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Acoustic instability prediction of the flow
through a circular aperture in a thick plate via an
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We investigate the mechanisms leading to acoustic whistling for a jet passing through
a circular hole in a thick plate connecting two domains. Two generic situations are
considered. In the first one, the upstream domain is a closed cavity while the downstream
domain is open, leading to a class of conditionally unstable modes. In this case, the
instability source lies in the recirculation region within the thickness of the plate, but
coupling with a conveniently tuned resonator is needed to select the conditional instability
range. In the second situation, the two regions, upstream and downstream of the hole,
are considered as open, leading to a class of hydrodynamic modes where instability of
the recirculation region is sufficient to generate self-oscillations without the need of any
resonator. A matched asymptotic model, valid in the low Mach limit, is used to derive a
global impedance of the system, combining the impedance of the hole and the modelled
impedances of the upstream and downstream domains. It is shown that the knowledge
of this global impedance along the real ω-axis provides an instability criterion and a
prediction of the eigenvalues of the full system. Validations against the solutions of the
eigenvalue problem obtained from the linearized fully compressible formulation confirm
the accuracy of the approach. Then, it is subsequently used to characterise the range of
existence of instabilities as a function of the Reynolds number, the Mach number, the
aspect ratio of the hole and (for the cavity configuration) the dimensionless volume of the
cavity.
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1. Introduction

Plates with orifices are very common elements adopted in numerous industrial
applications, like, for example, silencers, fuel injectors or wind instruments.
Under the effect of a harmonic incident acoustic wave, the vortex sheet formed at the
lip of the aperture becomes periodically modulated and acts as an amplifier due to a
Kelvin–Helmholtz instability, reorganising the jet into an arrangement of vortex rings.
The generation of vorticity is an efficient mechanism to dissipate acoustic energy, as a
consequence, the use of multiple perforated plates traversed by a mean flow is widely
employed as a sound attenuator device for industrial applications, such as gas turbine
combustion systems. These systems may suffer from thermoacoustic instabilities because
of the potential for unsteady heat release, which can damage the combustion system
itself. The flow through a perforated liner with bias flow has been studied experimentally
by Heuwinkel, Enghardt & Rohle (2007) while Hughes & Dowling (1990), Eldredge
& Dowling (2003) and Rupp, Carrotte & Macquisten (2012) have conducted both
experimental and theoretical investigations. There are, however, situations where the flow
through a hole can lead to the opposite effect, namely spontaneous self-oscillations and
sound emissions. A particularly favourable situation with respect to sound emission is
the flow through two successive holes, as encountered, for instance, in bird calls and
tea kettle whistles (Henrywood & Agarwal 2013; Longobardi et al. 2021). Although less
common, the flow through a single hole can also lead to powerful sound emissions. As
in other related examples of aeroacoustic resonators, (including, for instance, the ‘edge
tone’ encountered in the mouthpiece of a recorder or organ pipe), two situations may
occur. In the first one, the frequency of the whistling may be directly selected by that of an
acoustic resonator located in the vicinity of the hole. This is, for instance, the case for the
so-called ‘pipe tone’ (or pfeifenton), corresponding to a long cylindrical pipe terminated
by an aperture of smaller section. In this configuration, which was intensively investigated
experimentally by Anderson (1954), the frequency of the whistling directly corresponds
to one of the resonance frequencies of the pipe. In the second one, the frequency may
be selected by the flow itself regardless of the existence of any acoustic resonator. This
situation was noted by Bouasse (1929), who observed that the flow through a hole in a thick
plate separating two large chambers leads to a whistling with a frequency proportional to
the thickness of the hole. This observation was rediscovered by Jing & Sun (2000) and Su
et al. (2015) who, in an effort to improve the performance of perforated plates as sound
dampers, reported that, in some circumstances, these devices could lead to self-sustained
whistling. In music acoustics one observes the interaction between the two type of
mechanisms, cf. Coltman (1976). In the case of the flue instrument, the so-called edge-tone
oscillation can coexist with the pipe tone and under some specific circumstances, as, for
example, during the attack transients, it may be dominant, cf. Castellengo (1999). Verge,
Hirschberg & Causse (1997) proposed a lumped model for flue instruments where these
two feedback loops can coexist and interfere: a hydrodynamic loop responsible for the
edge tone and a cavity loop responsible for the pipe tone. On the contrary, in the case of
the flow past an aperture both mechanisms are associated with the same feedback loop,
which is modified by placing a cavity upstream of the perforation. These two situations
respectively correspond to the so-called class III and class II categories of aeroacoustic
resonators, following the classification of Chanaud (1970).

Recently, Fabre et al. (2019) used the linearized Navier–Stokes equations (LNSE)
approach to investigate the unsteady flow through a circular aperture in a thin plate
subjected to harmonic forcing. A novel non-reflecting boundary condition called the
complex mapping method (Sierra, Fabre & Citro 2020) was introduced to overcome
the numerical difficulties created by the strong spatial amplification of the fluctuations.
943 A48-2
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Acoustic instability prediction via an impedance criterion

The approach allows computing in a rigorous way the impedance of the hole, namely
the ratio between unsteady pressure difference across the orifice and unsteady volume
flow rate through the orifice, a quantity which can be directly introduced in more
elaborate acoustical models. In that study, the authors confirmed that the LNSE can be
effectively adopted to predict the impedance even in cases where the spatial evolution
of the perturbations is rapidly dominated by nonlinear effects. The same approach was
subsequently used by Fabre et al. (2020) for the case of a hole through a thick plate. An
important result is that, for sufficiently thick holes, the impedance can acquire a negative
real part in some ranges of forcing frequencies, indicating that energy can be extracted
from the flow, thus providing a source for self-oscillations. Investigation of the structural
sensitivity also allowed the authors to demonstrate that the hydrodynamic instability of
the shear layer separating the jet from the recirculation bubble is the driving motor for
the observed phenomenon. This corresponds to the same instability as in the jet of a
flue instrument or the shear layer for a grazing flow along a cavity, cf. Dai & Aurégan
(2016, 2018). In this flow configuration, the sharpness of the aperture corner creates a
recirculation bubble that enhances the instability mechanism.

The response of a system to a harmonic forcing is naturally studied via a transfer
function: here it corresponds to the concept of impedance, which can also be used to
obtain important information regarding the stability properties of a system. First, plotting
the impedance in the form of Nyquist diagrams (namely a parametric representation of
Z(ω) in the complex plane for real values of ω) provides a direct way to determine the
number of unstable modes of the system, as a function of the number of times the Nyquist
contour encircles the origin. Secondly, when the system has a complex eigenvalue located
close to the real ω-axis, an approximation of the eigenvalue can be obtained from a Taylor
expansion of the impedance function around the real axis. Such methods are widely used
in several fields such as in automatics or electronics, but remain underemployed in the
flow instability community where eigenvalue computation remains the preferred approach.
Note, however, that the second idea was recently applied successfully by Ferreira Sabino
et al. (2020) for the problem of vortex-induced vibrations for a spring-mounted cylinder.

The links between impedance and stability properties were explored by Fabre et al.
(2020) for the jet flow through a hole. The discussion revealed the existence of two
different instability mechanisms leading to sound production: a purely hydrodynamic
instability characterised by spontaneous self-oscillations existing in the absence of any
incoming acoustic wave, and a conditional instability due to an over-reflection of acoustic
waves. Simple criteria formulated in terms of the impedance were given for both kinds
of instabilities, allowing us to determine their range of existences as a function of the
hole aspect ratio and the Reynolds number. Among the studies considering a multiply
perforated plate, Jing & Sun (2000) and Su et al. (2015) measured experimentally the
impedances for several configurations with variable hole thickness parameter values,
which are in good accordance with the first branch of conditional unstable modes, cf.
Fabre et al. (2020, § 8). Moussou et al. (2007) studied experimentally a long pipe with a
constriction for a number of values of the constriction ratio and the thickness ratio. In this
study, they identified both the first and second branch of conditionally unstable modes.

In the approach of Fabre et al. (2020), the flow was assumed as locally incompressible,
a hypothesis which is expected to be valid for small values of the square of the Helmholtz
number (He2 = ω2M2), and which does not directly allow predicting the acoustic field.
Nevertheless, they suggested that the locally incompressible solution could be matched
to outer solutions incorporating compressibility effects, leading to more elaborate models
applicable in situations incorporating, for instance, acoustic resonators and radiation in an
open domain.
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The object of the present paper is precisely to show how the impedance computations
of Fabre et al. (2020) based on a locally incompressible solution can be used to build a
model applicable for a realistic situation involving compressibility. In addition, acoustic
pressure fields, obtained from full compressible LNSE computations complement the
study. Two generic situations are considered. In the first situation referred to as cavity/open
configuration, the domain located upstream of the hole is considered as a closed cavity of
finite volume, while the downstream domain is considered as open. We then show that
the presence of the upstream resonator can effectively lead to instabilities, as predicted
by the conditional instability criterion. The second situation, referred to as open/open
configuration, corresponds to the case where the two regions, upstream and downstream
of the hole, are considered as open domains of large dimension. We show, in this case, that
an instability of purely a hydrodynamic type can arise.

