as a special case—is especially relevant
in the context of pervasive scale-invariant phenomena, where Pareto variables occur much more frequently than
Benford variables. This suggests that the Pareto expressions that we produce have wider applicability than their
Benford counterparts in modelling most significant digits and leading CF coefficients of real data. Our results may
find practical application in all areas where Benford’s law has been previously used.

1. Introduction

Benford’s law [7]—originally enunciated by Newcomb [24] after spotting a pattern of use in logarithmic
tables—states that the most significant digits in a set of numbers written in decimal form often follow
the distribution:

Pr(A = a) = log10

(
1 + 1

a

)
, (1.1)

where A is the discrete random variable that models the first non-null decimal digit of a number, and
a ∈ {1, 2, . . . , 9}, i.e., its possible values. At first sight, the uniform distribution might appear to be
more reasonable than (1.1). However Benford demonstrated that different sets of numbers originating
in miscellaneous sources conform quite accurately to (1.1). The discovery of (1.1) took place with the
understanding that it could be extended to further include the second, third, etc., most significant digits,
and it was also clear from the start that essentially the same law couldmodel significant digits of numbers
written in any base—not only base 10.

Research into Benford’s law and its applications has experienced a significant boost in recent years—
the online bibliography on the subject set up by Berger et al. [10] is witness to this. An important factor
behind this boost is the fact that Benford’s probabilistic model of significant digits has found practical
use in areas such as forensic analysis, data quality and consistency analysis, generation of synthetic data,
floating point operations error analysis, etc., stemming from fields such as accountancy, economics,
signal processing, computer science, natural sciences, and beyond (see [21]). A second—but more

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0), which permits non-commercial
re-use, distribution, and reproduction in any medium, provided that no alterations are made and the original article is properly cited. The written
permission of Cambridge University Press must be obtained prior to any commercial use and/or adaptation of the article.

https://doi.org/10.1017/S0269964823000207 Published online by Cambridge University Press

https://orcid.org/0000-0001-9294-3038
mailto:felix@ucd.ie
http://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1017/S0269964823000207


2 F. Balado and G. C. M. Silvestre

interesting—factor behind the aforementioned boost is the desire to explain the recurrent emergence
of Benford’s law [9, 16], which has led to the realisation that, while relatively common, it does not
apply in numerous circumstances. Therefore it would be helpful to have models more general than (1.1)
and its immediate extensions. This would widen the application range of significant digits distributions,
and perhaps also help to shed light on the origins of Benford’s law itself. In particular, even though scale
invariance has been cited as an underlying reason for the emergence of Benford’s law ([30]), the fact
is that this law often does not apply to scale invariant phenomena [15, 16]—noticeably, to outcomes
of the ubiquitous Pareto distribution. Lastly, another motivation for further research is the fact that the
positional numeral systems behind significant digits models such as (1.1) have an alternative: since real
numbers can also be represented using continued fraction (CF) expansions, leading CF coefficients can
play a role analogous to that of significant digits in the aforementioned applications. For example, as
0.187510 = 0.148 = 1/(5+ 1/3), the two leading CF coefficients of this number (5 and 3) could replace
its two most significant decimal digits (1 and 8), or its two most significant octal digits (1 and 4), in the
aforementioned practical applications.

Our main goal in this paper is to provide a general treatment of the related problems of modelling
probabilistically the most significant digits and the leading CF coefficients of outcomes of arbitrary
continuous random variables, and to evince the parallelisms between the two problems. Ever since the
observations made by Newcomb [24] and Benford [7], studies of the distribution of most significant
digits have largely focused on Benford variables (i.e., on situations in which Benford’s law holds)—for
an overview, see the introduction by Berger and Hill [8] and the book by Miller [21]. Some general-
isations for non-Benford scenarios have been pursued by Pietronero et al. [29] and by Barabesi and
Pratelli [6], among others [13, 15, 28, 33], but a truly general approach to modelling significant digits
has never been presented. A lot less attention has been devoted to modelling leading CF coefficients.
Except for an approximation due to Blachman [11], most of the work in this area has been pioneered
by Miller and Takloo-Bighash [22]. In any case, all existing results for leading CF coefficients models
are solely for the particular case in which the fractional part of the data represented by means of CFs is
uniformly distributed. No general approach has been investigated in this problem either.

This paper is organised as follows. In Section 2, we give the general expression for the joint dis-
tribution of the k most significant b-ary digits of outcomes drawn from an arbitrary positive-valued
distribution. One application of our analysis is a proof of the general asymptotic distribution of the
jth most significant b-ary digit, which, as we will discuss, is the near exact counterpart of the Gauss-
Kuz’min law [20] for the general asymptotic distribution of the jth continued fraction coefficient. Our
approach to modelling the k most significant b-ary digits through a single variable—rather than through
k separate variables as in previous works—leads to further contributions1 in the particularisation of our
general results in Section 4. Therein, we produce a new closed-form expression for the distribution of
the jth significant b-ary digit of a Benford variable, and we give a short new proof of the asymptotic
sum-invariance property of these variables. We also show that Benford’s distribution is just a particular
case of a more general distribution based on Pareto variables, which must have wider applicability in
the pervasive realm of scale-invariant data—a fact first pointed out by Pietronero et al. [29] and then
expanded upon by Barabesi and Pratelli [6], who however only gave the model for a special case.

In Section 3, we give the general expression for the joint distribution of the k leading CF coefficients
of outcomes drawn from an arbitrary distribution. This is shown to be explicitly analogous to modelling
the k most significant b-ary digits of the data when the CF coefficients correspond to the logarithm base
b of the data. It follows that modelling leading CF coefficients is a realistic practical alternative to
modelling most significant digits. Most of the results in Section 3 are novel, and so are their particular-
isations in Section 4—in particular the analogue of Benford’s law for continued fractions—except for
the special cases previously given by Miller and Takloo-Bighash [22].

Additionally, we show in Section 4.1.3, the central role played by the particular results for Benford
variables in the asymptotics of the general expressions—both when modelling significant digits

1Some preliminary results in this paper previously appeared in [4].
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and leading CF coefficients—and we demonstrate this in the particular case of Pareto variables
in Section 4.2.3.

Finally, we empirically verify all our theoretical results in Section 5, using both Monte Carlo
experiments and real datasets.

