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ON THE ESSENTIAL SPECTRA OF 
QUASISIMILAR OPERATORS 

DOMINGO A. HERRERO 

1. Introduction. B. Sz.-Nagy and C. Foia§ gave the first examples of qua-
sisimilar operators with different spectra [25]. Indeed, quasisimilar operators 
can even have different spectral radius [19] (see also [15]). Nevertheless, T. B. 
Hoover has shown in [19] that if T and S are quasisimilar, then a(T)na(S) =£ 0, 
where a(R) denotes the spectrum of the (bounded linear) operator R. In [12], the 
author improved Hoover's result by showing that each component of a(S) inter­
sects a(T), and viceversa. This, in turn, was further improved by L. A. Fialkow 
in [7]. (Actually, Fialkow's results were obtained independently of [12].) 

L. A. Fialkow [7] and L. R. Williams [27] independently proved that ae(T)(l 
cre(S) =£ 0, where cre(R) denotes the essential spectrum of R. Several authors 
have raised the following natural question: 

Is it also true that each component of (Je(S) intersects cre(T), and viceversa? 
[7] [21] [26]. 

The main purpose of the present article is to solve this riddle. 
Let L (X ) denote the algebra of all operators acting on the complex, infinite 

dimensional Banach space X, and let 3C (X ) denote the ideal of all compact 
operators (so that ae(R) is the spectrum of the canonical projection R G L(X) 
in the quotient Calkin algebra L(X)/X(X)). Recall that T G L(X) and S G 
L(y) are quasisimilar if there exist injective operators X : X —• y and 
Y : y —» X with dense range such that 

XT = SX and TY = YS 

(An injective operator with dense range between two Banach spaces is called a 
quasiaffinity.) 

THEOREM 1. IfT£L(X) and S G L (y ) are quasisimilar, then each com­
ponent of ae(S) intersects cre(T), and viceversa. 

The proof of this theorem is the content of Section 3. In Section 4 we shall 
discuss some consequences of this result for the case when X = y = 9i is 
a separable Hilbert space, along with several related examples. Among other 
results, the article includes the answers to two questions of L. A. Fialkow [10] 
about the structure of the quasisimilarity orbits of a quasinilpotent Hilbert space 
operator and of an operator with disconnected spectrum. A simple example 
shows that quasisimilarity can modify the structure of the invariant subspace 

Received December 8, 1987 and in revised form July 12 1988. This research has been partially 
supported by a Grant of the National Science Foundation. This paper is dedicated to my friend and 
colleague Chandler Davis, on his first sixty first birthday 

1436 

https://doi.org/10.4153/CJM-1988-066-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-066-x


QUASISIMILAR OPERATORS 1437 

lattice so deeply that it does not even preserve reflexivity. (An operator T G 
L (X ) is called reflexive if every A in L (X ) that leaves invariant every subspace 
of T is necessarily a weak limit of polynomials in T.) 

This article was written while the author was spending part of his sabbatical 
leave at the Universities of Toronto and Waterloo. The author wishes to thank his 
colleagues M.-D. Choi, K. R. Davidson, C. Davis and P. Rosenthal, and to the 
Departments of Mathematics of both universities for their generous hospitality. 
This article originated as the result of several stimulating conversations with 
Professors Ken Davidson and Chandler Davis. 

Last, but not least, the author wishes to thank the referee, who indicated two 
mistakes in the original version of the paper, and whose comments contributed 
to making the article more readable. 

2. Preliminary results. The notion of quasisimilarity was introduced by B. 
Sz.-Nagy and C. Foia§, in connection with their Harmonic Analysis of contrac­
tions in Hilbert space [24] [25] [26]. Quasisimilarity preserves the existence of 
hyperinvariant subspaces [19], although it does not preserve the structure of the 
lattice of hyperinvariant subspaces [13]. 

If XT = SX and TY = YS (X, Y quasiaffinities), then it is an easy exercise to 
check that 

X[q-\T)p{T)] = [q-\S)p(S)X] and [q-{(T)p(T)]Y = Y[q~\S)p(S)] 

for all pairs of polynomials (p, q), provided q has no roots in a(T)Ua(S). Indeed, 
X f(J) = f(S)X and f(T)Y = Y f(S) for each function / analytic on some 
neighborhood of cr(T) U v(S). 

For each complex À, 

Xker(A - T) C ker(A - S) and Fker(A - S) C ker(A - T) 

and 

nul(A -T) = nul(A - S) and nul(A - T)* = nul(A - S)*, 

where nul A = dim ker A. Thus, if either ker(A - T) or ker(A — S) is finite 
dimensional, then 

Xker(A - T) = ker(A - S) and yker(A - S) = ker(A - T). 

Recall that A G L (X ) is a semi-Fredholm operator if ran A : = AX is a 
subspace (i.e.; a closed linear manifold) and at least one of the cardinal numbers 
nul A and nul A* is finite. In this case, the index of A is defined by 

ind A = nul A — nul A*. 
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It is completely apparent that quasisimilar semi-Fredholm operators have the 
same index. 

A semi-Fredholm operator A is Fredholm if ind A is finite (equivalently, both 
nul A and nul A* are finite). The well-known Atkinson's theorem says that 

ae(T) = {X G C : A - T is not Fredholm}. 

The nonempty compact set 

&ire(T) = {A G C : À - T is not semi-Fredholm} 

is the Wolf spectrum of T. Its complement, ps-F(T) = C\aire(T) is the semi-
Fredholm domain of T. The reader is referred to [11] [20] for the properties of 
the semi-Fredholm operators. 

Another important (and easy to prove) property of quasisimilarity is that it 
preserves multiplicity. More precisely, T G L (X ) is n-multicyclic if there exist 
e\, e2,..., en £ X such that 

X=V{Tkej: j = 1 ,2 , . . . ,n}^ 0 

(where V denotes "the closed linear span of"), but no set of n — 1 vectors has 
the above property. If T and S are quasisimilar and T is «-multicyclic, then so 
is S. 

