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ABSTRACT. The accumulation of rime ice on structures, 
due to the impact and freezing of small water droplets, has 
been modelled as a stochastic process. Individual droplets are 
introduced into the flow field about the structure at a 
random position . Their trajectories are then calculated to 
determine the position of impact on the structure, or on 
previously impacted droplets . By assuming that the droplets 
maintain their shape on impact, the modelled accretion is 
gradually built up, one droplet at a time. 

In the present paper, attention has been limited to a 
circular cylinder as the collecting structure, and it has been 
assumed that the flow field and the ice accumulation are 
strictly two-dimensional. With these assumptions, the 
influence of the droplet/ cylinder diameter ratio and of the 
air speed upon the resulting predictions has been 
investigated . The main feature of interest in the model 
prediction is the development, near the edges of the 
accumulation, of discrete structures called "rime feathers". 
The mechanism for the growth of these rime feathers is 
described , and a comparison is made between the 
characteristics of the predicted structures and of some 
natural rime feathers grown in an icing wind tunnel. 

INTRODUCTION 

Atmospheric Icmg is the term used to describe the 
accumulation of ice on structures , due to the impact and 
freezing of cloud or fog droplets. Atmospheric rime icing, 
in particular, describes the icing process under conditions of 
air temperature, air speed, and water-mass concentration 
(liquid - water content), such that all the impinging water 
freezes on impact. Two distinguishing characteristics of rime 
ice accretions are: first, the development near the edges of 
the accretion of discrete elements called "rime feathers", 
such as those seen in the ice accretion on a wedge in 
Figure I , or those described by Personne and others (1984); 
and secondly, a variation of ice density with position in the 
accretion . Current icing models like those of Ackley and 
Templeton (1979), Cansdale and Gent (1983), Lozowski and 
others (1983[a]), and Makkonen and Stallabrass (1984) cannot 
describe the growth of rime feathers , nor can they directly 
predict the density vanatlOn within the accretion. The 
difficulty is that, in each of these models, the effects of 
droplet impacts are averaged over intervals of time and 
area. In those parts of the accretion where the frequency of 
droplet impacts is high this averaging approach is 
appropriate. However, in regions near the edges of the 
accretion where the frequency of impacts is relatively low 
the averaging approach fails. In such regions, one might 
suspect that a stochastic modelling approach would be more 
suitable . Lozowski and others (1983[b]) , for example, have 
demonstrated that a two-dimensional, Monte Carlo 
simulation can successfully predict some of the main 
features of rime-feather growth. As an alternative, then, to 
the approach taken in current models, we have chosen to 
model the accretion growth as a stochastic process, by 
extending Lozowski and others' idea to describe the growth 
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Fig. 1. Photographs of a 30 min rime-ice accretion on a 45 ° 
wedge. a. Silhouette of the accretion; b. Frontal view. Air 
speed: 11 m S- 1; air temperature: -9°C; liquid-water 
content: 1.1 g m -3 ; droplet median-volume diameter: 20/Lm. 

of the entire accretion. In this paper we shall describe this 
technique and compare its predictions with some new 
experimental results. 

DESCRIPTION OF THE MODEL 

The physical situation to be modelled is summarized 
schematically in two-dimensional form in Figure 2, with a 
circular cylinder as the collector. The collector is exposed to 
a cold air stream laden with supercooled water droplets . As 
the air stream carries the droplets past the body, some of 
the droplets collide with the object, freeze, and adhere to 
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Fig. 2. A schematic drawing illustrating the physical 
situation that is modelled. 

the surface. In existing models , the effects of the separate 
droplet impacts are integrated in area and time. The 
approach here, by con trast, is to consider each of the 
droplet impacts separately, and to construct the ice accretion 
one droplet at a time, assuming that the droplets freeze as 
spheres. 

Although the method to be described is applicable to a 
fully three-dimensional case, attention here is limited to two 
dimensions. Thus, the ice collector, the flow field , and the 
structure formed by the freezing droplets are all assumed to 
be two-dimenaional. Attention has been limited to two 
dimensions initially, because of the great reduction in 
computational effort , and the ease with which the two­
dimensional results can be presented and interpreted. 