The paper is organized as follows. In § 2 the two generic situations are introduced,
and the parameters are outlined. In § 3 we introduce an asymptotically matched or
lumped model which allows defining a global impedance for the selected configuration
by combining the hole impedance as computed by Fabre et al. (2020) and the impedances
of the upstream and downstream domains. We also show that a Taylor expansion of this
impedance around the real ω-axis can be used to obtain an instability criterion and an
estimation of the eigenvalue of the unstable modes in the fully compressible case. In
§ 4 we introduce a numerical resolution method for the eigenvalue problem in a fully
compressible set-up. In § 5 we present results for the cavity/open configuration. We
compare both approaches, demonstrating that the asymptotic model is effectively accurate
for low Mach numbers. We then provide a parametric study for both problems, thanks
to the asymptotic model. Section 6 presents results for the open/open configuration. We
particularly investigate the effect of compressibility on the purely hydrodynamic instability
mechanism identified by Fabre et al. (2020), and also consider the acoustic directivity of
far-field sound emission.

2. Problem definition

2.1. Fluid parameters
The fluid is considered as a perfect gas with specific constant Rg and adiabatic index
γ = 1.4. We denote with ρ0 the reference density and with T0 the reference temperature
(both corresponding to the values in the upstream domain). The fluid is assumed to have
constant dynamic viscosity μ and heat conductivity α. The mass flow rate at the inlet of the
domain is denoted with ṁ0, while the mean velocity across the hole is UM = ṁ0/(ρ0πR2

h).
Based on this velocity scale and the hole diameter Dh = 2Rh, the Reynolds and Mach
numbers of the flow are then defined as

Re = ρ0DhUM

μ
≡ 2ṁ0

πRhμ
; M = UM

c0
with c0 = √γ RgT0. (2.1a,b)

The fluid is also characterised by a Prandtl number Pr = ρ0α/μ which is here assumed to
be Pr = 0.7.

2.2. Open/open configuration
In the first configuration, termed open/open configuration and sketched in figure 1, we
consider that a plate separates two semi-infinite ‘open domains’ of large dimensions.
By ‘open domain’ we mean that acoustic waves generated at either side of the hole
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Acoustic instability prediction via an impedance criterion

ṁ

ṁ + Eṁ′

Pin Pout

Lh

RhP in
 + Ep′in (t

) P
out  + Ep ′

out  (t)

Figure 1. Sketch of the open/open configuration.

propagate towards infinity without reflection. Denoting with Lh the thickness of the plate,
the geometry is thus completely defined by a single dimensionless parameter, the aspect
ratio of the hole, defined as

β = Lh

2Rh
= Lh

Dh
. (2.2)

In the fully compressible simulations, boundary conditions have to be applied at the
boundary of the domain. For simplicity, a half-spherical boundary is considered upstream,
and a uniform radial velocity is imposed, as sketched in the figure. Non-reflective boundary
conditions used for the compressible computations are introduced and explained in details
in § 4.

2.3. Cavity/open configuration
The second considered configuration, termed cavity/open configuration, is sketched in
figure 2. This configuration is selected here to study, in the simplest possible setting, the
coupling of the hole with a cavity acting as a resonator. The upper domain is considered
as a cavity of dimensions Lin, Rin which acts as a Helmholtz resonator. Therefore, only
its volume is relevant, not the exact dimensions Lin, Rin or the particular geometry. Thus,
in addition to the aspect ratio β defined above, a second geometrical parameter enters the
problem, namely the dimensionless volume defined as

Vin = LinπR2
in

R3
h

. (2.3)

The inlet condition is imposed at the leftmost boundary where, for simplicity, a constant
velocity profile is enforced, as sketched in the figure.

3. Matched asymptotic model

Before considering the resolution of the problem in a fully compressible setting, we
detail here a matched asymptotic model which allows us to compute a total impedance
characterising the behaviour of linear perturbations of the full system. We first explain how
the different regions of the flow domain can be described to obtain the model, and then
discuss how the derived total impedance can be used to predict the onset of instabilities.
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ṁ

ṁ

VinR3
h = πR2

inLin
Pout

Lh

Rh

Lin

Rin

P in
 + Ep′in P

out  + Ep ′
out  (t)

Figure 2. Sketch of the cavity/open configuration.

3.1. Matching principle
Under the hypothesis that the Mach number is small and that acoustic wavelengths are
much larger than the dimensions of the hole (acoustic compactness hypothesis), it is
possible to assume that the flow in the vicinity of the hole is locally incompressible, while
compressibility is only relevant in the upstream and downstream domains. This hypothesis
is at the origin of the asymptotically matched or lumped model. The ingredients required
for matching are the pressure pin(t) just upstream of the hole, the pressure pout(t) just
downstream of the hole, and the volume flow rate q(t) across the hole. Working in the
frequency domain, all these quantities are expanded as a constant value associated with
the base flow, plus a perturbation with harmonic dependency e−iω̃t, where ω̃ is a (possibly
complex) dimensional frequency,

pin(t) = Pin + p′
in e−iω̃t, pout(t) = Pout + p′

out e−iω̃t,

q(t) = Q0 + q′ e−iω̃t,.

}
(3.1)

It is important to understand that here p′
out corresponds to the level of the fluctuating

pressure field at distances ‖x‖ considered large in relation to the hole dimension but
small compared with the acoustic wavelength, i.e. Rh � ‖x‖ � λ̃, with λ̃ = 2πc0/ω̃.
Consequently, this pressure level corresponds both to the outer limit for the inner solution,
and to the inner limit for the outer solution of the classic matched asymptotic expansion
procedure. The same holds for p′

in which is also used as a matching limit between inner
and outer solutions.

3.2. Impedance modelling

3.2.1. Inner region: hole impedance
The inner region, located in the vicinity of the hole (delimited by dotted lines in figures 1
and 2), is governed by the incompressible LNSE. A resolution method for this problem was
introduced and validated in Fabre et al. (2020): for the benefit of the reader, this approach
is also briefly summarised in § A. The cited method allows us ultimately to deduce the
(dimensionless) hole impedance Zh(ω) defined as

Zh(ω) =
[

R2
h

ρ0UM

]
p′

in − p′
out

q′ . (3.2)

Here the factor R2
h/(ρ0UM) is introduced to turn the impedance into a dimensionless one,

since the dimensional impedance ( p′
in − p′

out)/q′ has physical units kg s−1 m−4 in the
international system, and it is a function of the dimensionless frequency ω = Rhω̃/UM .
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Acoustic instability prediction via an impedance criterion

The impedance is ultimately searched as Zh = P · (LNS + iωB)−1 · F , where F
represents a forcing of the LNSE by an imposed flow rate, (LNS + iωB)−1 is the linear
resolvent of the incompressible LNSE, and P is an operator allowing us to extract the
overall pressure jump from the linear perturbation. After a convenient discretization,
computation of the impedance is thus straightforward and only requires inversion of a
single linear problem. More details are given in Appendix A. It is thus much faster in
comparison to eigenvalue computation, which, using the shift-and-invert method, typically
requires numerous iterative resolutions of such problems. Once Zh(ω) is computed and
tabulated (Fabre et al. 2020) a complete parametric study in terms of Mach number and
the cavity volume can be performed as shown below.

3.2.2. Downstream region: radiation impedance
When observed from a large distance, the hole can be seen as a monopolar source, which
classically gives rise to spherical diverging waves. This is classically described by a
radiation impedance defined as the ratio between pressure p′

out and flow rate q′. This
impedance can be obtained by asymptotically matching an acoustically compact inner
solution with a monopolar acoustic source, cf. Fletcher & Rossing (2012), Pierce (2019)
and Rossing (2007). The computation is also reproduced in Fabre et al. (2020, Appendix A
therein). When expressed in dimensionless variables, the result is a purely real impedance
Zrad given by

Zrad =
[

R2
h

ρ0UM

]
p′

out

q′ = Mω2

2π
. (3.3)

3.2.3. Upstream region: case of an open domain
In a similar way, in the case of the ‘open domain’ (figure 1), one can introduce the
impedance of the inlet domain Zin, which is defined as

Zin =
[

R2
h

ρ0UM

]
p′

in
q′ = −Mω2

2π
= −Zrad. (3.4)

3.2.4. Upstream region: case of a cavity
In the case where the upstream domain is considered as a closed cavity (figure 2), we
assume that this cavity acts as a Helmholtz resonator, namely the pressure p′ = p′

in, and
the density ρ′ = ρ′

in are uniform. Then a mass budget leads to

Vinc2
0

dρ′
in

dt
= Vin

dp′
in

dt
= ρ0q′, (3.5)

which allows the introduction of the impedance of the cavity Zcav ,

Zcav =
[

R2
h

ρ0UM

]
p′

in
q′ = i

ωM2Vin
= i

ωχ
, χ = M2Vin. (3.6)

Note that this expression indicates that the cavity acts as a capacitor for an electrical circuit
or as a spring in a mechanical system. Moreover, its characteristics only depend upon the
quantity χ = M2Vin which combines the Mach number and the dimensionless volume of
the cavity. Such a model could be complemented with the addition of two other terms
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that have been neglected. In particular, one could include on the left-hand side of the
mass balance the deviation from isentropic pressure fluctuations due to, for instance, the
effects of the thermal boundary layer and on the right-hand side, the convective term
involving density fluctuations. These terms have been neglected based on the fact that
velocity and temperature gradients within the cavity are small as long as the ratio between
the height of the cavity and the radius of the hole is large. In our study, this corresponds to
Lin = Rin = (Vin/π)1/3 � Rh, which holds for the cavities analysed in this study.