Suppose T G L(X),S G L(J), and X : X —• J and Y : J —• X are 
quasiaffinities such that AT = SX and 7Y = FS, and a is a component of cre(S) 
such that cr DovCO = 0. Since ae(S) is compact, o is the intersection of the 
clopen subsets of oe(S) including it. Therefore, there exist a clopen subset a* of 
(je(S) and a connected open set fi C C such that 

a C a Cil C C \^ (7 ) . 

Furthermore, by replacing (if necessary) ft by a smaller set, and by using the 
properties of the semi-Fredholm operators, we can directly assume that ft is 
bounded, its boundary, dft, consists of finitely many pairwise disjoint rectifiable 
Jordan curves, ft ~ D ae(T) = 0, and X — T and A — S are Fredholm operators 
such that nul(A — T) and nul(A — S) are constant for all A in dft. 

Clearly, this observation reduces the proof of Theorem 1 to that of the fol­
lowing. 

Claim. Let T G L(X\ S G L{J\ and let X : X -> y and Y : y —• X be 
quasiaffinities such that XT = SX and 7Y = YS. If 11 is a bounded, connected, 
open set, dft is the union of finitely many pairwise disjoint rectifiable Jordan 
curves, 

dft n[ae(T)Uae(S)] = 0, 
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and nul(A — T) =nul(A — S) is constant for all A G dfî, then 

n n <re(T) - N o n ae(S) = 0. 

The main ingredient for the proof is the author's result about the Fredholm 
structure of a multicyclic operator [17] (see also [4, Chapter 11] [14]). 

THEOREM 2. If A € L(X) is n-multicyclic, then ind(A - A) ^ —n for all 
A G ps-f(A); moreover, if <& is a component of 

P;HF(A) := {A G ps-F(A) : ind(A - A) = -n}, 

then 
(i) nul(A - A) = 0 aAZJ nul(A - A)* = n for all A G <I>, arcd 
(ii) 4> is a simply connected, bounded, open set. 

3. Proof of theorem 1. With the notation of the above claim: 
Case 0. dfî PI a(T) = 0. 
Since A — S is Fredholm, and 

nul(A -S) = nul(A - T) = nul(A - S)* = nul(A - T)* = 0 

for all A G dft, we deduce that dil Ha(S) = 0. Therefore, 

X(X - T)'1 = (A - 5)" lX for all A G dO, 

and 

X£(7) - £(S)X, 

where £ ( r ) G L(X) is the idempotent operator defined by 

E(T)=^-. [ (X-Ty'dX, 
2?n JdÇÏ 

and £(S) G L(y) is similarly defined. 
Since £l~ r\ae(T) = 0,£(r) has finite rank. Since X has dense range, we 

infer that E(S) is also a finite rank operator; therefore E(S) is compact. 
But this is clearly equivalent to saying that il~ P\ae(S) — 0. (Consider the 

canonical projection of the contour integral defining E(S) in the Calkin algebra 
£(90/^C(90)- This was, basically, the argument used in [12].) 

Case 1. nul(A - T) = 0, but ind(A - T) = -nul(A - T)* = -n ï 0 for 
A G an. 

Fix some /x in dO; then ran(/x — 7) and ran(/x — 5) are subspaces and have 
codimension n in X and, respectively, in fX"- Let {f i, fi, • •-, f n} C IX be 
any set of (necessarily linearly independent) n vectors in y such that V{/ ; }" = 1 

complements ran(/i — S). Since X has dense range, the / / s can be chosen so that 
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fj — Xe} for a suitable (necessarily linearly independent) set {e\1 e^^..., en} of 
n vectors in X ; moreover, it is easily seen that these vectors can be chosen so 
that \J{ejYj=\ complements ran(/i - T). Let 

M =V{Tk
ej:j= 1 , 2 , . . . , ^ = 0 and 

# =V{S*(X^):y = l , 2 , . . . , / i } ^ 0 . 

Clearly, 7fW C fW, S9£ C fAt and the multiplicities of 7|fW and 5|fAt 
cannot exceed AÏ; moreover, (/i - T)M and (/i - S)1A£ are subspaces, and 

(/i - 7)fW C fW H ran(/i - T) and 

(/i-S)fAt C ^ n r a n ( / x - 5 ) , 

so that 

(/x-s)fv;n(v{x^};=Bl) = {o}. 

It readily follows from general properties of the semi-Fredholm operators and 
Theorem 2 that 

fV; =(V{X^-}; :S1) + ( M - S ) ^ 

(where 4- denotes direct sum of Banach spaces), S\9\[ is an «-multicyclic 
operator and X — S\0\C is a Fredholm operator such that 

nul(A -S\9i) = 0 and 

ind(A - S11*0 = -nul(A - S|fAO* = -n 

for all À € I l A : = the smallest simply connected set including fl ~. 
Observe that 

[XMY = [X(V{Tkej: j= 1,2,... ,/i}"=0)]" 

= V { X 7 V y = l , 2 , . . . , ^ = 0 

= V{S*Xey: y = l , 2 , . . . , / i } ^ 0 = ^ : 

and (by the same computation) 

[X(ti-T)MV = <ji-S)*C. 

Clearly, 

( V f e j ^ n ^ - m ={0} and 

^ =(v{^};=1) + (/x-r)fW, 
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whence we conclude as in the case of S and 9i that 
94 = (V{ej}j=l) + (/z — 7)/i,T|fW is an n-multicyclic operator and \-T\94 

is a Fredholm operator such that nul(A - T\94) = 0 and ind(A — T|fW) = 
-nul(A - T|fW)* = - / i for all A G HA . 

In other words, T\94 and 5|fAt have exactly the same characteristics, and 
9i = {X94 Y. If T G L (XIM ) and 5 G L (y /9£ ) are the operators induced 
by 7 G £ (X) and, respectively, 5 G £ ( 9 0 ° n the corresponding quotient 
spaces, then 

XT = SX. 