The approach is quite simple in concept, but rather 
difficult to put into practice, because of the large number 
of droplets that must be considered. It is a two-dimensional 
computational analogue of the ping-pong ball model 
constructed by Buser and Aufdermaur (l973) . The procedure 
is first to choose randomly a droplet diameter from the 
known droplet-size distribution. Then, an initial starting 
ordinate (y*) is also chosen randomly from a uniform 
spatial distribution. The initial abscissa (x*) is fixed , 
however, and specified as ten body lengths up-stream. This 
coordinate is specified rather than chosen randomly, because 
it is necessary that the droplet be close to mechanical 
equilibrium with the air stream at its initial position. The 
droplet trajectory is now calculated in the potential flow 
around the target, using the equations of motion derived by 
Langmuir and Blodgett (1946), with the steady droplet-drag 
coefficients of Beard and Pruppacher (l969). The point of 
contact with the collector, or with a previously impacted 
droplet , can then be determined (see Fig. 2). Assuming that 
the droplet maintains a circular shape on impact and 
freezing, the accretion can be constructed, one droplet at a 
time. It is important to note that, in the present two­
dimensional version of this model, the droplet centers are 
all assumed to lie in the plane of the simulation. 
Consequently, they are represented in the model by a circle 
of the same diameter as the droplet. 

In the results presented here, we have restricted the 
general model described above by limiting the collector 
geometry to a circular cylinder. In addition, instead of 
dealing with a droplet-size spectrum, it has been assumed 
that the spray is mono-disperse. Finally, the extensi ve 
calculations associated with the determination of the droplet 
trajectory have been avoided by assuming a straight-line 
trajectory. Although the straight-line trajectory assumption is 
crude, it will be seen that the improvements made by 
including the trajectory curvature are not always worth the 
additional computational effort. A few of the simulations 
have , however, been made with the full trajectory 
calculations, and these will also be presented for comparison 
purposes. 

With these simplifications, the 
straight-line model are the ratio of 
the cylinder diameter, and the 
introduced. 

RIME-FEA THER GROWTH 

only variables for the 
the droplet diameter to 

number of droplets 

The major features of the model predictions can be 
observed by considering the examples presented in Figure 3. 

x 
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Fig. 3. a. An example of the straight-line model prediction 
for a cylinder/droplet diameter ratio of 508. Ten thousand 
droplets were illlroduced to produce this simulation. 
h. An example of the full trajectory model prediction for 
a cylinder/ diameter ratio of 508. An air speed of 5 m S- 1 

was used and to 000 droplets were introduced to produce 
this simulation . 

In order to produce these examples, 10000 droplets were 
used with a cylinder/ droplet diameter ratio of 508 : I. This 
corresponds, for example, to 50 /Lm droplets collected by a 
25.4 mm diameter cylinder. In Figure 3a, straight-line 
trajectories were used, whereas in Figure 3 b the full 
trajectory calculations were carried out with an air speed of 
5 m S-1, and the other parameters as given above. 

Even though the assumptions are rather limiting, the 
predictions are promising for several reasons. First, the 
simulations produce distinct structures at the edge of the 
accretion, bearing some resemblance to those produced by 
diffusion - limited aggregation (Sander, 1987). In the present 
case, however, these structures have a preferred growth 
direction . If the silhouette view in Figure I is compared 
with either of the predictions in Figure 3, it can be seen 
that in both the predicted and actual accretions the 
structures are separated by air gaps, start from a definite 
point on the surface, and grow in a generally up-stream 
direction. Although the two-dimensional predictions are not 
directly comparable with the full three-dimensional 
structures, these similarities suggest that the model does 
provide a reasonable description of the mechanism for rime­
feather growth. 

The mechanism for the formation of the rime feathers 
in the model simulations is "shadowing". As is illustrated in 
Figure 4, when a droplet hits the surface of the cylinder or 
a previously impacted droplet, the surface immediately 
down-stream is shaded from further collisions. This effect 
occurs over the entire surface but the shading is most pro­
nounced where the angle, tIJ, between the droplet trajectory 
at impact and the surface normal is large. This occurs at 
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Fig. 4. A schematic drawing to illustrate the variation in the 
length 01 the shaded surface interval with position on the 
collector surface for straight-line trajectories . 

the edges of accretion. The shadowing, at large angles , 
produces an open structure due to preferential growth of 
the stochastically favoured rime feathers. As can be seen in 
the simulations of Figure 3, several structures have started 
to grow at the edge of the accretion but shadowing by an 
up-stream structure, which has by chance grown faster, has 
prevented these structures from growing any further. 

Moving from the edge of the accumulation towards the 
stagnation region, it can be seen from Figure 4 that the 
area shaded becomes smaller as the angle I/J decreases. A 
result of this reduction in shadowing is a closer packing 
than occurs at the edge of the accretion and the disappear­
ance of discrete rime feathers. At the stagnation line itself, 
the angle between the surface normal and the trajectory is 
zero, and here shadowing is a minimum and there are no 
rime feathers. 