Notation and preliminaries.Calligraphic letters are sets, and |V | is the cardinality of setV . Boldface
Roman letters are row vectors. Random variables (r.v.’s) are denoted by capital Roman letters, or by
functions of these. The cumulative distribution function (cdf) of r.v. Z is FZ (z) = Pr(Z ≤ z), where
z ∈ R. The expectation of Z is denoted by E(Z). If Z is continuous with support Z , its probability
density function (pdf) is fZ (z), where z ∈ Z . A r.v. Z which is uniformly distributed between a and b
is denoted by Z ∼ U (a, b). The probability mass function (pmf) of a discrete r.v. Z with support Z is
denoted by Pr(Z = z), where z ∈ Z . The unit-step function is defined as u(z) = 1 if z ≥ 0, and u(z) = 0
otherwise. The fractional part of z ∈ R is {z} = z − bzc. Curly braces are also used to list the elements
of a discrete set, and the meaning of {z} (i.e., either a fractional part or a one-element set) is clear from
the context. We exclude zero from the set of natural numbers N. We use Knuth’s notation for the rising
factorial powers of z ∈ R, i.e., zm = Πm−1

i=0 (z + i) = Γ(z + m)/Γ(z) [14].
Throughout the manuscript, X denotes a positive continuous r.v. We also define the associated r.v.:

Y = logb X,

for an arbitrary b ∈ N\{1}. The fractional part of Y, i.e., {Y}, will play a particularly relevant role in
our analysis. The cdf of {Y} is obtained from the cdf of Y as follows:

F{Y } (y) =
∑
i∈Z

FY (y + i) − FY (i), (1.2)

for y ∈ [0, 1). Because {Y} is a fractional part, it always holds that F{Y } (y) = 0 for y ≤ 0 and F{Y } (y) =
1 for y ≥ 1. Also, F{Y } (y) is a continuous function of y because X is a continuous r.v. and because cdf’s
are bounded.

2. General probability distribution of the k most significant b-ary digits

In this section, we will obtain the general expression for the joint probability distribution of the k most
significant digits of a positive real number written in a positional base b numeral system, where b ∈
N\{1}. Let us first define,

A = {0, 1, . . . , b − 1}.

The b-ary representation of x ∈ R+ is formed by the unique digits ai ∈ A such that x =∑
i∈Z ai bi—unicity requires ruling out representations where there exists j such that ai = b − 1 for

all i < j. If we now let n = blogb xc, the most significant b-ary digit of x is an ∈ A\{0}. This is because
from the definition of n we have n ≤ logb x < n + 1, or, equivalently, bn ≤ x < bn+1, which implies
an > 0 and aj = 0 for j > n. Using n, the k most significant b-ary digits of x can be jointly inferred as
follows:

a = bx b−n+k−1c = bb{logb x}+k−1c . (2.1)

By using 0 ≤ {logb x} < 1 in (2.1) we can verify that a belongs to the following set of integers:

A(k) = {bk−1, . . . , bk − 1}, (2.2)

whose cardinality is |A(k) | = bk − bk−1. We propose to call a in (2.1) the kth integer significand of
x. Coining a new term is needed for clarity, as for some authors the significand of x is the integer
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bx b−nc = an or even bx b−n+k−1c itself [26, pages 7 and 321], but for some others the significand of
x is the real x b−n ∈ [1, b) [8, 21]—which is sometimes also called the normalised significand. In
any case, the advantages of consistently working with the kth integer significand will become clear
throughout this paper. To give an example of (2.1) and (2.2), say that b= 10 and x = 0.00456678. In this
case n = blog10 xc = −3, and so, for instance, the second integer significand of x is a = bx 104c =

b101.65961c = 45 ∈ A(2) = {10, 11, 12, . . . , 98, 99}.

Theorem 2.1. (General distribution of the k most significant b-ary digits). If A(k) denotes the dis-
crete r.v. that models the k most significant b-ary digits (i.e., the kth integer significand) of a positive
continuous r.v. X, then

Pr(A(k) = a) = F{Y }
(
logb(a + 1) − k + 1

)
− F{Y }

(
logb a − k + 1

)
, (2.3)

where a ∈ A(k) and Y = logb X.

Proof. Seeing (2.1), the r.v. we are interested in is defined as:

A(k) = bb{logb X }+k−1c . (2.4)

From this definition, A(k) = a when a ≤ b{logb X }+k−1 < a + 1, or, equivalently, when

logb a − k + 1 ≤ {logb X} < logb(a + 1) − k + 1. (2.5)

Using (2.5) and the cdf of {Y} = {logb X} we get (2.3). �

Remark 2.2. It is straightforward to verify that the pmf (2.3) adds up to one over its support, as:∑
a∈A(k)

Pr(A(k) = a) = F{Y }
(
1
)
− F{Y }

(
0
)
, (2.6)

due to the cancellation of all consecutive summands in the telescoping sum on the LHS of (2.6) except
for the two shown on the RHS. Because F{Y } (y) is the cdf of a r.v. with support [0, 1), the RHS of (2.6)
must equal one.

2.1. Distribution of the jth most significant b-ary digit

Next, let us denote by A[ j] the r.v. that models the jth most significant b-ary digit of X. This variable
can be obtained from the variable A( j) that models the jth integer significand as follows:

A[ j] = A( j) (mod b). (2.7)

Obviously, A[1] = A(1) . From (2.7), the pmf of A[ j] for j ≥ 2 is:

Pr(A[ j] =a) =
∑

r∈A( j−1)

Pr(A( j) = rb + a), (2.8)

where a ∈ A.

Remark 2.3. Observe that (2.3) is also the joint pmf of A[1] , . . . ,A[k] . To see this we just have to
write a =

∑k
j=1 ajb−j+k , which implies that Pr(A[1] = a1, . . . ,A[k] = ak) = Pr(A(k) = a). Under
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this view, (2.8) is simply a marginalisation of (2.3). However, the derivation of (2.3) is simpler using
the kth integer significand variable A(k) than using A[1] , . . . ,A[k] . Further examples of the advantages
of working with kth integer significands are the following theorem and the results in Sections 4.1.1
and 4.2.1.

Theorem 2.4. (General asymptotic distribution of the jth most significant b-ary digit). For any
positive continuous random variable X, it holds that:

lim
j→∞

Pr(A[ j] = a) = b−1. (2.9)

Proof. For any n > 0 there exists jmin such that for all j ≥ jmin

logb(rb + a) − logb(rb) < n , (2.10)

for all a ∈ A and r ∈ A( j−1) . Specifically, jmin = d1 + logb( b−1
bn −1 )e + 1. Therefore, inequality (2.10)

and the continuity of F{Y } (y) in (2.3) imply that lim j→∞ Pr(A( j) = rb + a) − Pr(A( j) = rb) = 0 for all
a ∈ A. Thus, from (2.8), we have that (2.9) holds. �

Remark 2.5. Theorem 2.4 tells us that the common intuition about digits being uniformly distributed
is correct, but only for digits that lie away from the most significant one. In general, the larger b is, the
faster the convergence of A[ j] to a uniform discrete r.v. This is because jmin is nonincreasing on b for a
given n . Informally, the theorem can be argued as follows: since rb ≥ b j−1 in (2.8), for large j we have
that rb � a, and therefore rb + a ≈ rb. Consequently, when j is large Pr(A( j) = rb + a) ≈ Pr(A( j) = rb)
because of the continuity of the cdf of {Y}. In such case, (2.8) is approximately constant over a ∈ A,
and so we have that A[ j] is asymptotically uniformly distributed.

To conclude this remark we should point out that, albeit out of the scope of this paper, Theorem 2.4
provides a practical way to generate uniformly distributed discrete numbers from arbitrarily distributed
continuous ones—even if the pdf is unknown. This is one of the goals of cryptographic key derivation
functions (see for instance [17]).

