Microscopy

Coming Events

2018

Semiconductor Interfaces (PCSI-45) January 14–18, 2018 Kona, HI https://pcsi2018.avs.org

Biophysical Society

February 17–21, 2018 San Francisco, CA www.biophysics.org/Meetings/AnnualMeeting/Future/ tabid/495/Default.aspx

PITTCON 2018

February 26–March 1, 2018 Orlando, FL https://pittcon.org

255th ACS National Meeting

March 18–22, 2018 New Orleans, LA www.acs.org/content/acs/en/meetings/nationalmeetings/ meetings.html

2018 MRS Spring Meeting April 2–6, 2018

Phoenix, AZ www.mrs.org/spring2018

American Society for Investigative

Pathology April 18–22, 2018 San Diego, CA www.asip.org/meetings/EB_future.cfm

Histochemistry 2018

April 21–25, 2018 San Diego, CA http://histochemicalsociety.org/Meetings-and-Courses/ Histochemistry-2018.aspx

Atom Probe Tomography and Microscopy

June 10–15, 2018 Gaithersburg, MD www.nist.gov/news-events/events/2018/06/ atom-probe-tomography-and-microscopy-2018-aptm-2018

Microscopy & Microanalysis 2018

August 5–9, 2018 Baltimore, MD www.microscopy.org

2019

Microscopy & Microanalysis 2019 August 4–8, 2019 Portland, OR www.microscopy.org

2020

Microscopy & Microanalysis 2020 August 2–6, 2020 Milwaukee, WI www.microscopy.org

2021

Microscopy & Microanalysis 2021 August 1–5, 2021 Pittsburgh, PA www.microscopy.org

2022

Microscopy & Microanalysis 2022 July 31–August 4, 2022 Portland, OR www.microscopy.org

More Meetings and Courses

Check the complete calendar near the back of this magazine.

Carmichael's Concise Review

Why the Terracotta Army Foretold the Rise of the Chinese Empires

Stephen W. Carmichael

Mayo Clinic, Rochester, MN 55905

carmichael.stephen@mayo.edu

In spite of decades of research into the Terracotta Army of the First Emperor of China, many questions remain about how, where, and by whom these famous sculptures were made. Recently Patrick Quinn, Shangxin Zhang, Yin Xia, and Xiuzhen Li compared the results of microscopic analyses of the larger than life-sized clay statues and other ceramic artefacts recovered from the mausoleum [1]. All ceramic specimens were prepared as $30 \mu m$ sections and were analyzed by transmission polarized microscopy with magnifications up to $400 \times$. Petrographic analysis focused on the nature of particulate inclusions, clay matrix, and voids. Quantitative analyses were also performed.

All sections of the samples appear to have been produced with a clay paste that did not contain calcium carbonate but did include many angular, silt-sized inclusions of quartz and dark mica derived from igneous and metamorphic rocks (Figure 1). The clay used to manufacture the ceramics may have been procured from deposits of wind-blown silt that is abundant in northwest China, including around Xi'an where the Terracotta Army is located. The clay paste of the terracotta warriors was prepared by the addition of sand (referred to as temper), which helps control shrinkage and improves resistance to thermal shock. Bricks lining the floor of a pit where warriors are located and rammed-earth samples from another pit were also analyzed. They seemed to have been fashioned from untempered clay. Sand temper could have been added to control the plasticity or "stickiness" of the fine clay and make it more suitable for shaping. The composition of the sand also indicated that it was collected in a loose form, rather than being produced by crushing sandstone. The possible source might have been alluvial sand found in the region.

The firing technology used on the statues has been debated extensively. Were they simply left to dry, fired openly such as in a bonfire, or fired in an enclosed structure such as a kiln? The presence of birefringence in the clay matrix of the samples suggests that they were not subjected to a sustained temperature above 850°C.