3.2.5. Summary: total impedance of the problem
Regrouping all the regions, we are now able to obtain a single constitutive equation for
the total impedance of the system, denoted either as Za or Zb for the two investigated
configurations, which allows us to determine the eigenfrequencies of the complete
problem.

(a) For the open/open configuration, Zh = −2Zrad, or equivalently,

Za(ω) = Zh(ω) + Mω2

π
= 0. (3.7)

(b) For the cavity/open configuration, Zh = −Zcav − Zrad, or equivalently,

Zb(ω) = Zh(ω) + Mω2

2π
+ i

M2Vinω
= 0. (3.8)

We emphasize that the total impedance defined here is designed mainly to be used to
detect eigenvalues, hence, only the condition Z(ω) = 0 is significant. The complex zeros
ω = ωR + ωI of Z then correspond to the eigenmodes of the system, and the system is
therefore unstable if there exists such a zero with ωI > 0. When not zero, there is no direct
physical interpretation to the value Z(ω) associated with a given ω. Schematically, 1/Z
can be conceived of as a measure of the response of the system to an imposed forcing, so
that Z = 0 means that the response is infinite, or in other words that a solution without
forcing is possible. For instance, Fabre et al. (2020, Appendix A therein) considered
the case where the forcing corresponds to a spherically converging wave coming from
downstream; in this case the reflection coefficient is effectively proportional to Z−1 (see
equation (A12) in this reference). Other kinds of forcing could be considered, leading to
the same conclusion. In the present paper we remain to an intuitive interpretation of Z−1

and do not elaborate on the link between the impedance and any specific forcing.

3.3. Predicting instability from a Taylor expansion of the impedance
As stated in the introduction, knowledge of the impedance function Z(ω) along the
real ω-axis allows obtaining important information regarding instability properties of the
system in two ways. First, Cauchy’s argument principle (see Appendix C) can be used
as a graphical method to determine whether or not an instability exists. This argument is
developed in § C. Second, eigenvalues located close to the real axis may be expected to be
accurately predicted from a Taylor expansion of the impedance around the real axis. This
argument is presented here.

3.3.1. Asymptotic prediction of eigenvalue for the cavity/open configuration
Following an idea previously used in Ferreira Sabino et al. (2020) for the problem
of vortex-induced vibrations of a spring-mounted cylinder, we assume here that the
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impedance of the full system is mostly reactive. In the present case, this means that
the impedance is dominated by its imaginary part, while the real parts (i.e. Re(Zh) and
the radiation impedance) correspond to lower-order terms. Such a hypothesis, together
with the fact that the flow is acoustically compact within the region of the hole, allow
the use of an asymptotic expansion truncated at first order to determine the zeros of the
impedance. We first elaborate this idea for the cavity/open configuration. The hypotheses
are as follows:

(i) |Re(Zh)| � |Im(Zh)|, i.e. |Re(Zh)| ∼ ε|Im(Zh)|;
(ii) Mω2/2π � |Im(Zh)|, i.e. Mω2/2π ∼ ε|Im(Zh)|.

Here the real parameter 0 < ε � 1. Note that hypothesis (i) is not justified for every value
of ω0 since from the results of Fabre et al. (2020) the real and imaginary parts of Zh are
generally of comparable order of magnitudes. However, this hypothesis can be expected to
be valid in the vicinity of the threshold of the instability. Hypothesis (ii) is needed for the
acoustic compactness and, therefore, directly satisfied.

Consider the frequency expansion

ω = ω0 + εω1, ω0 ∈ R, ω1 ∈ C, ε ∈ R, (3.9)

and let us substitute ω in (3.8) by (3.9) and by performing a Taylor expansion in terms of
the assumed small quantities leads to

Zb(ω) = i
[

Im (Zh(ω0)) + 1
M2Vinω0

]

ε

[
Re (Zh(ω0)) + Mω2

0
2π

+
((

∂Zh

∂ω

)
ω=ω0

− i

M2Vinω
2
0

)
ω1

]

+ O
(
ε2
)

, (3.10)

where O(ε2) denotes higher-order terms as a function of the assumed small parameter.
The condition Zb = 0 then leads to the following results.

(i) The zeroth-order terms lead to the condition

− ω0Im (Zh(ω0)) = 1
M2Vin

= 1
χ

. (3.11)

(ii) The first-order term leads to

Im(ω1) =

[
Re (Zh(ω0)) + Mω2

0
2π

]((
∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1
χω2

0

)
((

∂Re(Zh ((ω))

∂ωR

)
ω=ω0

)2

+
((

∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1
χω2

0

)2 ,

Re(ω1) =
−
[

Re (Zh(ω0)) + Mω2
0

2π

](
∂Re(Zh)

∂ωR

)
ω=ω0((

∂Re (Zh(ω))

∂ωR

)
ω=ω0

)2

+
((

∂Im (Zh(ω))

∂ωR

)
ω=ω0

− 1
χω2

0

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.12)
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1

M2Vin

ω

–
ω

Z h,
I (ω

)

ω0

Im(ω1)

Im(ω1)

ω
ω0

(b)(a)

Figure 3. Linear scale representation of the zero computation of (3.9) with the (a) zeroth-order (3.11) and
(b) first-order (3.12) approximations.

The imaginary part of the first-order correction directly provides a criterion of
stability. Provided that the imaginary part of ∂Zh/∂ω is negative (a condition which
is found to hold in all cases where the starting hypotheses are verified), then it is
possible to conclude that an instability is possible as soon as

Re (Zh(ω0)) < −Mω2
0

2π
. (3.13)

We recognize here an improved version of the conditional instability criterion of
Fabre et al. (2020). Physically, this condition means that the energy extracted
from the base flow −Re(Zh(ω0))|q′|2/2 must be larger than the energy radiated
Zrad|q′|2/2.

Fabre et al. (2020) have documented the function Zh(ω) for real values of ω over a
wide range of parameters. Once the hole impedance function Zh(ω) is determined, these
results can be used to solve the coupled conditions (3.11), (3.12) and ultimately to obtain an
instability criterion and an estimate for the growth rate. Figure 3 explains graphically these
conditions. The resolution can be done in two ways. Via a direct method, that is, given the
parameters M and Vin, one first solves for (3.11), which is an implicit equation in ω0 as a
function of the parameter χ (as sketched in figure 3a). Then one may deduce Im(ω1) which
is an explicit function of ω0 and M (as sketched in figure 3b) and it ultimately provides a
criterion of instability.

An alternative is to follow an inverse method. Given M, we first consider Im(ω1) as a
function of ω0 and deduce the ranges of ω0 where this function is positive (as indicated in
blue on figure 3b). Once these unstable ranges are known, we deduce the corresponding
ranges for 1/(M2Vin) by using (3.11) (as indicated by blue ranges in figure 3a). The
approach thus indicates the ranges of Vin where, for the given M, the jet is unstable. The
great advantage of this inverse method is that the equation (3.11) is explicit when solving
for Vin in terms of ω0.

The inverse method is a very efficient way to obtain an estimation of the eigenvalue
of the full problem ω = ω(Re, β, M, Vin) provided one disposes of a tabulation of the
function Zh(ω; Re, β) for real values of ω. It must be emphasised that the number of
parameters has been reduced from four to only two, as Vin and M only occur through the
modelled impedance of the upstream and downstream domains. However, the reduction
relies on a series of strong hypotheses: first M � 1 and |ω| � 1/M for the matched
asymptotic model to hold, and second the assumptions used to treat Re(Zh) as a correction.
The validity of the approach, therefore, has to be assessed by comparing the results with
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Acoustic instability prediction via an impedance criterion

those obtained using a fully compressible model in order to clarify the range of validity of
the used approximations, as detailed in § 5.1.

3.3.2. Asymptotic prediction of eigenvalue for the open/open configuration
Let us now follow a similar route to achieve an estimation of the eigenvalue ω for the
open/open configuration. In this case, the zeroth-order and first-order corrections simplify
to

−ω0Im(Zh)(ω0) = 0, (3.14)

Im(ω1) =

[
Re (Zh(ω0)) + Mω2

0
π

](
∂Im(Zh)

∂ωR

)
ω=ω0∣∣∣∣∣

(
∂Zh

∂ω

)
ω=ω0

∣∣∣∣∣
2 ,

Re(ω1) =
−
[

Re (Zh(ω0)) + Mω2
0

π

](
∂Re(Zh)

∂ωR

)
ω=ω0∣∣∣∣∣

(
∂Zh

∂ω

)
ω=ω0

∣∣∣∣∣
2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

where the non-zero ω0 are the zeros of the imaginary part of the hole impedance function
Im(Zh) and the growth rate is estimated by (3.15).

Note that this expression is identical to the one obtained for the cavity/open
configuration when Vin → ∞, except for the radiation term, which is twice the value in
the previous case. This accounts for the fact that radiation occurs on both sides, so that
total radiation losses are twice larger.

4. Full compressible formulation

After detailing the matched asymptotic model, we now introduce in this section a
numerical method to resolve directly the eigenvalue problem in a fully compressible
setting.

