Poles and Polars of a Conic.

By Professor J. Jack.
(Read 8th November 1907.)
(Abstract.)

1. Being given a fixed line (the directrix) and two fixed points $\mathrm{S}, 8$ (Fig. 15), then, if z and Z are two points on the directrix, the lines $z p$ and ZP are said to correspond if $z p$ be parallel to SZ and $s z$ be parallel to ZP.

Theorem 1. If pairs of corresponding lines meet in p and P respectively, then sp is parallel to $S P$; and, if any line goes through p, the corresponding line goes through P.

Let $p z, p z^{\prime}$ correspond to PZ, PZ, then $s z$ and $s z^{\prime}$ are parallel to PZ, and PZ'. Hence

$$
\begin{aligned}
\frac{\mathrm{PZ}}{\mathrm{ZZ}}=\frac{s z}{z z^{\prime}} ; \text { and similarly } \frac{\mathrm{SZ}}{\mathrm{ZZ}}=\frac{p z}{z Z^{\prime}} \\
\therefore \quad \frac{\mathrm{PZ}}{\mathrm{ZS}}=\frac{s z}{z \rho} \text { and } \mathrm{PZ} \mathrm{Z}=\widehat{s z p} .
\end{aligned}
$$

Hence $\Delta \mathrm{PZS}$ is similar to $\Delta s z p$ and PS^{\prime} is parallel to $s p$; and clearly, if p is on $z p, \mathrm{P}$ is on the corresponding line ZP .

Theorem 2. If a pair of points p, q, correspond to a pair P, Q, and if $p q$ and $P Q$ meet the directrix in z and Z, then $P Q$ is parallel to $s z$ and $p q$ is parallel to $S Z$.

Draw SZ parallel to $z p$, and through Z a line parallel to $z z$. Then \mathbf{P} must lie on this line, \mathbf{Q} therefore also lies on it, and therefore PQ is parallel to $8 z$; and so on.

Theorem 3. If the point P moves in a conic with S as focus and the given line as directrix, p traces out a circle.

For, making PZ perpendicular to the directrix for convenience simply, we have

$$
\frac{\mathrm{SP}}{\overline{\mathrm{PZ}}}=e=\frac{s p}{s z} \therefore s p=e . s z=\text { constant } .
$$

The circle is an eccentric circle of the conic.
2. Parallel lines on the one system correspond to lines meeting on the directrix in the other. Hence, propositions like the following can be proved.

If pairs of points be taken on three concurrent lines, the three points of intersection of lines joining pairs of corresponding points are collinear.

For the three concurrent lines can be transformed into three parallel lines and the pairs of points into pairs of points on parallel lines, a particular case in which the theorem is easily proved.

Tangents to a curve in one system correspond to tangents in the other, and chords of contact to chords of contact. Whence the usual theorems regarding tangents to a conic are easily proved.

The above transformation is easily seen to be a particular case of the projective transformation, its analytical representation being of the form

$$
x=k / \mathrm{X}, y=-l \mathrm{Y} / \mathrm{X} .
$$

3. The following is an example of the application of the method in the proof of theorems regarding poles and polars (Fig. 16).

If $Q Q^{\prime}$, a chord of a conic with S as focus and the given line as directrix, passes through a fixed point $O, P Q$ and $P Q^{\prime}$, the tangents at Q and Q^{\prime} meet in P, which lies on a fixed straight line.

Let QQ^{\prime} meet the directrix in Z. Take any point s and draw $s z$ parallel to $\mathrm{QZ}, z q$ parallel to $S Z, s q$ parallel to SQ and $s q^{\prime}$ parallel SQ'. Then q and q^{\prime} are on the eccentric circle of 8 . Draw so parallel to SO and let $k p$, the polar of o, cut the directrix in k. Finally draw $s p$ parallel to SP.

Since $s p$ bisects $q s q^{\prime}$, the tangents at q and q^{\prime} meet in $s p$, and, since $k p$ is the polar of o, the tangents meet on $k p$. Therefore $p q$ and $p q^{\prime}$ are tangent to the eccentric circle, and they correspond to the lines $\mathrm{PQ}, \mathrm{PQ}^{\prime}$. Hence p and k correspond to P and K and therefore KP is parallel to sk. Now K is a fixed point and KP is parallel to a fixed line. Hence the proposition is proved.

All the theorems regarding poles and polars to a conic may be proved in a similar manner.