3. General probability distribution of the k leading CF coefficients

Continued fraction expansions are an alternative to positional base b numeral systems for the represen-
tation of real numbers. In this section, we will obtain the general expression for the joint probability
distribution of the k leading coefficients in the simple CF of a real number. Let y0 = y ∈ R and define
the recursion y j = {y j−1}−1 based on the decomposition y j−1 = by j−1c + {y j−1}. By letting aj = byjc
we can express y as the following simple CF:

y = a0 +
1

a1 +
1

a2 + · · ·

. (3.1)

A CF is termed simple (or regular) when all the numerators of the nested fractions equal 1. For
typographical convenience, we will write the CF representation of y in (3.1) using the standard notation:

y = [a0; a1, a2, . . .] .

From the construction of the simple CF, we have that a0 ∈ Z, whereas aj ∈ N for j ≥ 1. The recursion
stops if {yj} = 0 for some j, which only occurs when y ∈ Q; otherwise the CF is infinite (for an in-depth
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introduction to CFs see [18]). Our goal in this section is to model probabilistically the aj coefficients for
j ≥ 1. To this end, we will assume that y is drawn from a continuous r.v. Y. BecauseQ is of measure zero
then Pr(Y ∈ Q) = 0, and so we may assume that the CF of y drawn from Y is almost surely infinite—and
thus that the aj coefficients are unique. In practical terms, this means that, letting Y0 = Y , we can define
the continuous r.v.’s:

Y j = {Y j−1}−1,

with support (1,∞) for all j ≥ 1. Therefore, the CF coefficients we are interested in are modelled by the
discrete r.v.’s:

Aj = bYjc, (3.2)

with support N, for all j ≥ 1.
Additional notation. In order to streamline the presentation in this section we define the k-vector:

Ak = [A1, . . . ,Ak],

comprising the first k r.v.’s defined by (3.2), i.e., the r.v.’s modelling the k leading CF coefficients of
Y. A realisation of Ak is ak = [a1, . . . , ak] ∈ Nk . Also, ek denotes a unit k-vector with a one at the
kth position and zeros everywhere else, i.e., ek = [0, . . . , 0, 1]. A vector symbol placed within square
brackets denotes a finite CF; for example, [ak] denotes [a1; a2, . . . , ak]. Observe that we can write
[ak]−1 = [0; ak] = [0; a1, a2, . . . , ak]. Finally, the subvector of consecutive entries of ak between its
mth entry and its last entry is denoted by am:k

k = [am, . . . , ak]. When m> 1 the amount [am:k
k ] is called

a remainder of [ak] [18].
As a preliminary step, we will next prove a lemma which we will then use as a stepping stone in the

derivation of the joint pmf of Ak in Theorem 3.3.

Lemma 3.1. The following two sets of inequalities hold for the ( j − 1)th order convergent [aj] =

[a1; a2, . . . , aj] of the infinite simple CF [a1; a2, a3, . . . ] with ai ∈ N:

(−1) j−1 [aj] < (−1) j−1 [aj + ej], (3.3)

and

(−1) j−1 [aj−1 + ej−1] ≤ (−1) j−1 [aj] < (−1) j−1 [aj+1 + ej+1], (3.4)

where the lower bound in (3.4) requires j> 1.

Proof. Consider the function i(aj) = [aj]. Taking aj momentarily to be a continuous variable, we can
obtain the partial derivative of i(aj) with respect to aj. For j ≥ 2, applying the chain rule j − 1 times
yields:

mi(aj)
maj

= (−1) j−1
j∏

r=2
[ar:j

j ]−2, (3.5)

whereas when j = 1 we have that di(a1)/da1 = 1. As the product indexed by r is positive, the sign
of (3.5) only depends on (−1)j−1.

Consequently, if j is odd then i(aj) is strictly increasing on aj, and if j is even then i(aj) is strictly
decreasing on aj. Thus, when j is odd [aj] < [aj + ej] and when j is even [aj] > [aj + ej], which proves
inequality (3.3).
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Let us now prove the two inequalities in (3.4) assuming first that j is odd. Considering again (3.5),
the upper bound can be obtained by seeing that [aj] < [aj−1, aj + n] for n > 0, and then choosing
n = 1/(aj+1 + 1). The lower bound, which requires j > 1, is due to [aj] ≥ [aj−1, 1] = [aj−1 + ej−1]. To
conclude the proof, when j is even the two inequalities we have just discussed are reversed due to the
change of sign in (3.5). �

Remark 3.2. Lemma 3.1 is closely related to the fact that the jth order convergent of a CF is smaller
or larger than the CF it approximates depending on the parity of j [18, Theorem 4].

Theorem 3.3. (General distribution of the k leading CF coefficients). For any continuous r.v. Y
represented by the simple continued fraction Y = [A0;A1,A2, . . . ] it holds that

Pr(Ak = ak) = (−1)k (F{Y } ( [0; ak + ek]) − F{Y } ( [0; ak])
)
, (3.6)

where ak ∈ Nk .

Proof. For all j ≥ 2, if am ≤ Ym < am + 1 for all m = 1, . . . , j − 1 then we have that Y1 = [aj−1,Yj].
In these conditions it holds that {aj ≤ Yj < aj + 1} = {(−1) j−1 [aj] ≤ (−1) j−1Y1 < (−1) j−1 [aj + ej]},
where the reason for the alternating signs is (3.3). Therefore

Pr(Ak = ak) = Pr(A1 = a1, . . . ,Ak = ak)
= Pr(∩k

j=1{aj ≤ Yj < aj + 1})

= Pr(∩k
j=1{(−1)

j−1 [aj] ≤ (−1) j−1Y1 < (−1) j−1 [aj + ej]}). (3.7)

From (3.4), we have that the lower bounds on Y1 in (3.7) are related as:

[a1] < [a2 + e2] ≤ [a3] < [a4 + e4] ≤ [a5] · · · , (3.8)

whereas the upper bounds on Y1 in the same expression are related as:

[a1 + e1] ≥ [a2] > [a3 + e3] ≥ [a4] > [a5 + e5] · · · . (3.9)

Hence, except for possible equality constraints (which are anyway immaterial in probability compu-
tations with continuous random variables), the intersection of the k events in (3.7) equals the kth event,
and thus

Pr(Ak = ak) = Pr((−1)k−1 [ak] < (−1)k−1Y1 < (−1)k−1 [ak + ek])
= (−1)k−1 (FY1 ( [ak + ek]) − FY1 ( [ak])

)
. (3.10)

Finally, using

FY1 (y) = Pr(Y1 ≤ y) = Pr({Y} ≥ y−1) = 1 − F{Y } (y−1),

in (3.10) we get (3.6). �

Remark 3.4. Observe that if we choose Y = logb X, then both (3.6) and (2.3) depend solely on the
same variable {Y}, which is the reason why we have used the notation Y rather than X in this section.
With this choice of Y, the general expression (3.6) models the k leading CF coefficients of logb X (with
the exception of A0), and becomes analogous to the general expression (2.3) that models the k most
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significant b-ary digits of X. The reason why we have left A0 out of the joint distribution (3.6) is because,
unlike the rest of variables (i.e., Aj for j ≥ 1), it cannot be put as a sole function of Y1. Moreover, it is
not possible to model A0 in one important practical scenario—see Section 4.1.2.