4.1. Compressible Navier–Stokes equations
Let us consider a compressible fluid motion of a perfect gas described in primitive
variables by q = [ρ, u, T, p]T, where the velocity vector field is u = (u, v, w), pressure
p, temperature T and fluid density ρ. Dimensional primitive variables have been made
dimensionless, as follows:

x = x
Dh

, t = t̃UM

Dh
, ρ = ρ̃

ρref
, u = ũ

UM
, T = T̃

Tref
, p = p̃ − pref

ρref U2
M

. (4.1a–f )

Here dimensional values are designated by an upper tilde ·̃, and reference values
are indicated with the ·ref . Dynamics is governed by the compressible Navier–Stokes
equations, which are here written in terms of primitive dimensionless variables in the
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compact vector notation

M

(
∂q
∂t

)
= NS (q) = L (q) + N(q) + C = 0, (4.2)

where C = [0, 0, 0, 1]T, the mass matrix M and the linear operator L are defined as

M =

⎛⎜⎝ 1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

⎞⎟⎠ , L =

⎛⎜⎜⎜⎝
0 0 0 0
0 −∇ · (·) 0 ∇
0 0 − γ

Pr Re

 0

0 0 0 γ M2

⎞⎟⎟⎟⎠ , (4.3a,b)

while the nonlinear operator is written as

N(q) =

⎛⎜⎝
u · ∇ρ + ρ∇ · u

ρu · ∇u
(γ − 1)

[
ρT∇ · u − γ M2𝞽(u) : D(u)

]+ ρu · ∇T
−ρT

⎞⎟⎠ . (4.4)

Here D = 1/2(∇u + ∇uT) is the rate of strain tensor and  is the viscous stress tensor
defined as  = 2μD − 2μ/3∇ · uI .

4.2. Compressible Navier–Stokes – base flow equations
The stability of a steady-state solution to infinitesimal perturbations can be analysed using
the classical approach based on linearization of the governing equations: the total flow
field is expanded into the sum of a steady-state term plus an infinitesimally small unsteady
harmonic perturbation as

q(t) = q0 + ε
(

q̂ e−iωt + c.c.
)

, (4.5)

where ε � 1. Inserting (4.5) in the governing equations (4.2) and neglecting quadratic
terms leads to two problems, one for the base flow and one for the perturbation.
In particular, at leading order, only steady terms are kept, which leads to the steady
Navier–Stokes equations

NS (q0
) = L

(
q0
)+ N(q0) + C = 0, (4.6)

complemented with appropriate boundary conditions. No-slip adiabatic boundary
conditions are used at the walls (4.7c). At the axis of revolution, the radial component
v0 is set equal to zero, and the radial derivative of the remaining terms is null (4.7d)). At
the outlet we set stress-free and isothermal boundary conditions (4.7b); in this way the
pressure at the outlet is equal to the thermodynamic pressure, i.e. p0 = 1. Finally, at the
inlet boundary Γin = Γin,0 ∪ Γin,1, a constant mass flow is enforced on the Γin,0 boundary,
slip condition, constant density and zero thermal flux are imposed on the Γin,1 (4.7a).
Summarising,

ρ0|Γin = 1,

∫
Γin,0

ρ0u0 · n dS = π

4
, (u0 · n) |Γin,1 = 0, (∇T0 · n) |Γin = 0, (4.7a)

T0|Γout = 1, (−p0I + (u0)) · nΓout = 0, (4.7b)

u0|Γw = (0, 0, 0)T, (∇T0 · n) |Γw = 0, (4.7c)

v0|Γw = 0,
∂u0

∂r
= ∂w0

∂r
= ∂ρ0

∂r
= ∂T0

∂r
= ∂p0

∂r
= 0 on Γaxis. (4.7d)
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Γout Γout

Γout Γout

ΓwΓw

Γaxis Γaxis

Lin
r∞

Z–∞

r∞ r∞
rCM rCM

zCM zCM

Z∞Z+ Z∞Z+Z–

r+ r+

Γin,1

Γin,0

Lin

Γin,0

Γin,1

(b)(a)

r+

Figure 4. Schematic representation of the computational mesh for both configurations, (a) open/open case, (b)
closed/open case: z−∞, z∞, r∞ are, respectively, the location of the physical inlet, outlet and lateral boundaries.
The physical domain is padded into a complex mapping layer with a radial extension rCM (respectively axial
zCM extension). The inner domain corresponds to an inner region with the highest vertex density: z−, z+, r+
are, respectively, the location of the left, right and lateral boundaries of this inner domain; in the closed/open
case the inner domain includes the cavity located upstream of the hole.

4.3. Linearized compressible Navier–Stokes equations – homogeneous problem
The linearized compressible Navier–Stokes equations govern the evolution of the
perturbation q̂,

− iωM q̂ = LNS0
(
q̂
) = [L + DN |q0

]
q̂, (4.8)

where DN |q0 is the Jacobian matrix of the nonlinear operator evaluated at the steady state
q0.

With the purpose of modelling a large container upstream of the hole, for the open/open
case, we have designed a computational domain, figure 4(a), composed of three regions: an
inner domain with the highest vertex density, the physical domain and an absorbing layer
to eliminate the appearance of spurious eigenvalues. The absorbing layer corresponds to
the complex mapping technique, cf. Sierra et al. (2020). The boundary conditions of the
linearized full compressible formulation for the open/open case are as follows:

ρ̂|Γin = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γin = 0, (4.9a)

ρ̂|Γout = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γout = 0, (4.9b)

û|Γw = (0, 0, 0)T,
(
∇T̂ · n

)
|Γw = 0, (4.9c)

v̂|Γw = 0,
∂ û
∂r

= ∂ŵ
∂r

= ∂ρ̂

∂r
= ∂T̂

∂r
= ∂ p̂

∂r
= 0 on Γaxis. (4.9d)

In particular, in the far field (inlet and outlet) we impose null density variations, a
stress-free boundary condition and vanishing thermal flux (4.9a) and (4.9b); doing so the
mass flux, ρ0û · n, is allowed to vary. A no-slip adiabatic boundary condition is used at the
walls (4.9c), while at the axis the radial component of the velocity v̂ is set to zero, together
with a null radial derivative of the remaining terms (4.9d).

For the purpose of modelling a closed cavity that acts as an acoustic resonator, we have
a computational domain, which is sketched in figure 4(b), where the complex mapping
layer is only present in the region placed downstream of the hole. The set of boundary
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conditions are as follows:

ρ̂|Γin = 0, û|Γin = (0, 0, 0)T,
(
∇T̂ · n

)
|Γin = 0, (4.10a)

ρ̂|Γout = 0,
(−p̂I + (û)

) · nΓout = 0,
(
∇T̂ · n

)
|Γout = 0, (4.10b)

û|Γw = (0, 0, 0)T,
(
∇T̂ · n

)
|Γw = 0, (4.10c)

v̂|Γw = 0,
∂ û
∂r

= ∂ŵ
∂r

= ∂ρ̂

∂r
= ∂T̂

∂r
= ∂ p̂

∂r
= 0 on Γaxis. (4.10d)

i.e. null density and velocity variations (4.10a) at the inlet, a stress-free condition, null
density variation and vanishing thermal flux (4.10b) at the outlet; no-slip and adiabatic
walls (4.10c); null radial velocity component and null radial derivative of the remaining
terms (4.10d).

4.4. Numerical implementation
Following a usual route in global stability analysis, the nonlinear problem (4.6) for the
base flow is solved using a Newton iteration method and the eigenvalue problem (4.8)
is solved using a shift-invert Arnoldi method. Spatial discretization is done using a
finite-element method, using P2-elements for velocity components ux, ur and P1-elements
for thermodynamic variables P, ρ, T . Mesh generation and assembly of matrix operators
is performed using the FreeFem++ software (Hecht 2012). Resolution is achieved using
PETSc/SLEPc libraries, which are directly implemented in FreeFem++. Monitoring of
computation, loop over the parameters and post-processing are handled in Matlab thanks
to the StabFem suite (Fabre et al. 2018). Note that during the process, mesh adaptation is
used in a way similar to as described in Fabre et al. (2018), to ensure that the resolution is
sufficient to ensure grid independence when computing the base flow and the eigenmodes.
Examples of codes reproducing sample results are shared on the website of the StabFem
project. Some details about the computed base flows are given in Appendix B. Details
about grid convergence are given in Appendix E.

5. Results – cavity/open configuration

5.1. Validation of the asymptotic model – comparison with compressible LNSE
In § 3.3.1 we introduced an asymptotic method which is able to predict the eigenvalues
ω = ω(Re, β, M, Vin) from a simple tabulation/computation of the function Zh(ω; Re, β)

for real values of ω, hence reducing the number of parameters from four to two only. Before
conducting a full parametric study of the instability with the proposed matched asymptotic
method, we have to assess its validity by comparing the predictions with resolution of the
full eigenvalue problem. This is done in figure 5 which compares the amplification rates
(a,c,e,g) and frequencies (b,d, f,h) obtained with the two approaches for values of M, Re
and Vin spanning a large range of parameter values, considering a hole with aspect ratio
β = 0.3.

Consider, first, the predictions of the asymptotic model represented by coloured lines in
the figures. Thanks to the inverse method explained in § 3.3.1, the asymptotic prediction
allows us to plot ω as a continuous function of Vin. We use solid lines for the segments
of the curves corresponding to unstable modes and dotted lines for those corresponding
to stable modes. As identified by Fabre et al. (2020), for β = 0.3, several modes of
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Figure 5. Growth rate (a,c,e,g) and frequency (b,d, f,h) of eigenmodes as a function of Vin, M and Re for
β = 0.3. Lines were obtained from the matched asymptotic model and points with the compressible LNSE.
Solid lines denote unstable regions, dashed lines are used for stable zones.

conditional instability, termed C1, C2, etc. . . are expected to arise as the Reynolds number
is increased. The corresponding frequencies are quantized, and an argument to explain this
quantification was proposed in terms of the dynamics of the shear layer. An alternative
argument, in terms of a forward shear wave and a backward acoustic wave, is proposed in
Appendix D.

