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ON FREE SEMIGROUPS AND RAMSEY NUMBERS 

BY 
GERARD LALLEMENT 

ABSTRACT. If the length of a word w in a free semigroup F(X) 
satisfies l(w)>pnk, then for every partition of F(X) into k classes, 
w has n consecutive factors of length >p in the same class. As a 
consequence, the diagonal Ramsey numbers R(pn+1, p +1 , k) have 
1 +pnk as lower bound. 

1. The free semigroup F(X) on the alphabet Z i s the set of all non-empty words 
in the letters of X with the usual concatenation operation. The length of a word 
w e F(X), denoted by l(w), is the total number of occurrences of letters of X in w. 
A factor (resp. left, right factor) of a word w is a word w' such that w=uw'v (resp. 
w=w'v9 w=uw') for some u, v e F(X). Congruences on F(X) of finite index are of 
interest in language theory, especially in the study of recognizable subsets of F{X) 
(also called regular events, see e.g. [5] Theorem 2.1.5). Herein, we are concerned 
with partitions of F(X) into a finite number of classes and we prove the following 
results. 

THEOREM. Let Av A2,..., Ak be a partition of the free semigroup F(X) into k 
classes. 

(a) For every integer n9 there exists a smallest integer rk(n9p) such that every 
word w G F(X) of length l(w)>rk(n, p) has n consecutive factors of length>p in a 
single class At of the partition. 

(b) rk(n9p)=pnk. 
For /?=l , this theorem is established in [11], and in sections 2 and 3 we present 

an adaptation of the proof in [11] to the case of an arbitrary/?. The connection with 
a theorem of Van der Waerden are explained in [9]. 

Part (a) of the Theorem is a direct consequence of a theorem of Ramsey: 
Given a set E and a partition 0 of the set Pr(E) of all r-subsets of E into k classes, 
then for every integer q there is a smallest integer R(q, r, k) such that card E> 
R(q, r9 k) implies that there is a ^-subset F of E such that Pr(F) is contained in a 
single class mod 6. In the notation of [10], p. 39, we have 

R(q9 r, fe) = N(ql9 q29. . . , qk9 r) with qx = q2 = • • • = qk = q 

and the numbers R(q9 r9 k) appear as the "diagonal" Ramsey numbers. The 
theorem above has the following 

COROLLARY. 1 +pnk<!R(pn+ \9p+\9k). 
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REMARKS. For the case /?=1, the inequality l+nk<R(n+l, 2, k) appears in 
[4] (Proposition 3.5.3 and Remarque 4.2a) as a consequence of a Ramsey type 
theorem on partitions of P2(E) respecting a linear ordering of E. It has been 
improved to 

eîri2±^R(„+1,2>t) 

(see [6], [8]). For R(n+l, 2, 2) the lower bound l+n2 is better than (V2)n+1, [3], 
up to «=15, while other methods (see e.g. [1], [7]) produce better lower bounds in 
particular cases. For example 

! ( P+l ) ~ 1 

R(pn+19 p+l9 k) > ((pn + l)\yn+1 k *n+1 

proved in [1] (Corollary 2B), gives a better lower bound only in case k is small 
with respect to n and p. 

2. Proof of part (a) and the Corollary. Let w=x±x2... xt eF(X). To any 
sequence ofp+l integers i0, il9... , iv such that 0 < / 0 < / ! < • • • iP<t we associate 
the word 

b(i09 il9. . . , iP) = \Xi0+i ' ' ' *ix I Xii+i ' ' * xi2\ * ' \xi9_x+i9 • • • > x* J 

in F(X U { | }) and we call b(i0, il9... , iv) ap-block of w. Letting E= { 0 , 1 , 2 , . . . , 
/(w)}, there is a 1-1 correspondence between the set of all (/?+l)-subsets of E 
and the set of all/?-blocks of w. The partition Q={AX, A2,... , Ak} of F(X) induces 
a partition u of the set of all p-blocks of w defined as follows 

b(i0, h, • . •, Q TT KJoJu • • • >h)o(\+i * * ' xip)
 6 (*i0+i " * * xip) 

In turn, TT defines a partition (also denoted TT) of the set of all (/?+l)-subsets of 
E which has at most k classes. By Ramsey's theorem if card £ = l + / ( w ) > 
R(pn+l,p+l, k) there is a (pn+l)-subset F of E having all its (p+l)-subsets in 
a single class of TT. Let F={/0 , ll9... , lPn} with / i < / m . Thep-blocks of w 

Kh*> U i » • • • > Wi>») 0 < k <: (n-l) 

are all in the same class of TT. It follows that the n consecutive factors of w of the 
type 

xh, ' ' ' * w ' ' ' xh*+i)v 0 ;< fc < ( n - l ) 

are all of length >p and contained in the same class of 0. This proves part (a) of 

the theorem and also rk(n,p)<R(pn+l,p+l, k)—\. 

3. Proof of part (b). To every word w e F(X) we associate a £-tuple of integers 
(a^w)), z = l , 2, . . . , k where a^w) is the largest integer m such that a right factor 
of w consists of m consecutive factors of length >p in Av Let [i:F(X)-+Nk be the 
mapping p(w)=(ai(w)). 
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Suppose that w=uv with l(v)>p and that //(w)=^(w). Then for every i= 
1, 2 , . . . , & we have w=w ,̂'tf where w" is a product of a (u)=a (w) words of 
length >p all contained in <4i# In particular if v e A4 , then w = u\ u" v and w has 
a right factor M J v having a{ (w) + l consecutive factors of length >p all contained 
in At . This contradicts the definition of a{ (w). Therefore //(W)T^//(W). Considering 
two factorizations of w, say w=u1vl9 w=u2v2 with l{u^=kip9 l(v^)>p for z=l, 2 
and k1>k2 we have, by Theorem 9.6 [2], u1=u2v with l(v)>p. The same argument 
as above shows that ^ ( ^ ^ ( ^ . T h u s all the factorizations w=uv with l(u)=kp 
(k>l) and l(v)>p give rise to words w that are mapped onto distinct points of 
Nk by [A. If l(w)>pnk

9 /Lt(w) and the //(w)'s from the various factorizations of w 
constitute a set of nk distinct points in Nk. Since there are only nk points in Nk having 
all their coordinates <n and since ju(w) or /z(u)^(09 0 , . . . , 0) for any left factor u 
of w, it follows that w has n consecutive factors of length >p contained in an 
A{ for some f=l, 2 , . . . , k. Therefore rk(n, p)<pnk. 

To show that rk(n9p)^pnk we construct counterexamples by induction on k. 
Define in F(xl9 x29... , xp) 

Wi(n, p) = OiX2 * * ' ^ ) n _ 1 ^ i ^ 2 ' " ' x*-i. 

For k>\ define wk(n9p) in F(xl9 x29... , ̂ +fc_i) by 

w*(n, p) = [^k-i(n9 p)xJ}+k_1]
n-1wk_1(n9 p) 

By induction on k one checks that l(wk(n9 p))=pnk—l. On .Ffo, x2, • • • > ^+&-i) 
we define the following partition into k classes 

AX = ^A*l5 X2i . . . , Xy) 

Ai = F(xl9 x29.. . , x^.O-FOCi, x2 , . . . , xv+i_2) for 1 < i <; fc 

Then, by induction on A:, one shows easily that wk(n9p) has at most n— 1 con­
secutive factors of length >p in a single <4f. This completes the proof of rk(n9p)= 
pnk. 
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