On Gap Properties and Instabilities of p-Yang-Mills Fields

Qun Chen and Zhen-Rong Zhou

Abstract. We consider the p-Yang-Mills functional $(p \geq 2)$ defined as $Y M_{p}(\nabla):=\frac{1}{p} \int_{M}\left\|R^{\nabla}\right\|^{p}$. We call critical points of $Y M_{p}(\cdot)$ the p-Yang-Mills connections, and the associated curvature R^{∇} the p-Yang-Mills fields. In this paper, we prove gap properties and instability theorems for p-Yang-Mills fields over submanifolds in \mathbb{R}^{n+k} and \mathbb{S}^{n+k}.

1 Introduction

Let M be a compact Riemannian manifold and E a Riemannian vector bundle over M with structure group G. Denote the space of E-valued p-forms by

$$
\Omega^{p}(E)=\Gamma\left(\Lambda^{p} T^{*} M \otimes E\right)
$$

A connection ∇ on E is $\nabla: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ which satisfies

$$
\nabla(f \sigma)=d f \otimes \sigma+f \nabla \sigma, \quad \forall f \in C^{\infty}(M), \sigma \in \Omega^{0}(E)
$$

The space of connections on E is denoted by \mathcal{C}_{E}. For each $\nabla \in \mathcal{C}_{E}$, the curvature 2-form $R^{\nabla} \in \Omega^{2}\left(\mathfrak{g}_{E}\right)$ is defined by $R_{X, Y}^{\nabla}:=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$, where \mathfrak{g}_{E} is the bundle of the Lie algebra of G over M on which there is an invariant metric, and this induces a metric in $\Omega^{2}\left(\mathfrak{g}_{E}\right)$. For $p \geq 2$, we define the p-Yang-Mills functional as

$$
\begin{equation*}
Y M_{p}(\nabla):=\frac{1}{p} \int_{M}\left\|R^{\nabla}\right\|^{p} . \tag{1.1}
\end{equation*}
$$

We call critical points of $Y M_{p}(\cdot)$ the p-Yang-Mills connections, and the associated curvature R^{∇} the p-Yang-Mills fields. When $p=2$, (1.1) is the usual Yang-Mills functional.

At each minimizer ∇ of the p-Yang-Mills functional, the second variation is nonnegative:

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} Y M_{p}\left(\nabla^{t}\right)\right|_{t=0} \geq 0 \tag{1.2}
\end{equation*}
$$

Received by the editors April 22, 2005.
Partially supported by NSFC(Grant No.10571068), CSCSE and Key Laboratory Research Program of Hubei Province.

AMS subject classification: Primary: 58E15; Secondary: 53C05.
Keywords: p-Yang-Mills field, gap property, instability, submanifold.
(c) Canadian Mathematical Society 2007.
for any smooth family of connections ∇^{t}, with $|t|<\varepsilon, \nabla^{0}=\nabla$. In general, we call a connection $\nabla \in \mathcal{C}_{E}$ satisfying (1.2) weakly stable. Otherwise, we call ∇ is unstable.

The case $p=2$, i.e., the usual Yang-Mills functional, has been intensively studied. In the well-known papers [1,2], Bourguignon and Lawson obtained a series of results on the stability and gap phenomena of Yang-Mills fields over \mathbb{S}^{n} and other locally homogeneous spaces. Among other things, they proved the following.

Theorem A ([2]) There are no weakly stable Yang-Mills fields over the Euclidean sphere \mathbb{S}^{n} for $n \geq 5$.

Theorem B ([2]) Let R^{∇} be a Yang-Mills field over $\mathbb{S}^{n}(n \geq 5)$ which satisfies the pointwise condition

$$
\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}
$$

Then $R^{\nabla} \equiv 0$.
Xin [8] generalized the above instability result to Yang-Mills fields over compact submanifold M^{n} of the Euclidean space \mathbb{R}^{n+k} under an assumption on the second fundamental form. Namely, he proved the following.

Theorem C ([8]) Let M^{n} be an n-dimensional compact submanifold in \mathbb{R}^{n+k} with the second fundamental form $h(\cdot, \cdot)$ satisfying the pointwise condition

$$
\sum_{t}\left[2\left\langle h\left(e_{t}, e_{i}\right), h\left(e_{t}, e_{j}\right)\right\rangle-\left\langle h\left(e_{t}, e_{t}\right), h\left(e_{i}, e_{j}\right)\right\rangle\right] \delta_{k l}+2\left\langle h\left(e_{i}, e_{j}\right), h\left(e_{k}, e_{l}\right)\right\rangle \leq b \delta_{i j} \delta_{k l}
$$

for $1 \leq i, j, k, l \leq n$, where $\left\{e_{i}\right\}$ is local orthonormal frame on M and $b<0$ is a constant. Then any Yang-Mills field over M is unstable.

Instability of Yang-Mills fields over submanifolds of spheres \mathbb{S}^{n+k} was obtained by Shen [4], and by Kobayashi, Ohnita and Takeuchi [3]. Results for the case of convex hypersurfaces in \mathbb{R}^{n+1} and compact symmetric spaces can also be found in [3].