From the results of Fabre et al. (2020), for β = 0.3 (see also figure 18 reproduced in
Appendix D), the first mode C1 arises just below Re = 800 and the second mode C2 arises
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for Re ≈ 1500. This is in good agreement with the observed results of the asymptotic
model, which effectively predicts two ranges of instability for Re = 1600 and Re = 2000,
at least, for the smallest considered values of M. The figure also shows that increasing M
results in a shifting of the instability ranges towards smaller values of Vin.

Consider now, the eigenvalue calculations, represented by circles in the figures. Results
have been computed for a limited set of values of Vin where unstable modes were expected.
Recall that in the eigenvalue study, Vin is linked to the size of the numerical domain, so
that the whole process (mesh generation, base flow computation, resolution of eigenvalue
problem) has to be restarted for each new value of Vin. An excellent matching between the
two estimates may be appreciated even for large growth rates, the relative error being
less than 3 % in most cases. Comparison seems poorer, at first sight, for the case of
Re = 800 reported in figure 5(a) but it must be remembered that the case is very close
to the threshold and amplification rates are very small, so that the absolute error is actually
of comparable order to the other cases. Not that an excellent agreement is still found in
cases where the amplification rate is not small, a range where the impedance criterion
should be a priori slightly less reliable due to its perturbative nature. The agreement
also remains excellent when the Mach number is raised to M = 2 × 10−2. Note that,
for eigenvalue computations, it has been only considered configurations with Vin > 102,
since for smaller values, the cavity becomes very small and the modelling as a Helmholtz
resonator becomes questionable. This is why we did not attempt to draw any comparisons
for M > 2 × 10−2, with the exception of a case with M = 4 × 10−2 represented in plot (e).

5.2. Structure of some eigenmodes
Let us now illustrate the structure of a few eigenmodes computed with the full
compressible LNSE. Figure 6 displays the eigenmode computed for M = 5 × 10−3 and
Vin = 104 for Re = 1200. This mode is correctly predicted by the asymptotic model, and
recognized to correspond to the branch C1 of conditional instability modes, as defined by
Fabre et al. (2020). As observed, the pressure level inside the cavity is uniform, confirming
that the cavity effectively acts as a Helmholtz resonator for this mode so that the modelling
hypotheses are correctly verified. Downstream of the hole, the mode is characterised by
an alternance of structures of opposite sign, localized along the shear layer. This structure
is characteristic of regions associated with a negative real part of impedance, as identified
by Fabre et al. (2020). Note that very far away in the downstream domain, the structure
is expected to match with a spherical diverging wave of the dimensionless wavelength
λ = 2π/(MωR). Here λ is of order 70, so this structure is not visible on the figure. A
characterisation of the far-field acoustic radiation is described in § 6.3; see figure 13.

In addition to eigenmodes of the kind presented in figure 6 which are well predicted
by our asymptotic approach, one typically observes the existence of other families of
eigenmodes with a more complex structure. Figure 7(b) displays a family of such modes,
computed for the set of parameters M = 2 × 10−1, Vin = 104 for Re = 1200. One clearly
observes that the pressure inside the cavity is no longer uniform, but characterised by nodal
lines in the radial and axial distributions. These modes are recognised as cavity modes.
They arise as soon as the acoustic compactness hypothesis fails, i.e. when the acoustic
wavelength is smaller than the characteristic length (Lin = (Vin/π)1/3) of the cavity.

5.3. Parametric study
In our previous work, the ranges of parameters corresponding to a conditional instability
(requiring the presence of a correctly tuned resonator) were mapped in the Re–β plane;
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Figure 6. Plot of the C1 eigenmode for Re = 1200 (real part in upper region and imaginary part in the lower
region) at M = 5 × 10−3. (a) Pressure, (b) temperature and (c) density.
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Figure 7. Real part of the pressure component of higher-order cavity modes for M = 2 × 10−1 and a cavity
of Vin = 104.

see Fabre et al. (2020, figure 13), also reproduced in Appendix D (see figure 18). We are
now able to build upon these results a parametric study of the situation where the resonator
corresponds to the upstream cavity, as a function of the four parameters (Re, β, M, Vin).
Figures 8 and 9 display the dependence of the neutral curves on the Mach number and
Vin for several Reynolds numbers and values β = 0.3 and β = 1, respectively. Let us first
explore the value β = 0.3 displayed in figure 8; there exist only two unstable modes, C1
and C2. The cavity is correctly tuned to trigger the instability inside each of the bounded
coloured regions of the (Vin, M) plane. For the configuration corresponding to β = 1,
there exist four modes of conditional instability. As reported in Fabre et al. (2020), C1
and C4 instabilities only exist if the cavity connected upstream of the aperture is correctly
tuned, that occurs inside each of the bounded coloured regions of the (Vin, M) plane of
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Figure 8. Regions of conditional stability in the (Vin, M) plane for β = 0.3; (a) C1, (b) C2.
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Figure 9. Regions of conditional stability in the (Vin, M) plane for β = 1; (a) C1, (b) C2, (c) C3, (d) C4.

figure 9(a,d). These regions of instability grow with the Reynolds number, and they shrink
with Vin. Contrary to instabilities C1 and C4, for a given value of Vin, instabilities C2
and C3 may exist for every M; for this reason, these instabilities may be conceived as a
degenerate situation of pure hydrodynamic instabilities H2 and H3, which are discussed in
§ 6.

Finally, the dependence of this type of instability on the acoustic resonator is better
appreciated if we consider the effect of Vin and M together with the χ = VinM2 parameter.
This allows us to display neutral curves of stability in the (χ, Re) plane, which is shown
in figure 10 for several values of β and M, where the explicit dependence on the Mach
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Figure 10. Regions of conditional instability in the (χ, Re) plane; (a) β = 0.3, (b) β = 0.6, (c) β = 1,
(d) β = 2.

number originates from the radiation term of (3.8). Each bounded region corresponds to
a conditional instability Ci; neutral curves display the shape of a ‘tongue’ with the tip
located at the lowest Reynolds number of the instability region and a vertical asymptote
located at the Reynolds number of the threshold of the Hi instability (if it exists). From
figure 10 we can appreciate how Ci conditional instabilities are a generalization of the
pure hydrodynamic instabilities Hi. Nevertheless, a connection between hydrodynamic
and conditional instabilities for limit values of χ is outside the range of validity of the
methodology used for the closed/open case. In fact, one may relate the characteristic cavity
length (Lin) and the acoustic wavelength (λac) in terms of the Strouhal number and the
parameter χ , (

L3/2
in
λac

)2

= St2
χ

π
, (5.1)

which implies that, for cavities characterised by χ � 1, one cannot rule out the existence
of higher cavity modes. Such a finding is only relevant for regions near the vertical
asymptotes of figure 9. The methodology remains valid for the C1 mode, where the product
St2(χ/π) < 1, even in the region of χ > 1 for β = 1, because the Strouhal number of the
C1 mode is approximately one-fourth, cf. Appendix D.

6. Results – open/open configuration

6.1. Parametric study
A purely hydrodynamic instability exists in the present configuration for sufficiently large
values of the hole aspect ratios β. In this section we check that such instabilities are
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Figure 11. (a) Neutral curves of instability of hydrodynamic modes H2 (solid lines) and H3 (dashed lines)
for M = 10−2, 5 × 10−2 and M = 10−1. (b) Strouhal evolution of the H2 modes with β at the threshold of the
instability. (c) The same as (b) for the H3 modes. Dots correspond to incompressible results of Fabre et al.
(2020), also reported in Appendix D.

effectively encountered in the open/open configuration and provide a parametric study
of their range of existence as a function of the parameters Re, β, M.

Figure 11(a) displays the range of existence of instabilities as a function of Re and β for
three values of M. Two different modes, corresponding to the purely hydrodynamic modes
H2 and H3 as identified by Fabre et al. (2020), are documented. Note that higher instability
modes, called Hi with i = 4, 5, 6 · · · , exist in the studied interval of the parameter β;
however, they arise at larger values of Re and are not considered. The curves displayed
in the figure for the smallest value of M, namely 10−2, are very close to the predictions
obtained by Fabre et al. (2020, figure 15), which is represented by dots in figure 11. One
can see that compressibility has almost no effect on the instability threshold of mode H2.
On the other hand, it has a destabilizing effect on mode H3. Figure 11(b) investigates
the effect of compressibility on the oscillation frequency, here represented as a Strouhal
number Stβ = ωRβ/2π. One can see that compressibility decreases the frequency for the
shortest holes and has almost no effect on frequency for longer ones. This behaviour is
associated with the significant modification of the threshold of instability (Re) for short
holes (left asymptote of either H2 or H3 in figure 11), which does not occur for holes
with a larger β value. A substantial variation in the critical Reynolds number induces a
modification of the vena contracta coefficient αvena (see, e.g. figure 16), which in turn may
be linked to the frequency of the instability; see the discussion in Appendix D.