(Here TX = (7X)~, Sy = (S>0~ and XJc = (XJC)~, where Jc and y denote 
the cosets of x G X in X /94 and, respectively, of j G 9̂  hi 9̂  / ^ , and 
X : X /94 —• 9̂ ' /(hi is the operator induced by X : X —• ^ . ) 

It is easily seen that (ran X)~ = 9̂  implies (ran X)~ = y /9i > s o that 

dim 9 /̂fAt ^ dim X/94. 

If 9^/^£ is finite dimensional, then it readily follows that 9i has a finite 
dimensional complement in y, and 

n nae(S) = n n<7,(s|iA0 = 0. 

If y /$i is infinite dimensional, then so is X /94. Since II Dcr^(r) = 0, it 
is not difficult to deduce that 

ûnMf) = 0. 

Furthermore, since 

ind(A - T) = ind(A - r|fW) = ~n(X G H "), 

A — T is a Fredholm operator of index 0 for all A G 11 ~ [11] [20]. Moreover, 
if (/i — f)x = Ô for some i G l , then 

(/i - T) x G fW H (/i - T)X = (/i - 7)fW ; 

therefore, there is a j in 94 such that 

(/x - T)x = (fi - T)y. 

Since (/i — T)(x — j ) = 0 and (/i — T) is injective, we deduce that 

x — y ^ 94 and therefore x = Ô; 

that is, (/i — 7) is injective. 
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Since il ~ is a connected, compact subset of{À G C : (À - f) is Fredholm of 
index 0}, we infer that ker(À - T) = {0} for all but finitely many À's in fî ~, 
and that ft ~ n o(t) is a finite (possibly empty) subset of normal eigenvalues of 
the operator T. 

By replacing, if necessary, fl by a slightly smaller open set ft' with the same 
characteristics as fl(/x G dil'), we can directly assume that A — ? is invertible 
for all À G dO. It readily follows that E(T) is a well-defined finite rank operator. 

We conclude as in Case 0, that E(S) also has finite rank, and 

a nae(S) = n n^cs) = 0. 

Case 1*. nul(A - 7)* = 0, but ind(A -T) = nul(A - T) = n * 0 for A G al l . 
This follows from Case 1 by taking adjoints. (If either X or y is not a 

reflexive Banach space, then minor adjustments are necessary here and there; 
for instance, we can only assume that X* and Y* have weak * dense range, etc. 
The details are left to the reader, if any.) 

Case 2. nul(A - T) = m -h 0 and nul(A - T)* = n ï 0 for A G dil. Define 

M = V{ker(A - T) : A G dCt}, 9i = V{ker(A - S) : A G dO }. 

Clearly, 7fW C fW and SfA£ C fA£. 
Since XT = SX and Xker(A - T) = ker(A - 5) for all A G al l , we have 

(XfW)" = ^ . Similarly, (FfAt)" = ^ -
Since fW is the span of a family of kernels, T\M is a "triangular operator", 

and therefore: 
A — T\M is a Fredholm operator such that 

nul(A - T\M) = ind(A - T\M) = m 

and nul(A - T\M )* = 0 for all A G VL ~ (use [12] [16, Chapter 3] [18], and the 
fact that VL~ r\ae{T) = 0). 

Similarly, 
A — S19\i is a Fredholm operator such that 

nul(A ~S\9i) = ind(A - S|fAO = /w 

and nul(A - S\9£)* = 0 for all A G dft. 
Since XfM" is dense in fA£ and F£Â  is dense in f?!/ it follows immediately 

that 

X|fW:fW-*fA£ and F | f A £ : ^ - + f W 

are quasiaffinities, and 

(x|fW)(r|fW) - (s|f*0(x|aO and (r |*0(«) = ( W ) W ) . 
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That is, T\M and S\9\[ are quasisimilar. 
It follows from Case 1* that 

ft n (̂s|fAC) = 0. 

Define t, S, X and Y exactly as in Case 1; then X and Y have dense ranges, and 
XT = SX and TY = Y S; moreover, X /M and y /$£ are infinite dimensional 
spaces, À — t is a Fredholm operator such that 

ind(A - t) = -nul(A - ?)* = ind(A - T) - m = (m - n) - m = —n 

for all A G ft " and nul(A - f ) = 0 for all A G aft. Indeed, if (A - f )x = Ô for 
some A G oft and some JC G X, then 

(A - T)x G M = (A - DfW, 

because (A — T)|fW is onto. Therefore, (A — 7)JC = (A — T)y for some y G fW, 
and (A - T)(JC - y) = 0, so that 

z = x -y £ ker(A - T) C M. 

It follows that x = z + y G fW and Je = Ô. Hence, (A - f ) is injective for all 
A G aft. 

Similarly, A — S is a Fredholm operator such that 

ind(A -S)= -nul(A - 5)* = ind(A - S) - m = -n 

and nul(A - 5) = 0 for all A G aft. 
Now it follows exactly as in Case 1 that 

ft Hae(S) = ft nae(S) = 0. 

Indeed as remarked in the proof of Case 1), the only relevant property of X 
that we need here is the fact that this operator has dense range. 

This completes the proof of our claim. As we have already observed, it readily 
follows from this fact that each component of ae(S) intersects ae(T). By a 
symmetric reasoning, each component of oe(T) intersects ae(S). 

From the proof of Theorem 1, we immediately derive the following result. 

COROLLARY 3. Let T G L(X\S G LWX and letX : X —• J and Y : J —• 
X be operators such that XT = SX and TY — YS. 

(i) //" (ran X)~ = y and ft is an open subset of C\ae(T) such that nul(A -
T) = Ofor all A G ft and aft H ae(S) = 0, then ft H ae(S) = 0. 

(ii) //"ker Y = {0} and ft is an open subset of C\ae(T) such that A — T is 
onto for all A G ft and aft H ae(S) = 0, f/œw ft H ̂ (S) - 0. 
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Another consequence is the following mild improvement of the same theorem. 