Actually, the p-Yang-Mills functional (1.1) was first considered by Uhlenbeck [6] who proved a weak compactness theorem for sequences of connections $\left\{\nabla_{n}\right\}$ with uniformly bounded $Y M_{p}\left(\nabla_{n}\right)$. As a geometric variational model, the p-Yang-Mills functional is a natural generalization of the usual Yang-Mills functional and has interests in its own right. Recall the similar case of p-harmonic maps, where a satisfactory theory of representing homotopy classes is established, and new simple proofs of many well-known theorems in geometry such as the Cartan-Hadamard theorem, the Preisman theorem, the Gromoll-Wolf (or Lawson-Yau) theorem and the BochnerFrankel theorems can be given by using the tools of p-harmonic maps, $c f$. [7]. On the other hand, a good understanding of the p-Yang-Mills functionals should be helpful for the study of the usual Yang-Mills functionals, as we have seen in [6], and similarly in the well-known work [5] of Sacks and Uhlenbeck who used p-harmonic maps to deduce significant results on the usual harmonic maps. Therefore, it seems natural
and interesting to investigate the p-Yang-Mills functional (1.1). In this paper, we focus on instability and gap phenomena of p-Yang-Mills fields over submanifolds M^{n} of the Euclidean spaces \mathbb{R}^{n+k} and the spheres \mathbb{S}^{n+k}.

Suppose M^{n} is a submanifold of N^{n+k}, and denote the second fundamental form by $h(\cdot, \cdot)$. Set the index ranges $1 \leq i, j \leq n ; n+1 \leq \mu \leq n+k$, and choose local orthonormal frames $\left\{e_{1}, e_{2}, \ldots, e_{n+k}\right\}$ on N such that $\left\{e_{i} \mid i=1,2, \ldots, n\right\}$ is tangent to M and $\left\{e_{\mu} \mid \mu=n+1, \ldots, n+k\right\}$ is normal to M. Let $h\left(e_{i}, e_{j}\right):=h_{i j}^{\mu} e_{\mu}$ and $H^{\mu}:=\sum_{i} h_{i i}^{\mu}$; here we use the Einstein summation convention. We will prove the following results.
Theorem 3.1 Let $M^{n}(n \geq 5)$ be a submanifold of \mathbb{R}^{n+k} satisfying either

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq(2-n) \delta_{j k} \delta_{i l}
$$

or

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq-(2-n) \delta_{i k} \delta_{j l} .
$$

If a p-Yang-Mills field R^{∇} over M satisfies

$$
\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}
$$

then $R^{\nabla} \equiv 0$.
If $M^{n}=\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$, then M satisfies the condition in the above theorem. Therefore when $p=2$, we obtain Theorem B. Thus Theorem 3.1 is a generalization of a result in [2]. For the case of submanifolds of the Euclidean spheres we have the following.
Theorem 3.2 Let $M^{n}(n \geq 5)$ be a submanifold of \mathbb{S}^{n+k} satisfying either

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq b \delta_{j k} \delta_{i l}
$$

or

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq-b \delta_{i k} \delta_{j l}
$$

for some $b \leq 0$. If a p-Yang-Mills field R^{∇} over M satisfies

$$
\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}
$$

then $R^{\nabla} \equiv 0$.
For the instability of p-Yang-Mills fields, we will prove the following results in the cases of submanifolds of \mathbb{R}^{n+k} and \mathbb{S}^{n+k}.
Theorem 4.1 Let M^{n} be a submanifold of \mathbb{R}^{n+k} satisfying

$$
\begin{aligned}
C_{i j k l s r} & :=\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}+2(p-2) h_{i k} h_{s r} \delta_{j l} \\
& \leq b \delta_{i k} \delta_{j l} \delta_{s r}
\end{aligned}
$$

for some constant $b<0$. Then any $p-Y a n g-M i l l s$ field over M is unstable.

Remark When $p=2$, our result is just Theorem C above (Xin [8]). For $M=\mathbb{S}^{n}$, we have $C_{i j k l s r}=(2 p-n) \delta_{i k} \delta_{j l} \delta_{s r}$, so any p-Yang-Mills field over \mathbb{S}^{n} with $n>2 p$ is unstable.
Theorem 4.3 Let M^{n} be a submanifold of \mathbb{S}^{n+k} satisfying

$$
\begin{aligned}
C_{i j k l s r} & :=\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}+2(p-2) h_{i k} h_{s r} \delta_{j l} \\
& <(n-2 p) \delta_{i k} \delta_{j l} \delta_{s r} .
\end{aligned}
$$

Then any p-Yang-Mills field over M is unstable.