Although the straight-line and curved-trajectory model 
predictions exhibit the same general features described 
above, there are some differences. These are best illustrated 
by examining again the predictions of Figure 3. The most 
obvious difference between the linear and curved-trajectory 
models is the extent of the accretion. In the straight-line 
prediction, accretion occurs over almost the entire up-stream 
surface of the cylinder, whereas in the prediction of the 
curved-trajectory model the lateral extent of the accretion is 
much less. A second difference is the predicted growth 
direction of the rime feathers. In the particular example 
shown in Figure 3, the growth angle relative to the free­
stream direction is positive for the straight-line prediction 
but negative for the curved-trajectory prediction. In order 
to examine these two differences, and the predictions of the 
models in general, a series of simulations was carried out, 
with both the straight-line and curved-trajectory models. 
These were also compared with experimental simulations 
carried out in the University of Alberta FROST tunnel 
(Gates, 1981). The conditions and results of these simu­
lations are summarized and presented in Tables I and 1I. 

The differences in the extent of the accretion (as 
typified by the maximum impingement angle) and in the 
growth direction can be explained by exammmg the 
influence of droplet-trajectory curvature on the droplet­
cylinder collisions and on rime-feather growth. Since the 
extent of the accumulations can be explained solely in terms 
of the effects of trajectory curvature, we will examine this 
factor first. 

Figure 5a shows that, when the trajectories are straight 
lines, every point on the up-stream face of the cylinder is 
exposed to droplet collision at least initially. This situation 
will tend to occur in Nature when the drops are large, the 
cylinder small, and the air speed high. Normally, however, 
the droplets tend to be deflected away from the cylinder by 
the flow field. The magnitude of this deflection depends 
upon the droplet and cylinder diameters, and the air speed . 
As a consequence, there is some point on the surface 
beyond which no droplets will impact, as illustrated in 
Figure 5b. This position, as measured by the angle from the 
stagnation line, is called the maximum impingement angle 
(9max) ' For the nine simulations summarized in Table I, the 
predicted maximum impingement angle from the curved-

TABLE I. MAXIMUM IMPINGEMENT ANGLE. CYLINDER DIAMETER = 2.54 cm 

Maximum impingement angle 
Case Air Droplet Inertia Straight Curved Ex periment 

!lumber speed diameter parameter line 
m S- 1 jLm 

I 10 18 0.9 90 45 62 
2 10 27 1.9 90 60 60 
3 10 37 3.6 90 69 64 
4 20 17 1.6 90 55 64 
5 20 30 4.8 90 72 72 
6 20 36 6.9 90 75 72 
7 30 18 2.5 90 63 60 
8 30 27 5.9 90 73 68 
9 30 32 8.3 90 77 75 

TABLE 1I. RIME-FEATHER GROWTH DIRECTION 

Growth angle Growth angle . a a 
Case Inertia Straight Curved Experiment 

!lumber parameter line 

I 0.9 16 -27 8 17 
2 1.9 25 -5 8 25 
3 3.6 23 -I 8 20 
4 1.6 15 -20 -3 15 
5 4.8 25 3 6 20 
6 6.9 23 13 II 26 
7 2.5 15 -10 -7 17 
8 5.9 25 14 6 29 
9 8.3 20 9 II 21 
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(a) straight-line trajectory 

(b) curved trajectory 

Fig. 5. The maximum impingement angle for the 
straight-line and curved-trajectory versions of the model. 

trajectory model is presented in column 6. For all of these 
cases, the angle is substantially less than the 90 ° maximum 
impingement angle for the straight-line trajectory model. 

The magnitude of the deflection of the droplet away 
from a straight trajectory is related to the inertia parameter, 
K (Langmuir and Blodgett, 1946). This parameter arises 
from the non-dimensionalization of the equations of motion 
for a droplet. It is defined as 

K 

where Pd is droplet mass density, Dd is droplet diameter, U 
is free-stream wind speed, jL is dynamic viscosity of air, 
and Dc is cylinder diameter. 

A large value of the inertia parameter indicates that 
the droplet trajectory cannot easily be changed, and hence 
that the droplet will tend to follow a straight-line 
trajectory. The resulting collision efficiency will be close to 
unity. Similarly, if the inertia parameter is small, the drop­
let will tend to follow the flow stream lines about the 
cylinder and the collision efficiency will be reduced. In 
column 4 of Table I, the value of the inertia parameter for 
each of the nine cases is presented . The larger the value of 
the inertia parameter, the larger is the value of the maxi ­
mum impingement angle. In the limiting case of a very 
large inertia parameter, the curved and straight-line versions 
of the model will predict the same maximum impingement 
angle. 