COROLLARY 4. If T G L(X) and S G L (y ) are quasi similar, then each 
component of aire(T) intersects ae(S) and each component of aire(S) intersects 

Proof Let a be a component of aire(S), and let d be the component of oe(S) 
including a. If a = &\ the result follows from Theorem 1. If a =£ d, then there 
exist a £ da and a Cauchy sequence {a^}^=1 converging to a such that ak - S 
is semi-Fredholm and 

ind(a* - S) = ±oo for all it = 1,2,.... 

It readily follows that a* G o>(r) for all k = 1,2,... , and therefore 

a = lim ak G crncre(r). 
it—+°° 

4. Complementary results and examples, (a) If T and 5 are quasisimilar, 
then 

(Tlre(T)n<Tlre(S)±Q [23]. 

The Wolf spectrum of T G L (X ) is the intersection of the left essential spectrum, 

(Tie(T) — {À G C : either À — T is not semi-Fredholm, or 

ind(A-T) = oo}? 

and the right essential spectrum, 

&re(T) = {A G C : either A — T is not semi-Fredholm, or 

i n d ( A - r ) = -oo} ; 

the essential spectrum, on the other hand, is equal to the union of aie(T) and 
crre(T). (If X is a Hilbert space, then aie(T) and (Tre(T) coincide with the left 
and, respectively, the right spectrum of the canonical projection of T in Calkin 
algebra.) 

For 0 < r < 1 let H(r) be the compact diagonal positive operator defined by 

H(r)en = rnen ( « = 1 , 2 , . . . ) 

with respect to the orthonormal basis {en}™=l of the Hilbert space fH. Let S* be 
the backward shift with respect to the same basis (defined by S*e\ = 0,S*en = 
en-\ for n ^ 2); then a straightforward computation shows that 

S*H(r) = H(r)(rS*), 
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and therefore 

H(r)S = (rS)H(r). 

By using this trivial example, it is very easy to construct examples of quasi-
similar operators A and B such that not every component of aie(A)(are(A)) inter­
sects aie(B)(are(B), resp), and viceversa, not every component of aie(B)(are(B)) 
intersects aie(A)(are(A), resp.): let {an}mez and {bm}nez he any two strictly 
.increasing sequences of real numbers in the interval [r,l] (0 ^ r < 1) such that 

lim am = lim bm = 1, lim am = lim bm = r. 
m—>o° m—•oo m—*» m—•<» 

Define 

A = Q)amS and B = Q)bmS, 
m€Z «6Z 

where 0 denotes orthogonal direct sum (A,Z? G £ ( 0 m G Z ^6i)> where ^ ^ H 
for all m G Z). Clearly, we can always construct bijections LJ : Z —> Z and 
i/> : Z —• Z such that 

«m < 6w(ni) and am > b^m) for all m G Z. 

It readily follows from the basic example H(r)S = (rS)H(r) that A and # are 
quasisimilar; moreover, <J(A) = a(B) = cre(A) = ae(B) = <rre(A) = a^(B) = 
the closed unit disk, but 

(Tie{A) = Gire{A) = {A G C : |A| = r, 1, or aw for some m G Z} 

= left spectrum of A 

and 

(Jie(B) = <Jire{B) = {A G C : |A| = r, 1, or frw for some m G Z} 

= left spectrum of 5 . 

In particular, {am}meZ and {£m}mGz can be chosen so that {am}D{bn} = 0. 
By taking adjoints, we have analogous examples with the roles of <7/e(-) and 

Grei') interchanged (see also [27], [28]). 
These examples show that ae(J) cannot be replaced by (Jie(T) or are(T) in 

Corollary 4. They also illustrate the difficulties that we may find in proving 
Stampfli's result [23, Theorem 9]: aire(T)naire(S) =£ 0 whenever T and S are 
quasisimilar. 

An alternative proof of this result (indeed, a mild improvement of it) can be 
easily obtained as a corollary of Theorem 1 : 
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THEOREM 5. If T G L(X) and S G L(y) are quasisimilar and l î is a 
bounded open set such that 

oe(T) H II ï 0, but ae (T) H dû = 0, 

then 

(Tire(T)n(Tlre(S) (HI ± 0. 

Proof. Let a be any point of dae(T) D fî, and let a be the component of a 
in 0v(7). Clearly, a G crire(T). By Theorem 1, aDovCS) ^ 0-

Let /? be any point of a D cre(S). If /3 G (Tire(T) D oire{S), then we are done. 
If (3 tf cfire(T) Daire(S), then either /? - T is a semi-Fredholm operator of index 
±oo, or f3 - S has that form. If ind(/3 - 7) = oo, then ind(A - T) = oo for all 
À G C such that |A - f3\ < e (for some e > 0 small enough), and therefore 

{A G C : |A - (3\ < e} C {A G C : nul(A - T) = nul(A - S) = oo} 

ctr«(r)n(7,(5) 

(and similarly for the cases when ind(A - T) — -oo or ind(A - S) = ±o°). 
In particular, f3 ̂  a. 

Let 7 be a smooth Jordan arc in 11, joining a with /?, and let // be the first 
point of 7 (when moving from a to (3) such that 

/i G crfl cr̂ OS). 

Then /x G ae(T) (1 ae(S); but /i tf. Gire(T)noire(S) implies (exactly as above 
with (3) that ae(J)C\ae(S) includes an open disk centered at //, which contradicts 
the définition of \i. 

Hence, 

tieaire(T)r\(jlre(S)nn. 

(b) Even more striking examples can be constructed on the same lines as 
in (a). Let L G L(!H) and assume VL C cr(L) is a component of the left 
resolvent set of L (that is, A — L has a left inverse, but not an inverse for each 
À G f l ; ^ is a Hilbert space). Let Y and A be two relatively closed subsets of 
ft; then there exist T1, S G X(^ ( o c ) ) such that T,S and L(00) are quasisimilar, 
are(T) = are(S) = are0

œ\ 

°ie(T) = a/,(L(cc)) U r and a,,(S) = a/e(L
(C0)) U A. 
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Proof. If a G il, then we have a decomposition 

L = (La Pa\ Wx 
V 0 a) H QHx' 

where !H © iK* = ker(a — L)* =£ {0} and La has the same spectral properties as 
L; moreover, it is clear that La - A and (La - A)* admit the same lower bounds 
as L — A and, respectively, (L — A)*, for each A G PS-F(L). 