2 Preliminaries

Denote by $d^{\nabla}: \Omega^{p}\left(\mathfrak{g}_{E}\right) \rightarrow \Omega^{p+1}\left(\mathfrak{g}_{E}\right)$ the exterior differential operator with respect to ∇, and by δ^{∇} its adjoint operator. The Laplacian is defined by $\Delta^{\nabla}=d^{\nabla} \delta^{\nabla}+\delta^{\nabla} d^{\nabla}$. Set $D=\left.\frac{d}{d t} \nabla^{t}\right|_{t=0}$, where $\nabla^{t}=\nabla+A^{t}, A^{t} \in \Omega^{1}\left(\mathfrak{g}_{E}\right)$ with $A^{0}=0$. The associated curvature $R^{\nabla^{t}}$ of ∇^{t} is

$$
R^{\nabla^{t}}=R^{\nabla}+d^{\nabla} A^{t}+\frac{1}{2}\left[A^{t} \wedge A^{t}\right] .
$$

Recall that for $\phi, \psi \in \mathfrak{g}_{E},[\phi \wedge \psi]_{X, Y}:=\left[\phi_{X}, \psi_{Y}\right]-\left[\phi_{Y}, \psi_{X}\right]$.
By direct computation, we have the following first variational formula:

$$
\begin{equation*}
\frac{d}{d t} Y M_{p}\left(\nabla^{t}\right)=\int_{M}\left\|R^{\nabla^{t}}\right\|^{p-2}\left\langle d^{\nabla}\left(\frac{d A^{t}}{d t}\right)+\left[A^{t} \wedge \frac{d A^{t}}{d t}\right], R^{\nabla^{t}}\right\rangle \tag{2.1}
\end{equation*}
$$

It follows easily that

$$
\left.\frac{d}{d t} Y M_{p}\left(\nabla^{t}\right)\right|_{t=0}=\int_{M}\left\langle\delta^{\nabla}\left(\left\|R^{\nabla}\right\|^{p-2} R^{\nabla}\right), D\right\rangle
$$

Consequently, the Euler-Lagrange equation of $Y M_{p}(\cdot)$ is

$$
\begin{equation*}
\delta^{\nabla}\left(\left\|R^{\nabla}\right\|^{p-2} R^{\nabla}\right)=0 \tag{2.2}
\end{equation*}
$$

From

$$
\frac{d R^{\nabla^{t}}}{d t}=d^{\nabla} \frac{d A^{t}}{d t}+\frac{1}{2} \frac{d}{d t}\left[A^{t} \wedge A^{t}\right]
$$

and (2.1) we have

$$
\frac{d}{d t} Y M_{p}\left(\nabla^{t}\right)=\int_{M}\left\|R^{\nabla^{t}}\right\|^{p-2}\left\langle\frac{d R^{\nabla^{t}}}{d t}, R^{\nabla^{t}}\right\rangle
$$

Furthermore,

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} Y M_{p}\left(\nabla^{t}\right)=(p-2) & \int_{M}\left\|R^{\nabla^{t}}\right\|^{p-4}\left\langle\frac{d R^{\nabla^{t}}}{d t}, R^{\nabla^{t}}\right\rangle^{2} \\
& +\int_{M}\left\|R^{\nabla^{t}}\right\|^{p-2}\left\|\frac{d R^{\nabla^{t}}}{d t}\right\|^{2}+\int_{M}\left\langle\frac{d^{2} R^{\nabla^{t}}}{d t^{2}}, R^{\nabla^{t}}\right\rangle\left\|R^{\nabla^{t}}\right\|^{p-2}
\end{aligned}
$$

Hence, we have the following second variational formula:

$$
\begin{align*}
I_{p}(D):= & \left.\frac{d^{2}}{d t^{2}} Y M_{p}\left(\nabla^{t}\right)\right|_{t=0} \tag{2.3}\\
= & (p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left\langle d^{\nabla} D, R^{\nabla}\right\rangle^{2}+\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|d^{\nabla} D\right\|^{2} \\
& +\int_{M}\left\langle[D \wedge D], R^{\nabla}\right\rangle\left\|R^{\nabla}\right\|^{p-2} .
\end{align*}
$$

Next, we derive a useful integral identity via the Weitzenböck formula. Let $\varphi \in$ $\Omega^{2}\left(\mathfrak{g}_{E}\right)$, and let ω be a linear map-valued 2-form with $(\varphi \circ \omega)_{X, Y}:=\frac{1}{2} \varphi_{e_{j}, \omega_{X, Y} e_{j}}$. Denote by R and Ric the Riemannian curvature tensor and Ricci curvature operator of M, respectively. Set

$$
\begin{aligned}
(\operatorname{Ric} \wedge I)_{X, Y} & :=\operatorname{Ric}(X) \wedge Y+X \wedge \operatorname{Ric}(Y) \\
\mathcal{R}^{\nabla}(\varphi)_{X, Y} & :=\left[R_{e_{j}, X}^{\nabla}, \varphi_{e_{j}, Y}\right]-\left[R_{e_{j}, Y}^{\nabla}, \varphi_{e_{j}, X}\right]
\end{aligned}
$$

where $(X \wedge Y) Z:=\langle X, Z\rangle Y-\langle Y, Z\rangle X$.
Lemma 2.1 For any p-Yang-Mills field R^{∇}, we have

$$
\begin{align*}
\int_{M}\left\|R^{\nabla}\right\|^{p-2} \| & \nabla R^{\nabla}\left\|^{2}+(p-2) \int_{M}\right\| R^{\nabla}\left\|^{p-2}\right\| \nabla\left\|R^{\nabla}\right\| \|^{2} \tag{2.4}\\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle R^{\nabla} \circ(\operatorname{Ric} \wedge I+2 R), R^{\nabla}\right\rangle \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle\mathcal{R}\left(R^{\nabla}\right), R^{\nabla}\right\rangle=0
\end{align*}
$$