The second difference between the straight-line and 
curved-trajectory model predictions is the growth direction 
of the rime feathers. To quantify this difference , an angle 
'" is defined as that between the growth direction of a rime 
feather at the edge of the accretion and the free-stream 
wind direction . The model results for '" are summarized in 
Table H. The straight-line trajectory model predicts that the 
growth direction, for the range of variables in the table , is 
always positive and varies between 15° and 25° . In the 
curved-trajectory model, the predicted growth angles are 
always less than those of the straight-line model, and in 
some cases (X is negative. In order to explain these differ­
ences in the predicted rime-feather growth directions, it is 
necessary to examine how droplet-trajectory curvature 
influences the position of droplet-droplet impact. 

Figure 6 illustrates the influence of increasing tra­
jectory curvature on the impact position of an incoming 
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Fig . 6. The influence of droplet-trajectory curvature on the 
impact position of all incoming droplet whose tra jectory 
passes through the cell/re of a previously impacted 
droplet . 

droplet, whose trajectory passes through the centre of a 
previously impacted droplet. As the trajectory curvature is 
increased, the point of droplet-droplet contact is rotated 
clockwise . It could be expected, then , that the direction of 
growth of the rime feather would also be rotated in this 
direction . This suggests that, instead of comparing growth 
directions with the free-stream wind direction, they should 
be compared with the trajectory tangent at impact. In view 
of this idea, we define the angle ",' to be that between the 
rime-feather growth direction and the trajectory tangent at 
impact. The (x' values are summarized in column 6 of 
Table 11. In terms of (X', there is reasonable agreement 
between the growth directions for the curved and straight­
line trajectory models (columns 3 and 6) . This observation 
suggests that the rime-feather growth direction may be 
closely related to the angle between the droplet trajectory at 
impact and the surface normal, .p. 

For large values of K, the droplet trajectory approaches 
a straight line and the two model predictions differ by only 
a small amount , as illustrated in Table 11 and in Figure 6. 
For situations in which K is small , it is expected that the 
rime feathers will grow inward towards the stagnation line 
(a negative growth angle) . As K increases, the growth angle 
will rotate towards positive values. 

In the above discussion, we have examined how the 
two model predictions compare with each other but not 
whether the predictions are realistic. In order to obtain 
some information on the accuracy of the predictions, a 
series of nine experiments was carried out, in which rime­
ice feathers were grown on a 2.54 cm diameter cylinder 
under the conditions summarized in Table I. The tests were 
not entirely successful, inasmuch as not all of the ice 
accretions were completely rime. Nonetheless, there were 
still recognizable preferred growth directions in the ice at 
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the edge of each accretion. These were measured and are 
summarized in column 5 of Table 11. The angles in this 
column are those between the growth direction and the 
wind direction, and should be compared with columns 3 
and 4 in this table. 

The measured values of the growth direction generally 
lie between the predictions of the straight-line and the 
curved-trajectory models. One might expect that the values 
should be closer to those of the curved-trajectory model, 
since the inertia parameters are small. However, this is not 
always the case. It is believed that the discrepancy is due 
to characterizing the droplet-size spectrum with a single­
droplet size - the median-volume diameter. The magnitude 
of the median-volume diameter is influenced by all droplet 
diameters in the spectrum, whereas only the largest droplets 
in the spectrum are expected to contribute to the growth of 
the rime feathers. Using the median-volume diameter in the 
trajectory calculations results in higher droplet curvature, 
and hence a lower growth angle than using a diameter 
representative of the largest drops in the spectrum. 

SUMMARY AND CONCLUSION 

In this paper, we have described a stochastic model for 
the prediction of the accretion of ice on a structure due to 
freezing spray under dry icing conditions. In particular, 
attention has been focussed on the predictions of a two­
dimensional model of ice accretion on a right-circular 
cylinder. 

The stochastic model explains qualitatively the 
mechanism by which rime feathers are initiated and grow, 
i.e. down-stream shadowing coupled with competition among 
adjacent rime feathers . The version of the model employing 
the full trajectory calculations provides a more accurate 
estimate of the rime-feather growth direction than does the 
straight-line version. However, because the larger drops in 
an actual droplet spectrum are responsible for the growth of 
the feathers, use of the median-volume diameter to 
characterize the size spectrum is not appropriate. Probably, 
the best approach to pursue in future would be to 
incorporate the actual droplet spectrum into the model. 
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