6.2. Effect of Mach number – sensitivity analysis
In order to explain these observed trends, we consider the sensitivity dω/dM of the
complex frequency ω with respect to M. This quantity may be split into two terms,
corresponding respectively to the sensitivity to base flow modifications and to the
sensitivity to a Mach number variation of the linearized equations,

dω

dM

∣∣∣∣
M

= ∂ω

∂M

∣∣∣∣
q0

+ ∂ω

∂q0

∣∣∣∣
M

∂q0

∂M
. (6.1)

We have employed two techniques, a continuous adjoint technique described in Meliga,
Sipp & Chomaz (2010) and a forward evaluation of the sensitivity. Provided the Mach
number is close to the incompressible limit, the continuous adjoint technique provides
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less accurate results; for this reason, we have decided to perform a forward evaluation.
The first term ∂ω/∂M is evaluated using a first-order finite difference, which requires
the resolution of two eigenvalue problems (4.8) with the steady state frozen at the Mach
number M, and with a Mach number perturbation of a small magnitude ΔM � M in
the linearized Navier–Stokes operator of the eigenvalue problem. The second term is
also evaluated by finite difference using two different steady states computed at M and
M + ΔM where the Jacobian operator is evaluated at M. Figure 12 displays the sensitivity
computed in such a way for a value of Re corresponding to the thresholds of the instability
for modes H2 (with β = 0.8) and H3 (with β = 2). The figure also displays the value of
∂ω1/∂M obtained from the asymptotic model (3.12), which is a constant. Figure 12(a)
reports a linear variation of the two terms of the sensitivity with respect to Mach number.
A Mach number variation in the base flow has a stabilizing effect, whereas the instability
is triggered by small variations of the Mach number of the linearized operator. The most
dominant term for this kind of acoustically compact solutions seems to be the base flow
effect, which has a small stabilizing effect. In particular, it explains the almost insignificant
variation of the H2 neutral curves in figure 11. Concerning the frequency, both terms
have an almost opposite effect, which implies an almost null variation of the instability
frequency for the H2 mode. The impedance criterion in this case predicts a stabilizing
effect with a small frequency increase, which holds relatively well for M < 0.02. On the
other hand, the variation with respect to the Mach number of the growth rate and the
frequency of instability of a configuration that is no longer acoustically compact for Mach
numbers of the order of M ∼ 10−2 such as the H3 mode at threshold for β = 0.8 greatly
differs with the estimations made with the impedance criterion. Figure 12(b) reports a
similar stabilizing effect of the base flow to the one of the H2 mode. However, in this case
variations of the Mach number in the linearized operator greatly destabilize the steady
state, which causes the large variations in the neutral curves displayed in figure 11. In
terms of frequency variations, it is possible to observe much larger excursions, which
are negative and constant for M < 0.07 and increase linearly for M > 0.07. So we may
conclude that the impedance criterion holds relatively well for large β and instability
modes with low frequency, which are in turn the most acoustically compact, but it fails
to predict accurate trends even for low Mach numbers for modes with higher frequencies
and small length to thickness ratios.

6.3. Directivity of acoustic emission
Finally, we address the influence of parameters (β, M) on the directivity pattern of
instabilities of type H2 and H3. For that purpose, we evaluate the set of neutral eigenmodes
for each pair (β, M). Note that the amplitude of the eigenmodes are arbitrary, the pressure
levels displayed in figure 14 have been normalized with respect to the monopole radiation
(based on the oscillating volume flux through the perforation). Three values of the Mach
number M = {10−2, 2 × 10−2, 5 × 10−2} and two of the dimensionless parameter β =
{1, 2} are selected for this study. The configuration β = 1 corresponds to a configuration
less acoustically compact than β = 2 and it seems a priori more likely that the radiation
differs from the single monopole pattern. Figure 13 displays the acoustic pressure levels
of the real part of the neutral eigenmodes, H2 in the upper part and H3 in the lower
part, for M = 5 × 10−2 and β = 1 (a) and β = 2 (b). Figure 13(a) displays the pressure
levels in logarithmic scale for β = 1. In that figure one can appreciate a monopolar-like
radiation for H3; however, at M = 5 × 10−2 the H2 mode displays a radiation pattern with
a preferential direction aligned with the streamwise coordinate. In such a configuration,
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Figure 12. Sensitivity to Mach number variations of the complex frequency ω at the threshold of instability.

Dashed line denotes the impedance estimation. (a) Mode H2 for β = 2. (b) Mode H3 for β = 0.8.
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Figure 13. Real part of the pressure component of neutral eigenvalues H2 (upper part) and H3 (lower part) at
M = 5 × 10−2; (a) β = 1 and (b) β = 2.

either the hole and the jet emit sound, which produces an uneven radiation of sound
downstream and upstream of the hole. These observations can be better appreciated in
figure 14(a), where the departures from an isotropic radiation for M = 10−2 and the sound
emission for M = 5 × 10−2 are clearly seen. For β = 2 (figures 13(b) and 14(c)), the
neutral eigenmodes display a fairly monopolar-like radiation; for the H3 mode (figure 14d),
higher pressure levels are measured downstream of the hole for directions forming an angle
less than 45 degrees with the axis of symmetry.

7. Conclusion

The objective of the present paper was to investigate how the instability potential of a
single jet passing through a hole in a thick plate, recently identified by Fabre et al. (2020)
using LNSE in a strictly incompressible setting, manifests in a more realistic configuration
involving compressibility. For this sake, we considered two generic situations. In the first
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Figure 14. Directivity patterns, in logarithmic scale, measured at rx = √
r2 + x2 = 150. Results are shown

for (a) H2 and β = 1; (b) H3 and β = 1; (c) H2 and β = 2; (d) H3 and β = 2. Colour legend: (—–, black)
M = 10−2, (—–, red) M = 2 × 10−2 and (—–, yellow) M = 5 × 10−2.

situation, the upstream domain is a closed cavity and the downstream domain is an open
space. This situation was chosen to check the conditional instability mechanism, requiring
the existence of a conveniently tuned resonator. In the second situation, the two regions,
upstream and downstream of the hole, are considered as open. This situation was chosen to
check the purely hydrodynamical instability which is expected to exist even in the absence
of a resonator.

The two cases have been analysed with an asymptotic method, which provides an
instability criterion and an estimate for the amplification rate. The method consists, in a
first step, in writing an impedance of the global system incorporating the hole impedance
as computed by Fabre et al. (2020) and modelling the impedance of the upstream and
downstream regions, and in a second step, in performing a Taylor expansion of this
impedance around the real ω-axis to identify its zeros. The great advantage of the method
is that the Mach number M and the cavity volume Vin appear as parameters in the model,
so that a parametric study of the problem can be done entirely in terms of the Reynolds
number and aspect ratio, therefore reducing the number of computational parameters from
four to two.

The potential to accurately predict the instability properties via the asymptotic model is
put into test in §§ 5.3 and 6 for the conditional and pure hydrodynamic cases, respectively.
A cross-comparison with the results carried out with the compressible Navier–Stokes
equations shows a good match between the two approaches. The impedance criterion has
been employed to identify the regions of existence in the (Re, χ) plane of a series of
Ci, i = 1, 2, 3, 4, . . . modes. In addition to these acoustically compact modes, at larger
Reynolds numbers, there exist unstable modes associated with higher-order modes of
the cavity connected upstream (see figure 7 for an example of that phenomenon). The
use of the impedance criterion for the characterisation of the compressibility effect in
the pure hydrodynamical case is less accurate. We have observed that the estimations of
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the growth rate are relatively acceptable for the H2 mode, but they are faulty for the H3
mode, in particular for small length to diameter ratios. The inadequacy of the criteria to
characterise this case can be attributed to the lack in the asymptotic model of the effect of
the backward-travelling acoustic wave. These results suggest that a better modelling of the
hydrodynamic-acoustic interaction is required to gain in accuracy. Finally, in § 6 we have
examined the influence of the Mach number on the directivity pattern of the family of the
pure hydrodynamical modes.
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Appendix A. Computation of the hole impedance thanks to incompressible LNSE

A.1. Incompressible Navier–Stokes equations
Under the hypothesis of acoustic compactness, discussed in § 2.3, the flow is assumed to
be locally incompressible in the region of the hole, where the fluid motion is governed by
the incompressible Navier–Stokes equations

∂

∂t

[
u
0

]
= N S

([
u
p

])
=
[ −u · ∇u − ∇p + Re−1∇2u

∇ · u

]
. (A1)

The stability of the steady state [u0, p0] is investigated by using the linearized approach,
in which the total flow field is decomposed into the sum of a steady base flow and a small
time-harmonic perturbation as[

u
p

]
=
[

u0
p0

]
+ ε

([
û
p̂

]
e−iωt + c.c.

)
. (A2)

A.2. Incompressible Navier–Stokes equations – base-flow equations
The base flow is the solution of the steady version of the Navier–Stokes equations

N S[u0; p0] = 0, (A3)

with the following set of boundary conditions:∫
Γin

u0 · n dS = Q0, (A4a)

p0 = 0 on Γout. (A4b)

This problem is solved using a classical Newton iteration.
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A.3. Linearized incompressible Navier–Stokes equations – forced problem
The linear perturbation is governed by the equations

− iωB[û, p̂]T = LNS0([û, p̂]T), (A5)

where LNS0 is the linearized Navier–Stokes operator around the base flow and B is a
weight operator defined as

LNS0

[
û
p̂

]
=
[ − (u0 · ∇û + û · ∇u0

)− ∇p̂ + Re−1∇2û
∇ · û

]
; B =

[
1 0
0 0

]
.