Proof For any $\varphi \in \Omega^{2}\left(\mathfrak{g}_{E}\right)$, we have the following Weitzenböck formula [2]:

$$
\Delta^{\nabla} \varphi=\nabla^{*} \nabla \varphi+\varphi \circ(\operatorname{Ric} \wedge I+2 R)+\mathcal{R}^{\nabla}(\varphi)
$$

It follows that

$$
\frac{1}{2} \Delta\|\varphi\|^{2}=\left\langle\Delta^{\nabla} \varphi, \varphi\right\rangle-\|\nabla \varphi\|^{2}-\langle\varphi \circ(\text { Ric } \wedge I+2 R), \varphi\rangle-\left\langle\mathcal{R}^{\nabla}(\varphi), \varphi\right\rangle
$$

Consequently,

$$
\begin{align*}
\frac{1}{p} \Delta\|\varphi\|^{p}= & \frac{1}{2}\|\varphi\|^{p-2} \Delta\|\varphi\|^{2}-(p-2)\|\varphi\|^{p-2}\|\nabla\| \varphi\| \|^{2} \tag{2.5}\\
= & \|\varphi\|^{p-2}\left[\left\langle\Delta^{\nabla} \varphi, \varphi\right\rangle-\|\nabla \varphi\|^{2}-\langle\varphi \circ(\operatorname{Ric} \wedge I+2 R), \varphi\rangle\right. \\
& \left.\quad-\left\langle\mathcal{R}^{\nabla}(\varphi), \varphi\right\rangle\right]-(p-2)\|\varphi\|^{p-2}\|\nabla\| \varphi\| \|^{2} \\
= & \|\varphi\|^{p-2}\left\langle\Delta^{\nabla} \varphi, \varphi\right\rangle-\|\varphi\|^{p-2}\|\nabla \varphi\|^{2} \\
& \quad-\|\varphi\|^{p-2}\langle\varphi \circ(\operatorname{Ric} \wedge I+2 R), \varphi\rangle \\
& \quad-\|\varphi\|^{p-2}\left\langle\mathcal{R}^{\nabla}(\varphi), \varphi\right\rangle-(p-2)\|\varphi\|^{p-2}\|\nabla\| \varphi\| \|^{2}
\end{align*}
$$

Now let $\varphi=R^{\nabla}$. Then by (2.2) we have $\delta^{\nabla}\left(\left\|R^{\nabla}\right\|^{p-2} R^{\nabla}\right)=0$. Recall that R^{∇} satisfies the Bianchi identity: $d^{\nabla} R^{\nabla}=0$. From these we see that

$$
\begin{align*}
\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle\Delta^{\nabla} R^{\nabla}, R^{\nabla}\right\rangle & =\int_{M}\left\langle d^{\nabla} \delta^{\nabla} R^{\nabla},\left\|R^{\nabla}\right\|^{p-2} R^{\nabla}\right\rangle \tag{2.6}\\
& =\int_{M}\left\langle\delta^{\nabla} R^{\nabla}, \delta^{\nabla}\left(\left\|R^{\nabla}\right\|^{p-2} R^{\nabla}\right)\right\rangle \\
& =0
\end{align*}
$$

Integrating (2.5) with $\varphi=R^{\nabla}$ and using (2.6), we obtain (2.4).
Let us choose orthonormal frames $\left\{X_{a}\right\}$ of \mathfrak{g}_{E}, and let

$$
R_{e_{i}, e_{j}}^{\nabla}:=f_{i j}^{a} X_{a}, \quad\left(\nabla_{e_{k}} R^{\nabla}\right)_{e_{i}, e_{j}}:=f_{i j k}^{a} X_{a}
$$

Lemma 2.2

(i) Let M^{n} be a submanifold of the Euclidean space \mathbb{R}^{n+k}. Then

$$
\left\langle R^{\nabla} \circ(\operatorname{Ric} \wedge I+2 R), R^{\nabla}\right\rangle=\left[-\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}+h_{i k}^{\mu} h_{j l}^{\mu}\right] f_{j i}^{a} f_{k l}^{a}
$$

(ii) Let M^{n} be a submanifold of the sphere \mathbb{S}^{n+k}. Then
(2.7) $\left\langle R^{\nabla} \circ(\operatorname{Ric} \wedge I+2 R), R^{\nabla}\right\rangle$

$$
=\left[-\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}+h_{i k}^{\mu} h_{j l}^{\mu}\right] f_{j i}^{a} f_{k l}^{a}+2(n-2)\left\|R^{\nabla}\right\|^{2}
$$