Define 

fLa(l/n)Pn\ L{a,n) = I ' ^ 1, « = 1,2,.... 

The operator L(a, «) is similar to L, and therefore 

00 

£(<*) : ~ ^&L(a,n) and L(00) are quasisimilar [15]. 

Let {ay} and {fa} be countable dense subsets of T and, respectively, A, and 
define 

T = ®L(ccj) and S = 0 L ( f t ) . 
y * 

Since (L(00))(m) is unitarily equivalent to L(co) for all cardinals m, 1 ^ m ^ °o, 
it is straightforward to check that T, 5 and L(00) are, indeed, quasisimilar, and 
that are(T) = are(S) = are0

œ)\ but 

<Tie(T) = ale0
œ)) U F and ale(S) = ale(L

(œ)) U A. 

By taking adjoints, we have similar examples with aie(-) and are(-) inter­
changed. 

(c) In [10], L. A. Fialkow used the spectral characterization of the closure of 
a similarity orbit of C. Apostol, D. A. Herrero and D. Voiculescu [4, Chapter 
9, Theorem 9.2] in order to analyze the following kinds of problems: for which 
operators T G L(tt) {H a complex, separable, infinite dimensional Hilbert 
space) does 

A G L (H ), A quasisimilar to T =» A G S (T)~ ? 

(Here S(T) = {WTW~l :WeL(?()is invertible} is the similarity orbit of 
T.) For which 7's does 

AeL(M), A quasisimilar to T => a(T) C a(A)l 
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As a corollary of Theorem 1, we have the following result along the lines of 
[10] (see also [15]). 

THEOREM 6. Suppose that T,A G L (H ) are quasisimilar operators, and T 
satisfies the conditions 

(1) interior aire(T) = 0, 
(2) if p, G (Tire(T) and ind (À — T) is constant on il\aire(T) for some neigh­

bourhood fl of p, then that index is finite and {p} is a component of ae(T), 
and (3) furthermore, if p is an isolated point of ae(T), and k^ is the function 
defined by 

, / A x f A — //, on some neighborhood of \x 
M I 0, on some neighborhood o/cr^(r)\{/i}, 

then 

k^f)m ^ 0 for all m = 1,2,..., 

where T denotes the canonical projection T in the Calkin algebra. 
Then a(T) C a(A) and A G S(T)~. 

Proof Since T and A are quasisimilar, 

nul(A - A)k = nul(A - T)k and nul(A - A)k = nul(A - T)k 

for all A G C and all k — 1,2,.... In particular, 

ind(A -A) = ind(A - T) for all A G ps-p(A). 

On the other hand, (1) and (2) and Theorem 1 imply that aire(A) D 
oire(T), (ie(A) D cre(T), and each component of cJire{A) intersects (Je{T). 

It readily follows that a(A) D cr(T). Moreover, by using these observations 
and (3), it follows from [4, Theorem 9.2] that A G S(T)~. 

The result of Theorem 6 is "almost sharp", in the following sense: if T 
fails to satisfy (1), (2) or (3), then there exists T G L{9() with the same 
spectral characteristics as T, such that A! rf S(T')~ for some A' G L(J{) 
quasisimilar to T'. (If T fails to satisfy (1) or (2), then we can find T and A! 
as above so that T G S{A!)~ and oe(A!) is a proper subset of ae(T') = ae(T). 
If T satisfies (1) and (2), but not (3), then a(A) D a(T) and ae(A) D ae(T) 
for each A G L (9{ ) quasisimilar to T; in this case we can construct T' with 
cr(T') = G(T\ae(T') = ae(T\ etc, and k^T'T * 0 for all /w = 1,2,... , for 
some function k^ such that k^(fy = 0 for some p ^ 1. The details of the 
construction of T' and A' follow easily from [15] and [4, Chapter 9].) 

(d) In several results of [10], L. A. Fialkow uses the set 

(Tqn(T) := {A G C : ||(A - Tfx\\ l'n ->0(« - , oo) 
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for some nonzero x in H } 

((JP(T) C &qn(T) C crap(T), where ap(T) and oap{T) denote the point spectrum 
and, respectively, the approximate point spectrum of the operator T). The same 
kinds of results can be achieved by using the "more elastic" subset 

o'qn(T) := {X G C : for each r > 0 there exists a nonzero xr in 9{ 

such that lim inf (n - • oo)||(A - r)"jcr||
1/AZ < r} . 

Once again, we have GP(T) C crqn(T) C o^CO C crap(T). For every normal 
operator T on a Hilbert space, or even for every decomposable operator T on a 
Banach space, a(T) = c/^ÇT). But aqn(T) — 0 if, for instance, 7 is normal and 
its spectral measure has no atoms (see [1] and [6] for definition and properties 
of the decomposable operators). 

(e) Given a Hilbert space operator T, let 

(T)qS = {A £ L {Of ) : A is quasisimilar to T} 

denote the quasisimilarity orbit of T. 
In [10, Question 2.16], L. A. Fialkow asked which nilpotent or quasinilpotent 

operators Q on H satisfy the inclusion (Q)qs CS(Q)~. Here is a partial answer 
to this question. 

PROPOSITION 7 . (i) / / Q G L{ïH) is a finite rank nilpotent, then 

(GV = S(Q) = {A ££(?{): S (Ay - S(QV}. 

(ii) If Qis a nilpotent of infinite rank, then (Q)qs (/ S(Q)~. 
(iii) If Qu is a universal quasinilpotent, then (Qu)qs C S(QU)~ • (A quasinilpo­

tent operator Qu is "universal" if (Qu)
k (f %,(JH) for k — 1,2,...; see [4, 

Chapter 9] [16, Chapter 8] J 
(iv) Given a quasinilpotent operator Q and e > 0, there exists Ke G $C(?{), 

with \\Ke\\ <e, such that Qe = Q + Ke is quasisimilar to a universal quasinilpo­
tent Qu. In this case, (Qe)qs C S(Qe)~ if and only if Q (and therefore Qe) is 
universal. 