We can also verify that the joint pmf (3.6) adds up to one over its support, namely Nk . Let us first
add the joint pmf of Ak over ak ∈ N assuming k > 1. As this infinite sum is a telescoping series, in the
computation of the partial sum S (n)

k =
∑n

ak=1 Pr(Ak = ak) all consecutive terms but two are cancelled,
and so

S (n)
k = (−1)k (F{Y } ( [0; ak−1, n + 1]) − F{Y } ( [0; ak−1, 1])

)
.

Now, as limn→∞ [0; ak−1, n + 1] = [0; ak−1] and [0; ak−1, 1] = [0; ak−1 + ek−1], we then have that

lim
n→∞

S (n)
k = (−1)k−1 (F{Y } ( [0; ak−1 + ek−1]) − F{Y } ( [0; ak−1])

)
= Pr(Ak−1 = ak−1).

The continuity of the cdf F{Y } (y) allows writing limn→∞ F{Y } (g(n)) = F{Y } (limn→∞ g(n)), which
justifies the limit above. In view of this result, it only remains to verify that the pmf of A1 = A1 adds up
to one. The partial sum up to n is:

S (n)
1 = F{Y } (1) − F{Y } (1/(n + 1)),

and therefore limn→∞ S (n)
1 = 1 for the same reason that makes (2.6) equal to one. Incidentally, observe

that it would have been rather more difficult to verify the fact that (3.6) adds up to one by summing out
the random variables in Ak in an order different than the decreasing order Ak ,Ak−1, . . . ,A1 that we have
used above.

3.1. Distribution of the jth CF coefficient

Just like in Section 2.1, we can marginalise the joint pmf of Aj to obtain the distribution of the jth CF
coefficient Aj of Y. Although we already know that A1 = A1, the main obstacle to explicitly getting
the distribution of Aj for j > 1 is that in this case marginalisation involves j − 1 infinite series, rather
than a single finite sum as in (2.8). In general, it is difficult to carry out the required summations in
closed form. Moreover, the order of evaluation of these series may influence the feasibility of achieving
a closed-form expression, which is connected to the comment in the very last sentence of the previous
paragraph.

However, under the sole assumption that {Y} is a continuous r.v. with support [0, 1), the
Gauss-Kuz’min theorem furnishes the general asymptotic distribution of Aj [18, Theorem 34]:

lim
j→∞

Pr(Aj = a) = log2
(
1 + 1

a(a + 2)

)
, (3.11)

where convergence is exponentially fast on j.

Remark 3.5. Observe that Theorem 2.4, which gives the general asymptotic behaviour of A[ j] (the jth
most significant b-ary digit), is the near exact counterpart of the Gauss-Kuz’min theorem (3.11), which
gives the general asymptotic behaviour of Aj (the jth CF coefficient). Apart from the convergence speed,
the only essential difference is the requirement that the support of {Y} be precisely [0, 1) in (3.11) [18,
Theorem 33], whereas this condition is not required in (2.9), i.e., the support of {Y} may be a subset of
[0, 1) in Theorem 2.4.
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4. Particular cases

In this section, we will particularise the general expressions in Sections 2 and 3 for two especially
relevant distributions of X. As it is clear from (2.3) and (3.6), we just need the cdf F{Y } (y) of the r.v.
{Y} = {logb X} in order to achieve our goal.

4.1. Benford Variables

We consider in this section a r.v. X for which {Y} ∼ U (0, 1). We call such a r.v. a Benford variable,
although we must note that some authors call it a strong Benford variable instead. At any rate, this is
the archetypal case in which a model of the k most significant b-ary digits has been widely used and
discussed—i.e., Benford’s law [7]. The cdf of {Y} for a Benford variable X is simply:

F{Y } (y) = y, (4.1)

for y ∈ [0, 1).

4.1.1. Most significant b-ary digits of X

For a Benford variable, applying (4.1) to (2.3) yields

Pr(A(k) = a) = logb

(
1 + 1

a

)
, (4.2)

which is the well-known Benford distribution for the k most significant b-ary digits. This distribution
has almost always been expressed in previous works as the joint pmf of A[1] , . . . ,A[k] rather than as the
pmf of the kth integer significand A(k) (see for example [8]). As evinced in Theorems 2.1 and 2.4, and
as it will become clear in the remainder of this section, working with the kth integer significant is not
just an esthetical notation choice—although, conveniently, it does make for simpler expressions.

Let us obtain next the pmf of A[ j] when j ≥ 2 (i.e., the distribution of the jth most significant b-ary
digit). From (2.8) and (4.2) we have that:

Pr(A[ j] =a) =
∑

r∈A( j−1)

logb

(
1 + 1

rb + a

)
(4.3)

= logb

( ∏
r∈A( j−1)

(a + 1)b−1 + r
ab−1 + r

)
(4.4)

= logb

(
Γ

(
(a + 1)b−1 + b j−1) Γ (

ab−1 + b j−2)
Γ

(
(a + 1)b−1 + b j−2) Γ (

ab−1 + b j−1) ) . (4.5)

The last equality is due to the fact that the argument of the logarithm in (4.4) can be expressed as a
fraction whose numerator and denominator are the rising factorial powers ((a + 1)b−1 + b j−2) |A( j−1) |

and (ab−1 + b j−2) |A( j−1) | , respectively.
We can also explicitly restate the general result in Theorem 2.4 for a Benford variable by relying

on (4.5). Invoking the continuity of the logarithm and using limz→∞ zw−vΓ(v + z)/Γ(w + z) = 1 [1]
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in (4.5) twice—with z = b j−1 and z = b j−2, respectively—yields

lim
j→∞

Pr(A[ j] = a) = logb lim
j→∞

b( j−1)b−1

b( j−2)b−1
= b−1,

a fact that was originally pointed out by Benford [7] through the marginalisation of (4.2).

Remark 4.1. The closed-form analytic expression (4.5) for the pmf ofA[ j] deserves some comments, as
it appears that it was never given in studies of Benford’s distribution previous to [4]: only the equivalent
of (4.3) was previously published. This is another sensible reason for working with the pmf of the jth
integer significand variable A( j) instead of the joint pmf of A[1] , . . . ,A[ j] . The former approach makes
the obtention of closed-form distributions for A[ j] more feasible: if we use A( j) we just have to evaluate
one single sum [i.e., (2.8)], whereas if we use A[1] , . . . ,A[ j] we have to evaluate j − 1 separate sums—
which obscures the result. This appears to be the reason why previous works never produced (4.5).

Asymptotic sum-invariance property. A further advantage of working with the kth integer signif-
icand A(k) is that it allows for an uncomplicated statement and proof of the asymptotic sum-invariance
property of a Benford variable [8, 26]. In the literature, this property has been alternatively called the
“sum-invariance property” [8] or the “summation theorem” [26]. Here we prefer to stress the fact that
its validity is only asymptotic: the sum-invariance property is an approximation when one considers
a finite number k of most significant digits of X (i.e., the kth integer significand A(k) , which in fact
originally motivated the definition of the property by Nigrini [25]).