Proof (i) By using the Gauss equation, we can write the Riemannian curvature tensor and the Ricci curvature of M as

$$
R_{i j k l}=h_{i k}^{\mu} h_{j l}^{\mu}-h_{i l}^{\mu} h_{j k}^{\mu} \quad \text { and } \quad r_{j l}=H^{\mu} h_{j l}^{\mu}-h_{j i}^{\mu} h_{i l}^{\mu}
$$

respectively. Then

$$
\begin{aligned}
\left\langle R^{\nabla} \circ(R i c \wedge I+2 R), R^{\nabla}\right\rangle= & \frac{1}{2}\left[-2 r_{l j}\left\langle R_{e_{j}, e_{k}}^{\nabla}, R_{e_{k}, e_{l}}^{\nabla}\right\rangle+R_{i j k l}\left\langle R_{e_{j}, e_{i}}^{\nabla}, R_{e_{k}, e_{l}}^{\nabla}\right\rangle\right] \\
= & \frac{1}{2}\left[-2\left(H^{\mu} h_{j l}^{\mu}-h_{j i}^{\mu} h_{i l}^{\mu}\right)\left\langle R_{e_{j}, e_{k}}^{\nabla}, R_{e_{k}, e_{l}}^{\nabla}\right\rangle\right. \\
& \left.+\left(h_{i k}^{\mu} h_{j l}^{\mu}-h_{i l}^{\mu} h_{j k}^{\mu}\right)\left\langle R_{e_{j}, e_{i}}^{\nabla}, R_{e_{k}, e_{l}}^{\nabla}\right\rangle\right] \\
= & -\left(H^{\mu} h_{j l}^{\mu}-h_{j i}^{\mu} h_{i l}^{\mu}\right) f_{j k}^{a} f_{k l}^{a}+\frac{1}{2}\left(h_{i k}^{\mu} h_{j l}^{\mu}-h_{i l}^{\mu} h_{j k}^{\mu}\right) f_{j i}^{a} f_{k l}^{a} \\
= & -\left(H^{\mu} h_{j l}^{\mu}-h_{j i}^{\mu} h_{i l}^{\mu}\right) f_{j k}^{a} f_{k l}^{a}+h_{i k}^{\mu} h_{j l}^{\mu} f_{j i}^{a} f_{k l}^{a} \\
= & {\left[-\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu} \delta_{k i}+h_{i k}^{\mu} h_{l j}^{\mu}\right] f_{j i}^{a} f_{k l}^{a} .\right.}
\end{aligned}
$$

(ii) In this case, the Riemannian and Ricci curvature tensors can be written as

$$
R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\left(h_{i k}^{\mu} h_{l j}^{\mu}-h_{i l}^{\mu} h_{j k}^{\mu}\right) \quad \text { and } \quad r_{j l}=(n-1) \delta_{j l}+H^{\mu} h_{j l}^{\mu}-h_{i j}^{\mu} h_{i l}^{\mu},
$$

respectively, and (2.7) can be proved similarly.
Later on, we will need the following.
Lemma 2.3 ([2]) If $\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}$, then for $n \geq 3$, we have

$$
\left|\left\langle\left[R_{e_{k}, e_{i}}^{\nabla}, R_{e_{i}, e_{j}}^{\nabla}\right], R_{e_{j}, e_{k}}^{\nabla}\right\rangle\right| \leq 2(n-2)\left\|R^{\nabla}\right\|^{2} .
$$

Furthermore, when $n \geq 5$ and $R^{\nabla} \neq 0$, the inequality is strict.
Proof This is a corollary of [2, Proposition 5.6].

3 Gap Phenomena of p-Yang-Mills Fields

First, let M^{n} be a submanifold of \mathbb{R}^{n+k}. Suppose R^{∇} is a p-Yang-Mills field over M. In this case, we have the following theorem on the gap phenomena of R^{∇}.

Theorem 3.1 Suppose $M^{n}(n \geq 5)$ is a submanifold of \mathbb{R}^{n+k} satisfying either

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq(2-n) \delta_{j k} \delta_{i l}
$$

or

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq-(2-n) \delta_{i k} \delta_{j l} .
$$

If a p-Yang-Mills field R^{∇} over M satisfies

$$
\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}
$$

then $R^{\nabla} \equiv 0$.
Proof By Lemma 2.1,

$$
\begin{aligned}
\int_{M} \| & \left\|R^{\nabla}\right\|^{p-2}\left\|\nabla R^{\nabla}\right\|^{2}+(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2} \\
& =-\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle R^{\nabla} \circ(\text { Ric } \wedge I+2 R), R^{\nabla}\right\rangle-\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle \\
& :=(\mathrm{I})+(\mathrm{II}) .
\end{aligned}
$$