(A6a,b)

Equation (A6a,b) is complemented with the following boundary conditions:∫
Γin

û · n dS = q′, (A7)

p̂(x, r) = 0 on Γout. (A8)

A non-zero perturbation of the flow rate q′ is imposed, fixed arbitrarily, to q′ = 1.
Equation (A7) thus leads to a non-homogeneous Dirichlet boundary condition at the inlet
plane, treated by imposing a constant axial velocity ûx. The problem can be symbolically
written as

[LNS + iωB] [û; p̂] = F , (A9)

where LNS is the linearized Navier–Stokes operator (implicitly containing the
homogeneous boundary condition at the outlet), and F represents symbolically the
non-homogeneous boundary condition at the inlet. This problem is non-singular and
readily solved. Since p̂ has been set to zero (without loss of generality) along the outlet
boundary, the pressure drop p′

in − p′
out can be extracted from [û; p̂] by retrieving the mean

value of the p̂ component along the inlet boundary Γin of the computational domain; such
an operation can be written formally as p′

in = P[û, p̂], where P is a linear operator. The
impedance is then ultimately deduced as Zh = P · (LNS + iωB)−1 · F .

Appendix B. Properties of the compressible steady state
As illustrated in figure 15, the base flow is characterised by a recirculation region
originating from the upper corner of the hole. The pressure jump due to this recirculation
can be represented by the so-called discharge coefficient (also called the vena contracta
coefficient) αvena = R2

h/R2
J , where RJ is the effective radius of the jet. This function has

been tabulated by Fabre et al. (2020) as a function of Re and β in the incompressible case.
When taking into account the compressibility effects, the discharge coefficient (Bragg
1960) can be written in term of the dimensionless variables introduced in § 4.1 as

αvena = ṁ0

πR2
h

1 + γ M2Pin√
Tin

1
M

√√√√ 2
γ − 1

[(
1 + γ M2Pin

1 + γ M2Pout

)−2/γ

−
(

1 + γ M2Pin

1 + γ M2Pout

)−(γ+1)/γ
] ,

(B1)
which in the low Mach number limit can be approximated as

αvena = ṁ0

πR2
h

√
ρin(2(Pin − Pout) − 3M2(Pin − Pout)2

, (B2)
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Figure 15. Contour plot of the base flow q0 for β = 0.3, Re = 1400 and M = 5 × 10−2. (a) Spatial evolution
of the Mach number. (b) Spatial evolution of the sensitivity of the axial velocity with respect to the Mach
number ∇Mw0.
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Figure 16. Discharge coefficient as a function of Mach number for several Re for β = 0.3. Dots correspond to
computed values of αvena, lines correspond to the theoretical estimation, cf. Bragg (1960). (b) Axial velocity
profile of the sensitivity with respect to Mach number for β = 0.3, Re = 1600, M = 10−1 at z = 0.2.

and it coincides with the one employed by Fabre et al. (2020) at the incompressible limit.
Note that at large Reynolds numbers other simpler estimates exist, for instance, see the
discussion by Gilbarg (1960) for the compressible Borda tube, which has been revisited by
Durrieu et al. (2001) and compared against experimental evidence. Figure 16(a) displays
the effect of the Mach number on the discharge coefficient. It shows a good quantitative
agreement with the theoretical estimation, and it weakly increases with the Mach number.
Compressibility effects accelerate the bulk flow within the jet core, whereas the flow
within the recirculation region hardly changes (see the evolution of the sensitivity with
respect to the Mach number of the streamwise velocity in figures 16(b) and 15(b)). In
addition, it has been observed that the shear layer thickness remains unchanged with a
weak Mach number increase (M < 0.2). In § 6 it is shown that an increase of the Mach
number in the steady-state solution has a stabilizing effect, which can be attributed to an
attenuated recirculation region.

Appendix C. Nyquist curve – Cauchy’s argument principle

Let us review the use of the Nyquist criterion together with the drawing of Nyquist
curves. In the absence of poles in the real axis, the Nyquist plot is drawn along the
real axis. However, in the presence of a pole of the impedance in the real axis, one
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Figure 17. (a) The complex contour Γ of integration enclosing the unstable complex plane, where Cauchy’s
argument principle is applied. (b) Nyquist curve for the augmented system impedance along Γ .
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Figure 18. (a) Thresholds of the conditional instabilities C1, C2, C3 and C4 as a function of β and Re.
(b) Strouhal evolution with β. Solid lines are the boundaries of the conditional stability computed with
incompressible LNSE and dashed lines are the estimation with αvena = 0.76.

must take a contour that does not encircle the pole. In particular, the augmented system
impedance possess a pole at ω = 0, therefore, a complex contour that does not encircle
zero is employed as the one depicted in figure 17(a). In the evaluation of the impedance,
let us consider here without loss of generality the augmented system impedance Z(a)

(either Z(a) = Za or Z(a) = Zb) along the contour Γ , i.e. Z(a)(Γ ), which provides a direct
evaluation of the stability of the system. Provided that the contour of integration does not
encircle any pole of the system, which is satisfied by construction, the number of times that
the curve Z(a)(Γ ) encircles the origin in the counterclockwise direction determines the
number of zeros in the area surrounded by the contour Γ . In the condition that the contour
of integration Γ encloses the unstable complex plane, then any encirclement of the origin
implies that the system is unstable. To illustrate this, let us consider the Nyquist curve
represented in figure 17(b), where the curve Z(a)(Γ ) is oriented counterclockwise, and it
encircles twice the origin: this implies that the system has two unstable zeros. A more
careful evaluation reveals that this corresponds to a pair of conjugated complex zeros.

Additionally, impedance values for real ω can also provide an estimation of the complex
zeros whenever Im(ω) is of small magnitude. Here, let us detail the procedure followed
in § 3.3.1. We consider the case where the Nyquist curve is found near the origin. The
first scenario corresponds to a complex frequency ω = ωR + iωI = ω0 + εω1, where
ω0, ωR, ωI are real values, ω1 is considered to be complex and a small real parameter
ε � 1.

943 A48-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.417


J. Sierra-Ausin, D. Fabre, V. Citro and F. Giannetti

Provided the impedance Z(a)(ω) = Re(Z(a)(ω)) + iIm(Z(a)(ω)) = Z(a)
R (ω) + iZ(a)

I (ω)

is analytic, the first-order Taylor expansion at ω0 provides

0 = Z(a)(ω) = Z(a)(ω0) +
(

dZ(a)

dω

)
ω=ω0

(ω − ω0) + R1(ω), (C1)

where R1(ω) is the remainder of the Taylor expansion. The remainder of the expansion can
be shown to be bounded, for instance, using Cauchy’s integral formula and the maximum
principle (see, for instance, Rudin 1987) yields

|R1(ω)| ≤ Mr
|ω − ω0|2

r(r − |ω − ω0|) ≤ Mr
η2

1 − η
, with Mr ≡ max

|ω−ω0|=r
|Z(a)(ω)| (C2)

for |ω − ω0| < r and |ω − ω0|/r ≤ η < 1, where we have assumed that the impedance
function is holomorphic in a closed disk of radius r of the complex plane. Therefore,
the function R1(ω)/(ω − ω0) is also analytic within the disk. In such a way we can
approximate the value of zero ω as

ω − ω0 = Z(a)(ω0)(
dZ(a)

dω

)
ω=ω0

+ R1(ω)

ω − ω0

≈ Z(a)(ω0)(
dZ(a)

dω

)
ω=ω0

= Z(a)
R (ω0) + iZ(a)

I (ω0)(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

+ i

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

, (C3)

where the error of the approximation is

ε ≤

∣∣∣∣∣∣∣∣∣
Z(ω0)(

dZ
dω

)
ω=ω0

∣∣∣∣∣∣∣∣∣
η′

1 − η′ , (C4)

with η′ = |R1(ω)|/|ω − ω0|/|(dZ/dω)ω=ω0 |, because the radius of convergence of the
rational complex function 1/((dZ/dω)ω=ω0 + z) is equal to |(dZ/dω)ω=ω0 |. Thus,
the approximation (C3) converges uniformly far from the critical points of the
impedance. Furthermore, it provides good estimates whenever |Z(ω0)| ∼ ε � 1 and
|ω − ω0| ∼ ε � 1, which is the motivation to the condition (i) and the expansion in
frequency in § 3.3.1. Finally, note that (C3) could be used as a step in a Newton iteration,
whenever the initial guess ω0 is far from the zero of the impedance.

Multiplication by the complex conjugate of the denominator in (C3) leads to

εω1 ≈

(
Z(a)

R (ω0) + iZ(a)
I (ω0)

)⎛⎝(∂Z(a)
R (ω)

∂ωR

)
ω=ω0

− i

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(∂Z(a)

R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠2 . (C5)
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Acoustic instability prediction via an impedance criterion

Finally, one could split (C5) in real and imaginary parts, this yields the expression for ωR,

εRe(ω1) = ωR − ω0 ≈

⎛⎝Z(a)
R (ω0)

(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

+ Z(a)
I (ω0)

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(∂Z(a)

R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠2 ,

(C6)
and for ωI ,

εIm(ω1) = ωI ≈

⎛⎝Z(a)
I (ω0)

(
∂Z(a)

R (ω)

∂ωR

)
ω=ω0

− Z(a)
R (ω0)

(
∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠
⎛⎝(∂Z(a)

R (ω)

∂ωR

)
ω=ω0

⎞⎠2

+
⎛⎝(∂Z(a)

I (ω)

∂ωR

)
ω=ω0

⎞⎠2 . (C7)

Appendix D. Frequency selection argument

This appendix provides an argument explaining the quantification of the eigenvalues
observed for the cavity/open configuration.