Theorem 4.2. (Asymptotic sum-invariance property of Benford variables). If X is a Benford
variable, then it holds that:

lim
k→∞,

a∈A(k)

aPr(A(k) = a) = (ln b)−1. (4.6)

Proof. We just need to see that limk→∞,a∈A(k) a logb

(
1 + 1

a

)
= limv→∞ v logb

(
1 + 1

v

)
due to (2.2). The

proof is completed using either l’Hôpital’s theorem, or the continuity of the logarithmic function and
the definition of Euler’s number as limv→∞(1 + 1/v)v. �

Remark 4.3. Informally, Theorem 4.2 tells us that in a large set of outcomes from aBenford variable the
sum of a ∈ A(k) over all those outcomes whose kth integer significand is equal to a is roughly invariant
over a when k is large (i.e., Nigrini’s empirical observation). The convergence speed to limit (4.6) is
exponential on k—the faster the larger b is. Figure 1 shows that the sum-invariance property holds
approximately when k = 3 already, for b= 10. Theorem 4.2 also implies that

lim
k→∞

E(A(k) )
|A(k) |

= (ln b)−1.

The corresponding approximation E(A(k) ) ≈ (bk − bk−1) (ln b)−1 improves with k, but it never
achieves strict equality for finite k—in fact, E(A(k) ) < (bk − bk−1) (ln b)−1 for all k.

4.1.2. Leading CF coefficients of logb X

For a Benford variable the application of (4.1) to (3.6) yields

Pr(Ak = ak) = (−1)k ([0; ak + ek] − [0; ak]
)
. (4.7)
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Figure 1. Illustration of the asymptotic sum-invariance property of a Benford variable for b= 10.

According to our discussion in Remark 3.4, this distribution of the k leading CF coefficients of logb X
is the counterpart of Benford’s distribution of the k most significant b-ary digits of X. Therefore (4.7) is
the analogue of Benford’s law for CFs. In particular, any real dataset that complies with (4.2) will also
comply with (4.7).

By transforming the subtraction of fractions into a single fraction, (4.7) can also be written as the
inverse of the product of [ak], [ak + ek] and all of their remainders, i.e.,

Pr(Ak = ak) =
k∏

j=1

[
0; a j:k

k
] [
0; a j:k

k + ek−j+1
]
, (4.8)

which, apart from showing at a glance that (4.7) cannot be negative, may find application in log-
likelihood computations. The equivalent of expression (4.8) was previously given by Miller and
Takloo-Bighash [22, Lemma 10.1.8] in their exploration of the distribution of CF coefficients—called
digits by these authors. However, unlike our result above, the version of (4.8) given byMiller and Takloo-
Bighash is not explicit, as it is presented in terms of CF convergents. Therefore, (4.8) or (4.7) are clearly
more useful when it comes to practical applications—furthermore, we show in Section 5 the empiri-
cal accuracy of our expressions using both synthetic and real data, something that was not attempted
by Miller and Takloo-Bighash. Lastly, Blachman also gave the following explicit approximation for
uniform {Y} [11, equation (9)]:

Pr(Ak = ak) ≈
����log2 (

1 + [0; ak]
1 + [0; ak + ek]

)���� . (4.9)

The reader should be cautioned that this expression appears in [11] with an equal sign, although the
author unequivocally produced it as an approximation. Using ln(1+z) ≈ z, which is accurate for |z| � 1,
we can see that (4.9) is roughly off by a factor of (ln 2)−1 with respect to the exact expression (4.7).

Let us now look at the marginals, that is to say, the distributions of individual Aj coefficients. When
k = 1 expression (4.7) gives the distribution of A1 = A1 straightaway:

Pr(A1 = a) = a−1 − (a + 1)−1. (4.10)

This pmf, also previously given by Miller and Takloo-Bighash [22, page 232], can be rewritten as
Pr(A1 = a) = a−1(a+1)−1, which is the form that (4.8) takes in this particular case. In passing, observe
that E(A1) = ∞ because of the divergence of the harmonic series. It is also instructive to particularise
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Blachman’s approximation (4.9) for A1 [11, equation (10)]: this particularisation renders the asymptotic
Gauss-Kuz’min law (3.11) instead of the exact pmf (4.10).

Keeping in mind our discussion at the start of Section 3.1, the Benford case is probably unusual in
the fact that we can also obtain the distribution of A2 in closed form by marginalising (4.7) for k = 2.
Summing Pr(A2 = a2) = 1/(a1 + (a2 + 1)−1) − 1/(a1 + a−1

2 ) over a1 ∈ N, and using the digamma
function defined as k(1 + z) = −W + ∑∞

n=1 z/(n(n + z)) [1]—which is applicable because the range of
validity z ∉ Z− of this definition always holds here—one finds that:

Pr(A2 = a) = k

(
1 + a−1

)
− k

(
1 + (1 + a)−1

)
. (4.11)

It does not seem possible to obtain a closed-form exact expression for the distribution of a single CF
coefficient Aj when j > 2 in the Benford case. However it is possible to explicitly produce the Gauss-
Kuz’min law (3.11) from (4.7) by pursuing an approximation of Pr(Aj = aj) for all j ≥ 2. To see this,
consider first the sum:

∞∑
x=1

(
1

x + b
− 1

x + c

)
= k(1 + c) − k(1 + b), (4.12)

for some b, c > 0, which is just a generalisation of (4.11), and its integral approximation:∫ ∞

1

(
1

x + b
− 1

x + c

)
dx = ln(1 + c) − ln(1 + b), (4.13)

which attests to the intimate connection between the digamma function and the natural loga-
rithm [3, see Exercise 8.2.20 and equation (8.51)]. Now, in the marginalisation of (4.7) that leads
to Pr(Aj = aj) the summation on a1 is of the form (4.12), and so we may approximate it by the
integral (4.13):

Pr(Aj = aj) = (−1)j
∞∑

aj−1=1
· · ·

∞∑
a1=1

(
[0; aj + ej] − [0; aj]

)
(4.14)

≈ (−1) j
∞∑

aj−1=1
· · ·

∞∑
a2=1

∫ ∞

1

(
[0; aj + ej] − [0; aj]

)
da1

= (−1) j
∞∑

aj−1=1
· · ·

∞∑
a2=1

(−1)
(
ln(1 + [0; a2:j

j + ej−1]) − ln(1 + [0; a2:j
j ])

)
. (4.15)

As [0; ai:j
j ] � 1 nearly always for ai:j

j = [ai, · · · , aj] ∈ N j−i+1, then we may use ln(1+z) ≈ z in (4.15)
to obtain:

Pr(Aj = aj) ≈ (−1) j+1
∞∑

aj−1=1
· · ·

∞∑
a2=1

(
[0; a2:j

j + ej−1]) − [0; a2:j
j ]

)
. (4.16)

Remarkably, (4.16) has the exact same form as (4.14)—but with one less infinite summation.
Therefore we can keep sequentially applying the same approximation procedure described above to
the summations on a2, a3,. . .,aj−1. In the final summation on aj−1 we do not need the approximation
used in (4.16) anymore, and thus in the last step we have that:
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Pr(Aj = aj) ≈ (−1)2j−2
∫ ∞

1

(
[0; a j−1:j

j + e2]) − [0; a j−1:j
j ]

)
daj−1

= (−1)2j−2
∫ ∞

1

©«
1

aj−1 +
1

aj + 1

−
1

aj−1 +
1
aj

ª®®®®¬
daj−1

= (−1)2j−1
(
ln

(
1 + 1

aj + 1

)
− ln

(
1 + 1

aj

))
(4.17)

= ln
(aj + 1)2

aj (aj + 2) . (4.18)

Due to the successive approximations (4.18) is not necessarily a pmf, and so we need to normalise
it. The normalisation factor is:

∞∑
aj=1

ln
(aj + 1)2

aj (aj + 2) = ln
∞∏

aj=1

(aj + 1)2

aj (aj + 2) = ln
2 · ��2
1 · ��3

· ��3 · ��3
��2 · ��4

· ��4 · ��4
��3 · ��5

· · · = ln 2.