Using Lemma 2.2(i) and the assumptions on $h_{i j}^{\mu}$ of M, we have

$$
(\mathrm{I}) \leq 2(2-n) \int_{M}\left\|R^{\nabla}\right\|^{p} .
$$

From Lemma 2.3, and noting that $\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle=\left\langle\left[R_{e_{k}, e_{i}}^{\nabla}, R_{e_{i}, e_{j}}^{\nabla}\right], R_{e_{j}, e_{k}}^{\nabla}\right\rangle$, we see that if R^{∇} is not identically zero, then

$$
(\mathrm{II})<2(n-2) \int_{M}\left\|R^{\nabla}\right\|^{p}
$$

Combining these we deduce that

$$
\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|\nabla R^{\nabla}\right\|^{2}+(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2}<0
$$

which is a contradiction. Thus, $R^{\nabla} \equiv 0$.
In a similar way, we can prove the following.
Theorem 3.2 Let $M^{n}(n \geq 5)$ be a submanifold of \mathbb{S}^{n+k} satisfying either

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq b \delta_{j k} \delta_{i l}
$$

or

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu} \leq-b \delta_{i k} \delta_{j l}
$$

for some $b \leq 0$. If a p-Yang-Mills field R^{∇} over M satisfies

$$
\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}
$$

then $R^{\nabla} \equiv 0$.
We remark that if we let $M^{n}=S^{n} \subset \mathbb{R}^{n+1}$ in Theorem 3.1, then it is easy to see that

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu}=(n-2) \delta_{j l} \delta_{k i}
$$

Therefore, Theorem 3.1 generalizes the theorem of Bourguignon and Lawson mentioned above (Theorem B). More generally, for convex hypersurfaces M^{n} of \mathbb{R}^{n+1}, if we write $h_{i j}^{n+1}:=h_{i j}=\lambda_{i} \delta_{i j}$ where λ_{i} is the i-th principal curvature of M, $i=1,2, \ldots, n, H:=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$, then

$$
\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}-h_{i k}^{\mu} h_{j l}^{\mu}=\left(H \lambda_{j}-\lambda_{j} \lambda_{l}-\lambda_{i} \lambda_{j}\right) \delta_{j l} \delta_{k i}
$$

We thus obtain the following.
Corollary 3.3 Suppose $M^{n}(n \geq 5)$ is a convex hypersurface of \mathbb{R}^{n+1} satisfying

$$
\lambda_{j}\left(H-\lambda_{i}-\lambda_{j}\right) \leq n-2, \quad i, j=1,2, \ldots, n
$$

where λ_{i} is the i-th principal curvature and H is the mean curvature of M. Then any p-Yang-Mills field R^{∇} over M with $\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}$ must identically vanish.

Similarly, we also have the following.
Corollary 3.4 Suppose $M^{n}(n \geq 5)$ is a convex hypersurface of \mathbb{S}^{n+1} satisfying

$$
\lambda_{j}\left(H-\lambda_{i}-\lambda_{j}\right) \leq 0, \quad i, j=1,2, \ldots, n
$$

where λ_{i} is the i-th principal curvature and H is the mean curvature of M. Then any p-Yang-Mills field R^{∇} over M with $\left\|R^{\nabla}\right\|^{2} \leq \frac{1}{2}\binom{n}{2}$ must identically vanish.

4 Instability of p-Yang-Mills Fields

In this section, we will prove some results on instability of p-Yang-Mills fields R^{∇} over submanifolds M^{n} of \mathbb{R}^{n+k} and \mathbb{S}^{n+k}.

Theorem 4.1 Let M^{n} be a submanifold of \mathbb{R}^{n+k} satisfying

$$
C_{i j k l s r}:=\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}+2(p-2) h_{i k} h_{s r} \delta_{j l} \leq b \delta_{i k} \delta_{j l} \delta_{s r}
$$

for some constant $b<0$. Then any $p-Y a n g-M i l l s$ field over M is unstable.
Proof We first note that for tangent vectors V, X to M, let $D=i_{V} R^{\nabla}$. Then $D_{X}=$ $\left(i_{V} R^{\nabla}\right)_{X}=R_{V, X}^{\nabla}$, and

$$
\begin{aligned}
\left(d^{\nabla} D\right)_{e_{i}, e_{j}} & =\left(\nabla_{e_{i}} D\right)_{e_{j}}-\left(\nabla_{e_{j}} D\right)_{e_{i}} \\
& =\left(\nabla_{e_{i}} R^{\nabla}\right)_{V, e_{j}}-\left(\nabla_{e_{j}} R^{\nabla}\right)_{V, e_{i}}+R_{\nabla_{e_{i}} V, e_{j}}^{\nabla}-R_{\nabla_{e_{j}} V, e_{i}}^{\nabla} .
\end{aligned}
$$

Now take the standard orthonormal basis $\left\{E_{A} \mid A=1,2, \ldots, n+k\right\}$ of \mathbb{R}^{n+k}, and choose $V_{A}:=v_{A}^{i} e_{i}$ to be the tangent part of E_{A}. Here the indices A, B, C run from 1 to $n+k$. We note that

$$
\begin{equation*}
v_{A}^{B} v_{A}^{C}=\delta_{B C}, \quad \nabla_{e_{i}} V_{A}=v_{A}^{\mu} h_{i j}^{\mu} e_{j} \tag{4.1}
\end{equation*}
$$