The frequency of the sound generated is selected by considering the two elements that
compose the feedback loop of a class III aerodynamic whistle: the hydrodynamic-acoustic
wave interaction and the acoustic resonator. In this kind of mechanism, we can distinguish
two feedback loops, a first loop composed of the interaction of a hydrodynamic instability
with an acoustic wave and a second one which accounts for the interaction of the first
feedback loop with the acoustic resonator. A hydrodynamic-acoustic wave interaction
develops whenever the shear layer of the jet is unstable and the jet acts as a source
of energy, which occurs when the resistance of the hole is negative. The shear layer
instability is triggered at the leftmost corner of the hole, disturbances grow along the hole;
however, in the case when the shear layer is not sufficiently unstable (so self-sustained
oscillations arise by pure hydrodynamical arguments) it requires an acoustic wave to close
the loop, which is an instantaneous process in the low Mach number limit. For acoustically
compact source regions, the frequency selection of this mechanism is dominated by the
hydrodynamic instability, because the travel time of the acoustic wave is of lower order
of magnitude. Secondly, the cavity acts a resonator, selecting a set of discrete frequencies
among those associated with a negative resistance.

In the present configuration, there exist four branches of instability, each of them
denoted as Cn for n = 1, 2, 3, 4, which are characterised by a nearly constant Strouhal
number

St(n)
β = ω(n)β

2π
(D1)

as β is varied. The characteristic frequency of Cn branches is related by a frequency shift
St(n)

β = St(n−1)
β + ΔStβ , where ΔStβ ≈ [0.6, 0.7]. This frequency shift may be estimated

if one realizes that the global instability is the result of the constructive interaction
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Figure 19. Diagram of the non-local interaction leading to global instability.

between two travelling waves: a downstream-travelling wave, which is excited about the
hole lip and propagates around the jet core position, and an upstream-travelling wave that
propagates backwards. The non-local constructive interaction of such waves gives rise to
a self-sustained global in time instability, which, in some circumstances, is able to radiate
an intense acoustic field.

In the following analysis we reconsider the discharge coefficient αvena =√
ρU2

M/2(Pin − Pout), which can be thought of as a measure of the vena contracta
phenomenon, assuming that the jet contracts to a top-hat jet with constant velocity UJ
and radius RJ . Then applying Bernouilli law, one obtains αvena = UM/UJ = πR2

J/πR2
h

that was introduced in Fabre et al. (2019) in the discussion of the work of Howe (1979),
which is classically associated with the pressure loss across the aperture, and it relates the
mean velocity UM with the jet velocity UJ . In Fabre et al. (2019, § 2.5 and Appendix A)
the importance of the vena contracta coefficient αvena and the actual value of the phase
velocity of the Kelvin–Helmholtz instability, where the phase velocity depends on the
frequency ω but which is around Uc = UJ/2 for sufficiently high ω. The value of the
discharge coefficient tends asymptotically to αvena → 0.61 for large Re; however, in the
range of Reynolds numbers where transition occurs αvena is maximal and takes values
αvena ∈ [0.7, 0.76]. In the following, we consider a constant discharge coefficient αvena =
0.76, which was the value reported in Fabre et al. (2020, figure 5) for most of β in the
range of Reynolds numbers where the transition occurs.

In order to estimate the frequency shift ΔStβ let us consider the travel time of each
travelling wave past the hole. The hydrodynamic travelling wave takes ΔKH = Lh/Uc =
2αvenaLh/UM and the acoustic wave Δac = MLh/UM; therefore, the total travelling time

Δ = ΔKH + Δac = Lh(2αvena + M)

UM
≈ 2αvena

Lh

UM
, f (n) = 2n − 1

2Δ
, Δf = 1

Δ
,

(D2a-c)
where it is considered that M � 1 and the convective velocity of the hydrodynamic
perturbation is 2αvena

UM
as it is displayed in figure 19. Thus, the associated Strouhal shift

ΔStβ = ΔfLh

UM
≈ 1

2αvena
. (D3)

Similarly, the Strouhal frequency of each Cn branch is estimated as

St(n)
β = 2n − 1

4αvena
, n = 1, 2, 3 . . . . (D4)

In the previous reasoning, it has been implicitly assumed that only odd mode structures
as those depicted in Fabre et al. (2020, figure 9) lead to a conditional instability.
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Acoustic instability prediction via an impedance criterion

The superposition of the base flow with odd modes (respectively even) at the instant of the
cycle where the flow rate through the hole is maximum results in an upward (respectively
downward) displacement of the shear layer, thus, pressure is increased (respectively
decreased) in the presence of odd modes (respectively even). This implies that the hole
impedance is negative, which is the criterion of existence of conditional stability.

Finally, let us discuss the influence of compressibility regarding modifications in
frequency at the threshold of instability for each of the unstable modes. Compressibility
induces a weak variation in the vena contracta coefficient, see figure 16(a), while
the threshold of instability is significantly modified for a given value of β near the
left asymptote for conditional instabilities (figure 18a) and hydrodynamic instabilities
(figure 11a). Thus, for short holes β (here short refers to a value of β near a vertical
asymptote of the corresponding instability), the critical Reynolds number is considerably
modified by compressible effects, which in turn induces a change in the vena contracta
coefficient (more important than the variation of the vena contracta by compressibility
at constant Reynolds number). For those cases, one could evaluate the shift in frequency
δ|MΔStβ = ΔStβ(M + ΔM) − ΔStβ(M) as

δ|MΔStβ = −2 (αvena(Rec(M + ΔM), M + ΔM) − αvena(Rec(M), M)) + ΔM

(2αvena(Rec(M), M) + M)2 , (D5)

where the first term, the variation in the vena contracta due to a variation in Mach number,
is negligible with respect to the variation in Mach number for long holes, and thus, the
variation of frequency for those instabilities is of lesser importance.

Appendix E. Computational domains and absorbing boundary layer

This section discusses the design of computational domains used for the computation
of steady states and eigenmodes with the full compressible formulation, and steady
states and the forced harmonic response with the incompressible formulation. The
computational strategy must be designed in such a way as to avoid the presence of spurious
eigenvalues/eigenmodes. The creation of meshes for the full compressible formulation
follows a block-structured strategy, similar to the one sketched in figure 4. The domain is
divided into three regions: an inner region with the highest vertex density, a mid region
with intermediate vertex density and a coarser region for the absorbing layer. Meshes
employed for the incompressible case are composed of two regions, a physical domain
with the highest vertex density and a coarser region for the absorbing layer. Table 1 lists
a number of computational meshes employed in this study (M2, M3, M4 and M5 for the
full compressible case, and M1 for the incompressible case). However, such a list is not
exhaustive because in addition to the block-strategy refinement, the computational domain
has been locally refined following an adaptive local refinement procedure, where the metric
for the refinement is based on the steady state and on the eigenmodes (respectively steady
state and forced harmonic response in the incompressible case), cf. Hecht (2012) and Fabre
et al. (2018).

The absorbing boundary layer corresponds to the complex mapping technique (Sierra
et al. 2020) where a coordinate transformation G is defined as follows:

Gz : R → C such that z = Gz(Z) = [1 + iγz,cgz(Z)
]

Z,

Gr : R → C such that r = Gr(R) = [1 + iγr,cgr(R)
]

R.

}
(E1)

Here gz(Z) (respectively gr(R)) has to be chosen as a smooth function such as gz(Z) = 0
for Z < Z0 and gz(Z) ≈ 1 for Z > Z0 + Lc up to Zmax. The complex mapping acts on
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Zmax Rmax Z0 Lc γz,c R0 Rc γr,c ntri

M1 50 50 10 2.5 0.3 5 2.5 0.3 42 460 tri.
M2 300 300 10 5 0.3 10 2.5 0.3 165 841 tri.
M3 600 600 10 5 0.3 10 2.5 0.3 235 874 tri.
M4 600 600 170 5 0.3 170 5 0.3 314 525 tri.
M5 1500 1500 10 5 0.3 10 2.5 0.3 413 356 tri.

Table 1. Meshes used for cases where the complex mapping technique is adopted. Note: the smooth transition
functions are defined as gz(Z) = tanh([(Z − Z0)/Lc]2) and gr(R) = tanh([(R − R0)/Rc]2). In the following,
Lmax = z−∞ + zCM = z∞ + zCM and Rmax = r∞ + rCM (figure 4).

a finite region of length zCM = Zmax − (Z0 + Lc). The function gz is defined as gz(Z) =
tanh([(Z − Z0)/Lc]2). The application of this map to the linearized Navier–Stokes requires
that each spatial derivative, within the complex mapped region, is modified as

∂

∂z
≡ Hz

∂

∂Z
with Hz(Z) =

(
∂Gz

∂Z

)−1

. (E2)

An example of parameters for the usage of the complex mapping layer for the
incompressible case is listed in table 1 (M1). In the full compressible formulation, one
must pay particular attention to the extension of the complex mapping region, which
here is selected to cover at least two acoustic wavelengths, i.e. zCM = rCM > 1/St M. For
instance, the largest acoustic wavelength in this study corresponds to the validation case
in § 5.1, where λac ≈ 600 (St ≈ 1/3 and M = 5 × 10−3), for which M5 is an appropriate
choice.
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