Applying this factor to (4.18), we finally obtain:

Pr(Aj = aj) ≈ log2
(aj + 1)2

aj (aj + 2) = log2

(
1 + 1

aj (aj + 2)

)
, (4.19)

for j ≥ 2, i.e., the Gauss-Kuz’min law (3.11).

Remark 4.4. Like in the verification of the general joint pmf (3.6) in Remark 3.4, the right order of eval-
uation of the marginalisation sums has been again key for us to be able to produce approximation (4.19).
Also, had we used ln(1 + z) ≈ z one last time in (4.17) then we would have arrived at (4.10) instead of
at the Gauss-Kuz’min law as the final approximation. This shows that the pmf of the first CF coefficient
and the asymptotic law are close already, which was also mentioned by Miller and Takloo-Bighash [22,
Exercise 10.1.1]. Since the convergence of the distribution of Aj to the asymptotic distribution is expo-
nentially fast on j, it is unsurprising that the pmf (4.11) of the second CF coefficient turns out to be even
closer to (3.11), as suggested by approximation (4.19)—see empirical validation in Section 5.

Although beyond the goals of this paper, it should be possible to refine the approximation procedure
that we have given to get (4.18) in order to to explicitly obtain the exponential rate of convergence to
the Gauss-Kuz’min law, by exploiting the expansion of the digamma function in terms of the natural
logarithm and an error term series [3, equation (8.51)].

Finally, see that although A0 is not included in the joint pmf (4.7), this variable cannot be modelled
anyway when the only information that we have about X is its “Benfordness”.

4.1.3. Benford variables and the asymptotics of the general analysis

To conclude Section 4.1, we examine the role played by the particular analysis for a Benford variable
[i.e., (4.2) and (4.7)] in the general analysis [i.e., Theorems 2.1 and 3.3] when k is large. Let us start by
looking at the asymptotics of (2.3). For any n > 0 there exists kmin such that logb(1 + a−1) < n for all
k ≥ kmin and a ∈ A(k) . Explicitly, this minimum index is kmin = d− logb(bn −1) +1e +1. This inequality
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and the continuity of F{Y } (y) allow us to approximate (2.3) for large k using the pdf of {Y} as:

Pr(A(k) = a) ≈ f{Y } (logb a − k + 1) logb

(
1 + 1

a

)
. (4.20)

We now turn our attention to the asymptotics of (3.6). Similarly as above, for any n > 0 (3.8) and (3.9)
guarantee that there exists kmin such that (−1)k ( [0; ak + ek] − [0; ak]) < n for all k ≥ kmin. Invoking
again the continuity of F{Y } (y) we can approximate (3.6) for large k using again the pdf of {Y} as:

Pr(Ak = ak) ≈ f{Y } ( [0; ak]) (−1)k ([0; ak + ek] − [0; ak]
)
. (4.21)

The key point that we wish to make here is that the Benford expressions (4.2) and (4.7) appear as
factors in the asymptotic approximations (4.20) and (4.21) of the general expressions (2.3) and (3.6),
respectively. This shows the special place that Benford variables take in the problems of modelling
significant digits and leading CF coefficients. Of course, for Benford X the pdf of {Y} is f{Y } (y) = 1 for
y ∈ [0, 1), and so in this case approximations (4.20) and (4.21) coincide with their exact counterparts.

4.2. Pareto variables

In this section, we let X be a Pareto r.v. with minimum value xm and shape parameter s, whose pdf is

fX (x) = s xs
m x−(s+1) , 0 < xm ≤ x, s > 0.

The main motivation for considering the Pareto distribution is its pervasiveness in natural phenom-
ena, which is reflected in the fact that Pareto variables are able to model a wealth of scale-invariant
datasets. According to Nair et al. [23], heavy-tailed distributions are just as prominent as the Gaussian
distribution, if not more. This is a consequence of the Central Limit Theorem (CLT) not yielding
Gaussian distributions—but heavy-tailed ones—in common scenarios where the variance of the ran-
dom variables being added is infinite (or does not exist). Furthermore, heavy-tailed distributions appear
when the CLT is applied to the logarithm of variables emerging from multiplicative processes. In this
context, the relevance of the Pareto distribution owes to the fact that the tails of many heavy-tailed dis-
tributions follow the Pareto law. The fact that the Pareto distribution is the only one that fulfills exactly
the relaxed scale-invariance criterion:

fX (x) = Us+1fX (U x), (4.22)

for any scaling factor U > 0, where s> 0, will also be seen to be relevant to our discussion.
Let us firstly obtain the cdf of {Y} in this case. The cdf of a Pareto r.v. X is FX (x) = 1 − xs

mx−s for
x ≥ xm, and thus the cdf of Y = logb X is FY (y) = FX (by) = 1 − xs

mb−sy for y ≥ logb xm. Letting

d = {logb xm},

and using (1.2), we have that the cdf of {Y} for a Pareto r.v. X is:

F{Y } (y) = bs(d−1) 1 − b−sy

1 − b−s + u
(
y − d

) (
1 − b−s(y−d)

)
, (4.23)

for y ∈ [0, 1), where u(·) is the unit-step function.

Remark 4.5. By application of l’Hôpital’s rule, it can be verified that (4.23) tends to (4.1) as s↓0, and
so a Pareto variable becomes asymptotically Benford as its shape parameter s vanishes—for any value
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of d. Because (2.3) and (3.6) only depend on {Y}, the distributions that we will produce in this sec-
tion generalise their counterparts in the previous section [i.e. (4.2), (4.5) and (4.7) are particular cases
of (4.24), (4.25) and (4.27), respectively, when s ↓ 0]. The fact that Benford variables can appear as a
particular case of Pareto variables is a likely reason for the sporadic emergence of Benford’s distribu-
tion (4.2) in scale-invariant scenarios. Finally, observe that, asymptotically as s ↓ 0, the relaxed scaled
invariance property (4.22) becomes strict, i.e., fX (x) = U fX (U x). Strict scale invariance is, in turn, a
property that can drive the appearance of Benford’s distribution [4].

An interesting line of research beyond the scope of this paperwould entail pursuing analytical insights
about the probability distribution of the s parameter itself in scale-invariant scenarios. If this distribu-
tion could be found, perhaps under constraints yet to be specified, it would determine the frequency
of emergence of Benford variables in those scenarios. In any case, it can be empirically verified that
scale-invariant datasets are far more often Paretian rather than just Benfordian (see some examples
in Figure 6). Thus, the expressions that we will give in this section may have wider practical applica-
bility than the ones in Section 4.1 in the context of scale-invariant datasets—with the caveat that two
parameters (s and d or xm) must be estimated when using the Pareto distribution results.