Then for $D_{A}:=i_{V_{A}} R^{\nabla}, A=1,2, \ldots, n+k$, it follows from (2.3) that

$$
\begin{align*}
& \sum_{A} I_{p}\left(D_{A}\right)=(p-2) \sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2} \tag{4.2}\\
& \quad+\sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|d^{\nabla} D_{A}\right\|^{2}+\sum_{A} \int_{M}\left\langle R^{\nabla},\left[D_{A} \wedge D_{A}\right]\right\rangle\left\|R^{\nabla}\right\|^{p-2}
\end{align*}
$$

Since for $i=1,2, \ldots, n$ and $A=1,2, \ldots, n+k$,

$$
\begin{align*}
\left(d^{\nabla} D_{A}\right)_{e_{i}, e_{j}} & =\left(\nabla_{e_{i}} R^{\nabla}\right)_{V_{A}, e_{j}}-\left(\nabla_{e_{j}} R^{\nabla}\right)_{V_{A}, e_{i}}+R_{\nabla_{e_{i}} V_{A}, e_{j}}^{\nabla}-R_{\nabla_{e_{j}} V_{A}, e_{i}}^{\nabla} \tag{4.3}\\
& =v_{A}^{l}\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}-v_{A}^{l}\left(\nabla_{e_{j}} R^{\nabla}\right)_{e_{l}, e_{i}}+v_{A}^{\mu} h_{i l}^{\mu} R_{e_{l}, e_{j}}^{\nabla}-v_{A}^{\mu} h_{j l}^{\mu} R_{e_{l}, e_{i}}^{\nabla}
\end{align*}
$$

we have

$$
\begin{aligned}
\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle= & \frac{1}{2}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(d^{\nabla} D_{A}\right)_{e_{i}, e_{j}}\right\rangle \\
= & \frac{1}{2} v_{A}^{l}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}\right\rangle-\frac{1}{2} v_{A}^{l}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{j}} R^{\nabla}\right)_{e_{l}, e_{i}}\right\rangle \\
& +\frac{1}{2} v_{A}^{\mu} h_{i l}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right\rangle-\frac{1}{2} v_{A}^{\mu} h_{j l}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{i}}^{\nabla}\right\rangle \\
= & v_{A}^{l}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}\right\rangle+v_{A}^{\mu} h_{i l}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l, e_{j}}}^{\nabla}\right\rangle
\end{aligned}
$$

from which with (4.1) we have

$$
\begin{align*}
& \sum_{A}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2}=\sum_{l}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}\right\rangle^{2} \tag{4.4}\\
&+h_{i l}^{\mu} h_{t m}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right\rangle\left\langle R_{e_{t}, e_{s}}^{\nabla}, R_{e_{m}, e_{s}}^{\nabla}\right\rangle
\end{align*}
$$

Using the second Bianchi identity, we have

$$
\begin{aligned}
\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}\right\rangle & =-\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{l}} R^{\nabla}\right)_{e_{j}, e_{i}}\right\rangle-\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{j}} R^{\nabla}\right)_{e_{i}, e_{l}}\right\rangle \\
& =\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{l}} R^{\nabla}\right)_{e_{i}, e_{j}}\right\rangle-\left\langle R_{e_{j}, e_{i}},\left(\nabla_{e_{j}} R^{\nabla}\right)_{e_{l}, e_{i}}\right\rangle
\end{aligned}
$$

which implies

$$
\sum_{i j}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{i}} R^{\nabla}\right)_{e_{l}, e_{j}}\right\rangle=\frac{1}{2} \sum_{i j}\left\langle R_{e_{i}, e_{j}}^{\nabla},\left(\nabla_{e_{l}} R^{\nabla}\right)_{e_{i}, e_{j}}\right\rangle=\left\langle R^{\nabla}, \nabla_{e_{l}} R^{\nabla}\right\rangle
$$

Putting this into (4.4) then yields

$$
\begin{aligned}
\sum_{A}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2} & =\sum_{l}\left\langle R^{\nabla}, \nabla_{e_{l}} R^{\nabla}\right\rangle^{2}+h_{i l}^{\mu} h_{t m}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right\rangle\left\langle R_{e_{t}, e_{s}}^{\nabla}, R_{e_{m}, e_{s}}^{\nabla}\right\rangle \\
& =\left\|R^{\nabla}\right\|^{2}\|\nabla\| R^{\nabla}\| \|^{2}+h_{i l}^{\mu} h_{t m}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right\rangle\left\langle R_{e_{t}, e_{s}}^{\nabla}, R_{e_{m}, e_{s}}^{\nabla}\right\rangle
\end{aligned}
$$