Figure 1: Thin-section photomicrographs of petrographic fabric groups and specific features detected within ceramic artefacts. A) Sand-tempered terracotta warrior statue; B) sand-tempered terracotta acrobat fragments; C) sand-and-plant-tempered core sample from bronze waterfowl; D) untempered silty brick sample; E) dark clay-rich plastic inclusion that may indicate intentional clay mixing; F) light-colored plastic inclusions in sample that may indicate the intentional mixing with the material in the previous image; G) granite rock fragment within sand temper; H) phyllite metamorphic rock fragment within sand temper. Image width = $0.5 \,\mathrm{mm}$, except G and H where the width = $0.25 \,\mathrm{mm}$. Images taken under crossed polars, except C and F, which were taken in polarized light.

doi:10.1017/S1551929517001237

CrossMark

Sample Preparation of Nanocomposites and Nanomaterials by Ultramicrotomy

^a Powerful **Alternative** to -1

Join us at the **EMS Microscopy Academy** and learn the latest techniques to reveal internal structures of composites and polymers being investigated with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).

Sample preparation workflow will be illustrated using the Leica EM UC7 Ultramicrotome, its EM FC7 Crvochamber. and the RMC PowerTome Ultramicrotome. Differences between FIB (Focussed Ion Beam) and ultramicrotomy samples will also be covered.

Who can benefit from this alternative?

- Composite and polymer research companies - especially from the automotive and aviation industries
- Materials scientists already working with ultramicrotomy
- FIB users preparing TEM lamellas

For more information, or to sign up for a workshop, please visit our website...

www.emsdiasum.com

DiATOME U.S.

P.O. Box 550 • 1560 Industry Rd. Hatfield, Pa 19440 Tel: (215) 412-8390 Fax: (215) 412-8450 email: sgkcck@aol.com

EMS Microscopy Academy

P.O. Box 550 • 1560 Industry Rd. • Hatfield, Pa 19440 Tel: (215) 412-8400 • Fax: (215) 412-8450 Toll Free: 800-523-5874 • email: sgkcck@aol.com

Applications...

Zeolite USY30 Crystal morphology STEM analysis

(2-50 nm) and the crystalline micro-pores (0.7 nm) are clearly visualized.

The mesopores

Tom Willhammar, Sara Bals, EMAT Antwerpen

Good preservation of the interphase

20 n

Gravitational stroke!

Mert Kurttepeli, Sara Bals, EMAT Antwerpen

[110]

Common clay minerals lose their crystalline structure at temperatures higher than this and would not be birefringent. Firing probably took place in a kiln-like structure due to the slow rate of temperature increase that would have been required to drive water from the thick (up to 10 cm) walls of the statues without catastrophic failure, as well as the sustained high temperature needed to harden them throughout. This could not have been controlled in an open fire or by air-drying.

The uniformity of the specimens suggests that the raw materials were obtained from a single source. A dedicated department responsible for the supply of clay would lead to less variability in composition than if this was left to individual production units. Such centralization would also help ensure a constant supply of large quantities of raw material that would have been required to produce over 7,000 statues in less than 40 years. Additional evidence supports the theory that the clay was then distributed to various ceramic workshops.

Quinn et al. have answered many important questions about how the Terracotta Army was created. They also pointed out that this surely would have required a high degree of organization on many levels. This characteristic may have laid the foundations for imperial China!

Reference

[1] PS Quinn et al., Antiquity 91 (2017) 966-79.

Upgrade Your Ions

Hyperion[™] Dual Polarity Ion Sources are now available as direct upgrades from Oregon Physics for FEI FIB 200, PHI Adept 1010, and Cameca NanoSIMS, IMS F series, and 12XX series instruments.

Upgrade your ion source to benefit from:

- Longer source lifetime
- Better image resolution
- Improved depth profiling (SIMS)
- Higher currents for milling (FIB)

Oregon Physics' Hyperion ion sources are designed to bolt-on to your existing optical system for easy implementation.

How will Hyperion improve your research? Learn more at Oregon-Physics.com or call us to discuss your requirements.

QUANTAX EBSD - Featuring OPTIMUS[™] TKD, ARGUS[™], ESPRIT QUBE and PicoIndenters[®]

e⁻Flash^{FS}

Unique Solutions for EBSD and TKD

e⁻FlashнD

- Fastest simultaneous EBSD/EDS analysis
- OPTIMUS[™] EBSD and TKD with one detector
- Unique ARGUS™ FSE/BSE imaging system
- ESPRIT QUBE for advanced 3D analysis of EBSD/EDS data
- NEW Quantitative in-situ nanomechanical testing with Hysitron SEM PicoIndenters[®]

Innovation with Integrity

EBSD