Proof (i) follows immediately from our observations in Section 2 about the 
elementary properties of quasisimilarity, and the results of [16, Section 2.1]. On 
the other hand, the proof of (iii) can be found in Fialkow's article [10, Corollary 
2.6]. 

(ii) Let qn denote the nX n(n^ 1) Jordon nilpotent cell in L(Cn). If Q has 
the form of (ii), then it follows from [3] that for some m ^ 2, all the operators 

g, ^ 9 F , ^ © ^ e ^ . - . ^ - i e t f e F 
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are quasisimilar. Here F is the only finite direct sum of Jordan cells of order 
strictly larger than m such that 

rank Fk = rank Qk for all k^m. 

(Of course, the direct summand F acts on a finite dimensional space, and can 
be absent.) 

If Q is not similar to qff 0 F or qj 0 qff 0 F (for some y, 1 û j ^ m - 1), 
then 

I m - l 

f]S(qj®q^®F)-
y=i 

but 

7 = 1,2,..., m — 1) [16, Proposition 8.5 and Corollary 8.17]. 
If g is similar to qW 0 F(qj 0 ^ 0 F for some y, 1 ^ j ^ m - 1), then 

tfie^e^^er and e^^e^e^r 
(tâ](BF $S(Q)- and Q ^ 5 ( ^ } 0 F ) " , resp.) 

[16, Proposition 8.19]. 
In either case, (Q)qs ç! S(Q)~. 
(iv) If 2 is universal, we are done (take Ke = 0). If Q is not universal, then 

Qm is compact and Qml is not compact (for some m ^ 1), and there exists 
Kx e %{H), with HA'ill < e/2, such that 

Q + K{^Q®R(0O\ 

for some Re L{9{) such that Rm = 0, / T " 1 ^ 0. 
According to [16, Lemmas 7.8 and 7.9], /? is similar to 

R' = Ro®qm. 

Therefore, there exists W invertible such that 

Q + Ki ^WiQeR^^q^W1-

Clearly, we can find K2 € 3C(#), with \\K2\\ < e/2, such that Ke = Kx + K2 

satisfies 

fieCetei 
£=1 

w 
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where 

\Wkm-^\\<2-ik+l)e/\\W\\-\\W'l\\ 

It readily follows that if qlm is similar to q^m, then Qe is quasisimilar to 

e" = 6 04"^ {©A, J. 
I f tfL^i = °> 4Len = l/n(en-i)(n = 2 ,3 , . . . ,km\ {en}

k^x is the canoni­
cal orthonormal basis of Ckm), then it is easy to check that Q" is a universal 
quasinilpotent quasisimilar to Qe. Clearly, Q" tf S(Qe)~ [16, Chapter 8]. 

A complete answer to Fialkow's question for the case when g is a non 
universal quasinilpotent that is not nilpotent is, most probably, a hopeless task. 
Proposition 7 (iv) illustrates some of the difficulties involved in the problem. On 
the other hand, the proof of Proposition A3.1 of [4] shows that, in many cases, 
given a quasinilpotent operator Q and e > 0, it is possible to find Ke G %(H), 
with \\Ke\\ < e, such that Qe = Q + Ke is a strictly cyclic operator. The author 
conjectures that this is true for all quasinilpotent operators. According to [15], 
if Qe is strictly cyclic, or even if the double commutant of Qt has finite strict 
multiplicity, then 

(Qe)qs=S(Qe)CS(Qey. 

(The reader is referred to this last reference for definition and properties of 
algebras of finite strict multiplicity.) 

Thus, if the above conjecture is true, and Q has the above described form, 
then arbitrarily small compact perturbations of Q will produce quasinilpotent 
operators with radically different behaviour with respect to the relation between 
(GV and 5(G)". 

(f) In [10, question 2.11], L. A. Fialkow raised the following question: Sup­
pose T,S G L(^H) are quasisimilar operators and a(T) is the disjoint union 
of two compact subsets, G\ and OÏ\ then (by the Riesz decomposition theo­
rem) H is the algebraic direct sum of two complementary invariant subspaces, 
fWi and Mi, of T(a(T\Mj) = a), j = 1,2). Does S always have two com­
plementary invariant subspaces, fAû and fAé, such that S\% is quasisimilar to 

T\Mj 0 '=1 ,2)? 
The following example provides a negative answer to this question. 
Let r = M®iV, where M and N are normal operators such that 

CJ{M) = {A: |A + 2| ^ 1} and a(N) = {X : |A - 2| ^ 1}; 

then Oi = M 0 fA£, where M and fA£ denote the space of M and, respectively, 
of N. 
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We can write M = 0^= 1M^, where Mk is a normal operator with perfect 
spectrum. Let L ^ L 0 0 be a normal operator such that 

a(L) = {A 6 C : |A| ^ 4}. 

According to [4, Theorem 9.1] there exists an operator M[ similar to Mk such 
that 

\\L-M'k\\<\/k ( £ = 1 , 2 , . . . ) . 

Similarly, we can write N = 0 ^ = x Nk and find N'k similar to Nk such that 

\\L-N'k\\<l/k ( * = 1 , 2 , . . . ) . 

Therefore, there exist unit vectors e*, f k such that 

max{| |M^| | , \\(M'k)*ek\\, \\N'kfk\\, \\(N'k)* f k\\} < 1/* 

for each & = 1,2, 

Thus, we can write 

M,= (Ml Ck\(ekt N, = (Fk Gk\ fk 
Mk \Dk Ek) ek ' Nk \Hk N"k){fkY-

where 

max[||C*||, ||D*||, | |£,||, ||F*||, \\Gk\\, \\Hk\\\ < 1/k. 