4.2.1. Most significant b-ary digits of X

Combining (2.3) and (4.23), and Letting:

b = d + k − 1,

yields the Paretian generalisation of (4.2):

Pr(A(k) = a) = bs( b−1)

1 − b−s
(
a−s − (a + 1)−s)

+ u
(
a + 1 − bb

) (
1 − bs b (a + 1)−s) − u

(
a − bb

) (
1 − bs b a−s) . (4.24)

Let us obtain the distribution of A[ j] for j ≥ 2 next. For this single purpose we make two definitions:
[v = dbb−1 − vb−1e and

gs(v) =
{

−k(v), s = 1
Z (s, v), s ≠ 1

,

where k(·) is again the digamma function and Z (s, v) = ∑∞
n=0 (n + v)−s is Hurwitz’s zeta function [2].

Now, combining (2.8) and (4.24) and using the two previous definitions it is tedious but straightforward
to show that the Paretian generalisation of (4.5) is:

Pr(A[ j] = a) = bs( b−2)

1 − b−s

(
gs(ab−1 + b j−2) − gs((a + 1)b−1 + b j−2)

)
− bs( b−1)

1 − b−s

(
gs(ab−1 + b j−1) − gs((a + 1)b−1 + b j−1)

)
+ bs( b−1)

(
gs(ab−1 + [a) − gs((a + 1)b−1 + [a+1)

)
+ [a − [a+1. (4.25)

Remark 4.6. Like in Section 4.1.1, we have been able to obtain a closed-form expression for the pmf of
A[ j] thanks to the use of the jth integer significand. Of particular interest is the distribution ofA(k) (4.24),
which had only been published before our own work [4] for the special case in which the fractional part
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Figure 2. Theoretical distribution of the two most significant decimal digits of Pareto X (4.24) versus
theoretical Benford-based asymptotic approximation (4.20). The lines join adjacent probability mass
points for clarity.
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Figure 3. Theoretical joint pmf of the first two CF coefficients of log10 X for Pareto X with s= 1 and
d = 0.3 [solid lines, (4.27)] versus theoretical Benford-based asymptotic approximation [dashed lines,
(4.21)]. The lines join adjacent probability mass points corresponding to equal a2 for clarity.

of the minimum of the Pareto distribution is zero, i.e., d = 0, and thus b = k − 1. In this case (4.24)
becomes

Pr(A(k) = a) = a−s − (a + 1)−s

b−s(k−1) − b−sk . (4.26)

The case k = 1 of (4.26) was first given by Pietronero et al. [29] in the course of their investigation on
the generalisation of Benford’s distribution to scale-invariant phenomena. Barabesi and Pratelli [6] then
extended Pietronero et al.’s result and obtained (4.26) itself. A related expression was also produced by
Tseng et al. [33] for the most significant decimal digit in a special case of the double Pareto distribution.
As we will empirically verify in Section 5, the fact that (4.24) can handle the general case d > 0 is not
a minor detail, but a major factor in terms of that expression being able to model real data that cannot
be modelled by (4.26) alone.

Interestingly, (4.26) was first identified as a new distribution only a few years ago by
Kozubowski et al. [19], who called it the discrete truncated Pareto (DTP) distribution. Kozubowski et al.
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Figure 4. Distributions of the most significant decimal digit of X. The theoretical pmf’s (solid and
dashed lines) are (4.2) and (4.24), and the empirical frequencies (symbols) correspond to p = 107
pseudorandom outcomes in each case.
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Figure 5. Distributions of the two most significant decimal digits of X. The theoretical pmf’s (solid
and dotted lines) are (4.2) and (4.24), and the empirical frequencies (symbols) correspond to p = 107
pseudorandom outcomes in each case.

also noticed that the DTP distribution generalises Benford’s distribution, but they landed on this fact
solely because of the mathematical form of (4.26). In fact, their practical motivation was far removed
from the distribution of most significant digits: it was a biological problem involving the distribution of
diet breadth in Lepidoptera. Another striking fact is that Kozubowski et al. arrived at the DTP distribu-
tion through the quantisation of a truncated Pareto variable, instead of through the discretisation of the
fractional part of the logarithm of a standard Pareto variable—i.e., the procedure that we have followed
to get to (4.26), which is the ultimate reason why the DTP distribution is connected with Benford’s
distribution. A Pareto variable must surely be the only choice for which two such remarkably different
procedures yield the very same outcome. The reason for this serendipitous coincidence is that the com-
plementary cdf of the variable to be quantised or discretised, respectively, turns out to be a negative
exponential function in both cases. To end this remark, Kozubowski et al. rightly point out that that the
shape parameter s in (4.26) can be taken to be negative in terms of its validity as a pmf. However observe
that s must be strictly positive for (4.26) to have physical meaning in terms of modelling a distribution
of most significant digits.
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Figure 6. Distributions of the most significant decimal digit of X for real Benfordian and Paretian
datasets. The theoretical pmf’s (solid lines) are (4.2) and (4.24), and the empirical frequencies (symbols)
are joined through dotted lines for clarity.
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Figure 7. Distributions of the jth most significant decimal digit of X. The theoretical pmf’s (solid and
dashed lines) are (4.5) and (4.25), and the empirical frequencies (symbols) correspond to p = 5 × 107
pseudorandom outcomes in each case.

4.2.2. Leading CF coefficients of logb X

Applying (4.23) to (3.6) yields the Paretian generalisation of (4.7):

Pr(Ak = ak) = (−1)k
(
bs(d−1) b−s[0;ak ] − b−s[0;ak+ek ]

1 − b−s

+ u
(
[0; ak + ek] − d

) (
1 − b−s( [0;ak+ek ]−d) )

− u
(
[0; ak] − d

) (
1 − b−s( [0;ak ]−d) ) ) . (4.27)

The special case of (4.27) for d = 0 yields the counterpart of the DTP distribution (4.26) in the CF
setting:

Pr(Ak = ak) = (−1)k
(
b−s[0;ak ] − b−s[0;ak+ek ]

1 − b−s

)
. (4.28)
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Figure 8. Joint distribution of the first two CF coefficients of log10 X for Benford X. The theoretical
joint pmf (dashed lines) is (4.7) and the empirical frequencies (symbols) correspond to p = 108 pseu-
dorandom outcomes.

100 101 102

10− 4

10− 3

10− 2

10− 1

100

a1

Pr
(A

2
=

[a
1,

a 2
])

a2 = 1
a2 = 2
a2 = 3
a2 = 4
a2 = 5

Figure 9. Joint distribution of the first two CF coefficients of log10 X for Pareto X, s= 1.5, d = 0.48.
The theoretical joint pmf (dashed lines) is (4.27) and the empirical frequencies (symbols) correspond
to p = 108 pseudorandom outcomes.

Expression (4.27) is clearly not amenable to analytic marginalisation beyond A1 = A1. An interesting
particular case of A1 is given by specialising (4.28) for k = 1:

Pr(A1 = a) = b− s
a+1 − b− s

a

1 − b−s . (4.29)

Recalling Remark 4.5, (4.29) tends to (4.10) as s ↓ 0.