Define 

oo IK ck o o \ ' ^ 
î=ai\Dk Ek 1 0 ek _(r\(M'k Pk\. 

Sri ° ° F* c J /*~§^° ^ 
\ 0 0 Hk N'k'/ (ft)± 

then S / t = ek + g*, where | |^ | | ^ | |F t | | + ||//*|| < 2/k. 
Each of the direct summands of S is similar to Mk®Nk, and therefore S is 

quasisimilar to 7* [15]. 
Suppose that S has two complementary invariant subspaces, fW' and 9C' 

such that S|5W' and S|fA£' are quasisimilar to T|W = M and, respectively, to 
T\9i = N. It follows from [2] that S\M' admits a family { .̂y-}J°=1 of invariant 
subspaces such that Û^h complements 

Hh = V{!lLj:j±h} (A = 1 , 2 , . . . ) 
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and nJLj^y = {0},S |^ 7 is similar to a direct summand Rj of M, and M = 
0j = 1 / ? 7 . Similarly, S\9\C' admits a family {Sj}J=i of invariant subspaces such 
that Sh complements 5/ = V{5y : j ï h} (h = 1,2,...) and n°°=15/ = 
{0},S|57 is similar to a direct summand Sj of Af, and N = 0°°=! Sj. Clearly, 
we can split %^j and Sj (if necessary) in such a way that Mk is a direct sum of 
a subfamily of {Sj}J=l and A^ is a direct sum of a subfamily of {Sj}J=l. It is 
easily seen that 94 includes 94, and therefore ek G fW' for all /: = 1,2,...; 
moreover, 

/ M ; P A / l Xk\(M'k 0 W 1 X A - 1 

V o /v;/ lo l A o JV;AO I / ' 

where Pk = X t ^ - M'kXk. 
It follows from our construction that 

where 

and fAt* is m e space of A^. In particular, 

vkfk = (Xk
f
f
k

k)e*l', 

whence it readily follows that the distance from the unit sphere of fA£ ' to 94 ' 
cannot exceed 

u/*ii/iiv/*ii = (i + iix*/*ii2r1/2. 
If sup^ ||X* / k || = °°, it is immediate that 94 ' and 9\i ' cannot be complementary. 

Assume that ||X*/*|| ^ C for all k ^ 1 (for some C > 0); then ||V*/*|I = 
1 + C, and 

S(Vkfk) = S(Xkfk) + ek + gke9L' 

satisfies 

HSCn/^H ^ C + 1 + 1/fc ^ C + 2. 

Since S{Xkfk) + ek G 94 C fW\ the distance from the unit sphere of 9f to 
fAf ' cannot exceed 

\\gk\\l\\S(Vkfk)\\ < (C + 2)/* — 0(* — oo). 
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Once again, we conclude that 94' and fA£' cannot be complementary sub-
spaces. 

(g) If 7, E E L {9i ) and E = E2 belongs to the double commutant of 7, then 
X = M + %C(= direct sum of the Banach spaces 94 and 1AO, where 94 = 
ran E and fA£ = ker£ are invariant under every operator A G L {9{ ) commuting 
with 7, that is, 94 and !A£ are hyperinvariant. It follows from [8, Proposition 
4.1] that if S e L 0 0 , and TX = XS and YT = SY(X, Y quasiaffinities), then 

94" = \l{RX94 : /?5 = SR} and !A£" = V{/?X^ : RS = 5/?} 

are hyperinvariant subspaces of S ; moreover, 94" and fA£" are quasicomple-
mentary, that is, M"n9£" = {0} and 5W" + fA£'; is dense in fy. 

In particular, if 7 ,5 , fW and 5^ are defined as in Example (f), and E is the 
Riesz idempotent corresponding to the clopen subset a(M) of a(T), then E = E2 

belongs to the double commutant of 7, and M" = M and 9t" = V{V*fA£*}>=i 
are the corresponding quasicomplementary hyperinvariant subspaces of S. (It 
readily follows from (f) that 9vt"and^C"are not complementary.) 

This example and the results of [15] might suggest that if 7 G L (JH ) has two 
quasicomplementary invariant subspaces, 94. and fA£, then 7 is quasisimilar to 

S = ( 7 | ^ ) ® ( 7 | f A O -

Nevertheless, this is utterly false: if 7 is the bilateral shift "multiplication by 
eie" on L2(T)(T is the unit circle), then 94 = H2(T) and 9i = L2 ("upperhalf-
circle") are quasicomplementary invariant subspaces of 7. But there is no quasi-
affinity Y such that YT = SY. Indeed YT = SY is equivalent to 7*7* = Y*S\ 
and this last equation implies that each point of the open unit disk is an eigen­
value of 7*, because all those points are eigenvalues of 5*, and Y* is injective. 
But 7* does not have any eigenvalue. 

In this example, fA£ is hyperinvariant, but 94 is not. A similar example can 
be constructed, where both 94 and fA£ are hyperinvariant subspaces. 

Let A2(D) denote the norm-closure of the polynomials in L2(D,dA), where D 
denotes the open unit disk and dA is the planar Lebesgue measure. A2(D) is the 
Bergman space of the disk, and the operator B = "multiplication by A" on A2(D) 
is the Bergman shift. In [21, Corollary 2.3], J. H. Shapiro proved that there is a 
function / in A2(D) such that if fW+(fW_) = {g E A2(D) : /(A) = 1 (= - 1 , 
resp.) => g(X) = 0}, then 94+ H 94- = {0}. 

Clearly, 94+ and 94- are invariant under B\ furthermore, since B is a unilateral 
weighted shift, the commutant of B, 

A\B) = {R € £(A2(D)) : RB = BR}, 

coincides with the weak closure of the polynomials in B [22], and therefore 94+ 
and 94- are actually hyperinvariant subspaces of B. 
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Observe that, for each polynomial p, 

P = \(f + VP ~ \(f ~ VP £M+= fWL, 

so that (M+ + 9A.-Y — A2(D), whence we infer that fW+ and fAf- are quasi-
complementary subspaces. 