4.2.3. Comparison with Benford-based asymptotic approximations

Now that we have particularised (2.3) and (3.6) for a non-Benfordian variable, we are in a position to
examine how well the Paretian expressions (4.24) and (4.27) are approximated by the Benford-based
asymptotic expressions discussed in Section 4.1.3. In order to evaluate approximations (4.20) and (4.21)
we need the pdf of {Y}, f{Y } (y). This is obtained by differentiating (4.23), which yields f{Y } (y) =

s(ln b) b−s(y−d) (
b−s/(1 − b−s ) + u

(
y − d

) )
for y ∈ [0, 1). We now compare in Figures 2 and 3 the

exact Paretian expressions and their Benford-based approximations for some arbitrary values of s and
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Figure 10. Distributions of the jth CF coefficient of log10 X. The theoretical pmf’s (solid, dashed, dash-
dotted and dotted lines) are (3.11), (4.10), (4.11) and (4.27) [with k= 1]. The empirical frequencies
(symbols) correspond to p = 108 pseudorandom outcomes in each of the cases.
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Figure 11. Joint distribution of the first two CF coefficients of log10 X for a real Benfordian dataset (US
total income per ZIP code, National Bureau of Economic Research, 2016, p = 159, 928). The theoretical
joint pmf (dashed lines) is (4.7), whereas the symbols represent empirical frequencies.

d and for k = 2, which we have chosen because the visualisation of a joint distribution is not simple
for k > 2 in the CF case. Even though the Benford-based approximations were obtained assuming k to
be large, we can see that they are close to the exact expressions already. This is markedly true for the
most significant digits model in Figure 2, where the approximation is accurate for nearly all a ∈ A(2)
already—in fact, it can be verified that the asymptotic approximation is also acceptable for k = 1 in
this case. Regarding the CF coefficients model, the asymptotic approximation becomes accurate when
a1 + a2 ' 100 for k = 2.

5. Empirical tests

In this section the theoretical expressions given in Sections 4.1 and 4.2 are verified. In all plots, lines
represent theoretical probabilities ( joining adjacent discrete probability mass points) except otherwise
indicated, whereas symbols (squares or triangles) represent empirical frequencies obtained using some
dataset {x1, x2, . . . , xp}. For simplicity, we use the maximum likelihood estimators x̂m = mini xi and
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Figure 12. Joint distribution of the first two CF coefficients of log10 X for a real Paretian dataset (diam-
eter of Lunar craters ≥1 km, p = 1, 296, 796 [31]). The theoretical joint pmf (dashed lines) is (4.27),
driven by ŝ = 1.59 and d̂ = 0.00, whereas the symbols represent empirical frequencies.
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Figure 13. Mappings between the range of {logb x} and the supports of a) A(1) and b) A1.

ŝ =
( 1

p
∑

i ln(xi/x̂m)
)−1 to drive the Paretian expressions with real datasets, but the reader should be

aware that better estimation approaches are possible (see for instance [23]).
We start with distributions of the most significant digits of X. Figures 4 and 5 present the distri-

butions of the most significant decimal digit A(1) and of the two most significant decimal digits A(2) ,
respectively. The Benford results, which are a particular case of (4.24), are well known. The Paretian
cases with d = 0 are covered by (4.26), as previously shown by Barabesi and Pratelli [6]. However, it is
essential to use the general expression (4.24) when d > 0. In this case the pmf’s of Paretian significant
digits do not behave anymore in a monotonically decreasing way (i.e., like Benford’s pmf) but rather
feature a peak midway along the support of A(k) . Therefore modelling real Paretian datasets requires
being able to take a general value of d into account, as there is no special reason why d should be zero in
practice—observe some examples in Figure 6. In particular, observe the pronounced peak when using
the dataset in [12].

Next, Figure 7 shows distributions of the jth most significant decimal digit A[ j] . Again, peaks can
sometimes be seen in the distributions when d > 0, but in general these are less pronounced than in
the distribution of A(k) due to (2.9). An illustration of the asymptotic uniform behaviour proved in
Theorem 2.4 is the fact that A[3] is very close already to A[∞] for all three distributions of X considered
in Figure 7.

We move on next to distributions of the leading CF coefficients of log10 X. Figures 8 and 9 verify
the validity of the joint distributions (4.7) and (4.27) of the two leading CF coefficients A2 when X is
Benford and Pareto, respectively. For clarity, only the first five values of a2 are shown. In Figure 10,
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we show the distributions of the marginals A1 and A2 for Benford X [i.e., (4.10) and (4.11)], and we
compare them to the Gauss-Kuz’min law (3.11) which is the distribution of A∞. As we can see, Aj
converges really fast to A∞: A1 is close to it already, as remarked by Miller and Takloo-Bighash [22],
but A2 is noticeably closer, as expected from approximation (4.19). Figure 10 also depicts the dis-
tribution of A1 for Paretian X, using (4.27). As we know, for Pareto X the distribution of Aj must
also converge exponentially fast to the Gauss-Kuz’min law, although this is not graphically illus-
trated in Figure 10 due to the lack of a theoretical expression for A2 in this case. Finally, we show
in Figures 11 and 12 how (4.7) and (4.27) correctly model real Benfordian and Paretian datasets,
respectively.

6. Conclusions

We have provided a general theoretical analysis of the distributions of the most significant digits and
the leading CF coefficients of the outcomes of an arbitrary random variable, which highlights the con-
nections between the two subjects. Empirical verification for two relevant particularisations of our
general expressions (for Benford and Pareto variables, respectively) also supports the accuracy of our
results in practice. Our analysis reveals novel facts—especially, but not only, concerning modelling CF
coefficients—and provides simpler proofs and new closed-form expressions for already known ones. In
particular, we have shown that the use of what we have proposed to call kth integer significands consider-
ably simplifies modelling significant digits, allowing for uncomplicated finite and asymptotic analyses.
We have also shown the parallelism between the general asymptotics of the probabilistic models for
the jth significant b-ary digit and of the jth CF coefficient—i.e., between (2.9) and the Gauss-Kuz’min
law (3.11)—and the role played by the Benford variables in the asymptotics of the general analyses.

Since power-law distributions are found in an extensive array of systems, our results may enable
the use of significant digits models with non-Benford data in all areas where Benford’s law has been
previously applied. For example, consider the economic data in [32] or the hydrological data in [27].
It should also be possible to devise new hypothesis tests based on our models for leading CF coefficients,
along the lines of the work of Barabesi et al. [5], both for Benford and non-Benford data.

Wemust finally note that the fundamental connection between significant digits and leading CF coef-
ficients models is also the source of their main limitation when used in hypothesis tests: both models
arise from discretisations of the fractional part of the logarithmic data, i.e., of the continuous random
variable {logb X} (see comparison in Figure 13 for k = 1) and therefore they necessarily discard poten-
tially valuable information. This limitation becomes less important as the number k of significant digits,
or leading CF coefficients, increases. Nonetheless there is probably room to investigate whether discreti-
sation strategies completely unrelated to either significant digits or leading CF coefficients (e.g., uniform
binnings of {logb X}) can work better than both in hypothesis tests.
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