It is easy to check that a(B) = D~, cre(B) = dD and À - B is a Fredholm 
operator of trivial kernel and index - 1 for all À G D (see, e.g., [16, Chapter 
3]); moreover, 

||£|| = 1 and <J(B\M+) = a(B\M-) = D . 

Since À - B is bounded below for all A in the unit disk, so are À - Z?|fW+ and 
À - #|fW_, so that these two operators are semi-Fredholm of negative index. 

Hence, for À = 0, we have 

ind£ = - 1 < - 2 ^ ind£|fM+ + ind B\M-

= ind(B\M+)®(B\M-). 

Therefore, B cannot be quasisimilar to (B\ft{+) ($(B\!M-). 
(h) We close this article with an example that "has been in the air" for several 

years. Define 

00 00 

T = 0 [ l / / i = d - l/n)qn], S = 0 [ l / / i + d/n)qn]; 
n=\ n=\ 

then T,S G L {9i ), where H = 0 " = 1 Cn, and T and S are quasisimilar because 
1/rt + (1 — 1/AI)^ is similar to \/n + l/«<7„ for each « = 1 , 2 , . . . (use [15]). 

It is not difficult to check that T is a contraction and 

a(T) = alre(T) = {X G C : |A| ^ 1}, 

so that, T is a (BCP) operator, and therefore reflexive [5]. On the other hand, 
S is compact, a(S) = {0} U {l/n}™=l does not disconnect the plane, and for 
m ^ 2 , 

S = (l/m + \/mqm) 0 Sm. 

Since gm is not reflexive and the invariant subspace lattice of S "splits" (that is, 
S 9vi (I'M if and only if M = 0 ^ = 1 Mn, where fTWj, is invariant under qn for 
all n = 1,2,...), S cannot be reflexive. 

https://doi.org/10.4153/CJM-1988-066-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-066-x


1456 DOMINGO A. HERRERO 

REFERENCES 

1. C. Apostol, Quasitriangularity in Hilbert space, Indiana Univ. Math. J. 22(1973), 817-825. 
2. Operators quasisimilar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104-

106. 
3. C. Apostol, R. G. Douglas and C. Foia§, Quasi-similarity models for nilpotent operators, Trans. 

Amer. Math. Soc. 224(1976), 407-415. 
4. C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert space 

operators, Volume II, Research Notes in Math. 102 (Pitman, Boston-London-Melbourne, 
1984). 

5. H. Bercovici, C. Foia§ and C. M. Pearcy, Dual algebras with applications to invariant subspaces 
and dilation theory, Regional Conference Series in Mathematics 56 (Amer. Math. Soc, 
Providence, R.I., 1985). 

6. I. Colojara and C. Foia§, Theory of generalized spectral operators (Gordon and Breach, New 
York, 1968). 

7. L. A. Fialkow, A note on quasisimilarity of operators, Acta Sci. Math. (Szeged) 39 (1977), 
67-85. 

8. A note on quasisimilarity. II, Pac. J. Math. 70 (1977), 151-162. 
9. Weighted shifts quasisimilar to quasinilpotent operators, Acta Sci. Math. (Szeged) 42 

(1980), 71-79. 
10. Quasisimilarity orbits and closures of similarity orbits of operators, J. Operator Theory 

14 (1985), 215-238. 
11. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers 

and indices of linear operators, Uspehi Mat. Nauk. SSSR 12 (1957), no. 2(74), 43-118 
(Russian); English Transi. Amer. Math. Soc. Transi. (2)13 (1960), 185-264. 

12. D. A. Herrero, On the spectra of the restrictions of an operator, Trans. Amer. Math. Soc. 233 
(1977), 45-58. 

13. Quasisimilarity does not preserve the hyperlattice, Proc. Amer. Math. Soc. 65 (1978), 
80-84. 

14. On multicyclic operators, Integral Equations and Operator Theory 1 (1978), 57-102. 
15. Quasisimilar operators with different spectra, Acta Sci. Math. (Szeged) 41 (1979), 

101-118. 
16. Approximation of Hilbert space operators, Volume I, Research Notes in Math. 72, 

(Pitman, Boston-London-Melbourne, 1982). 
17. The Fredholm structure of an n-multicyclic operator, Indiana Univ. Math. J. 36 (1987), 

549-566. 
18. Most quasitriangular operators are triangular, most biquasitriangular operators are 

bitriangular, J. Operator Theory 20 (1988), 251-267. 
19. T. B. Hoover, Quasisimilarity of operators, Illinois J. Math. 16 (1972), 672-686. 
20. T. Kato, Perturbation theory for linear operators (Springer-Verlag, New York, 1966). 
21. J. H. Shapiro, Zeros of functions in weighted Bergman spaces, Michigan Math. J. 24 (1977), 

243-256. 
22. A. L. Shields, Weighted shift operators and analytic function theory, in Math. Surveys 13 (Amer. 

Math. Soc, Providence, R.I., 1974), 49-128. 
23. J. G. Stampfli, Quasisimilarity of operators, Proc. R. Ir. Acad. 81 A (1981), 109-119. 
24. B. Sz.-Nagy and C. Foia§, Propriétés des fonctions caractéristiques, modèles triangulaires et 

une classification des contractions, C.R. Acad. Sci. Paris 258 (1963), 3413-3415. 
25. Harmonie analysis of operators on Hilbert space (North-Holland, Amsterdam, 1970). 
26. Modèles de Jordan pour une class d'operateurs de classe Co, Acta Sci. Math (Szeged) 

31 (1970), 287-296. 

https://doi.org/10.4153/CJM-1988-066-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-066-x


QUASISIMILAR OPERATORS 1457 

27. L. R. Williams, Quasisimilar operators have overlapping essential spectra, preprint (1976). 
28. Equality of essential spectra of quasisimilar quasinormal operators, J. Operator Theory 

3 (1980), 57-69. 

Arizona State University, 
Temple, Arizona 

https://doi.org/10.4153/CJM-1988-066-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-066-x