Hence

$$
\begin{align*}
&(p-2) \sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2}=(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2} \tag{4.5}\\
&+(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-4} h_{i l}^{\mu} h_{t m}^{\mu}\left\langle R_{e_{i}, e_{j}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right\rangle\left\langle R_{e_{t}, e_{s}}^{\nabla}, R_{e_{m}, e_{s}}^{\nabla}\right\rangle
\end{align*}
$$

The second term on the right-hand side can be written as

$$
(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-4} h_{i l}^{\mu} h_{t m}^{\mu} f_{i j}^{a} f_{l j}^{a} f_{t s}^{b} f_{m s}^{b}=(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-4} h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t} f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b}
$$

Inserting this into (4.5) yields:

$$
\begin{gather*}
(p-2) \sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2}=(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2} \tag{4.6}\\
\quad+\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b}
\end{gather*}
$$

Now we compute the second term on the right-hand side of (4.2). By (4.3),

$$
\begin{aligned}
\sum_{A}\left\|d^{\nabla} D_{A}\right\|^{2} & =\frac{1}{2} \sum_{A}\left\langle\left(d^{\nabla} D_{A}\right)_{e_{i}, e_{j}},\left(d^{\nabla} D_{A}\right)_{e_{i}, e_{j}}\right\rangle \\
& =f_{i j k}^{a} f_{i j k}^{a}-f_{k j i}^{a} f_{k i j}^{a}+h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}
\end{aligned}
$$

Since from the Bianchi identity we have $f_{k j i}^{a} f_{k i j}^{a}=\frac{1}{2} f_{i j k}^{a} f_{i j k}^{a}=\left\|\nabla R^{\nabla}\right\|^{2}$, therefore

$$
\sum_{A}\left\|d^{\nabla} D_{A}\right\|^{2}=\left\|\nabla R^{\nabla}\right\|^{2}+\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right)
$$

Consequently,
(4.7) $\sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|d^{\nabla} D_{A}\right\|^{2}$

$$
=\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|\nabla R^{\nabla}\right\|^{2}+\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right)
$$

As for the third term on the right-hand side of (4.2), we first note that

$$
\begin{aligned}
\left\langle R^{\nabla},\left[D_{A} \wedge D_{A}\right]\right\rangle & =\frac{1}{2}\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[D_{A} \wedge D_{A}\right]_{e_{j}, e_{k}}\right\rangle \\
& =\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[D_{A, e_{j}}, D_{A, e_{k}}\right]\right\rangle=-\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[D_{A, e_{k}}, D_{A, e_{j}}\right]\right\rangle \\
& =-\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[R_{V_{A}, e_{k}}^{\nabla}, R_{V_{A}, e_{j}}^{\nabla}\right]\right\rangle=-v_{A}^{i} v_{A}^{l}\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[R_{e_{i}, e_{k}}^{\nabla}, R_{e_{l}, e_{j}}^{\nabla}\right]\right\rangle \\
& =-\left\langle R_{e_{j}, e_{k}}^{\nabla},\left[R_{e_{i}, e_{k}}^{\nabla}, R_{e_{i}, e_{j}}^{\nabla}\right]\right\rangle=\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{A} \int_{M}\left\langle R^{\nabla},\left[D_{A} \wedge D_{A}\right]\right\rangle\left\|R^{\nabla}\right\|^{p-2}=\int_{M}\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle\left\|R^{\nabla}\right\|^{p-2} \tag{4.8}
\end{equation*}
$$

Substituting (4.6), (4.7) and (4.8) into (4.2) yields

$$
\begin{aligned}
\sum_{A} I_{p}\left(D_{A}\right)= & (p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2}+\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|\nabla R^{\nabla}\right\|^{2} \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right) \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
& +\int_{M}\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle\left\|R^{\nabla}\right\|^{p-2}
\end{aligned}
$$

By Lemma 2.1, we obtain that

$$
\begin{aligned}
\sum_{A} I\left(D_{A}\right)= & -\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle R^{\nabla} \circ(\text { Ric } \wedge I+2 R), R^{\nabla}\right\rangle \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
+ & \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right)
\end{aligned}
$$

Using Lemma 2.2(i), we then have

$$
\begin{aligned}
\sum_{A} I\left(D_{A}\right)= & \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left[-\left(H^{\mu} h_{j l}^{\mu}-h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}+h_{i k}^{\mu} h_{j l}^{\mu} f_{i j}^{a} f_{k l}^{a}\right. \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s t}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right) \\
= & \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left[\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu} \delta_{k i}+2 h_{i k}^{\mu} h_{j l}^{\mu} f_{i j}^{a} f_{k l}^{a}\right.\right. \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
= & \frac{1}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i}+2 h_{i k}^{\mu} h_{j l}^{\mu}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s t}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
= & \frac{1}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r} \delta_{t q}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r l} \delta_{t q}\right. \\
& \left.+2(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}\right. \\
& \left.+2(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r t}^{b} .
\end{aligned}
$$

Let $C_{i j k l s r}:=\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}+2(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l}$. Then

$$
\begin{equation*}
\sum_{A} I\left(D_{A}\right)=\frac{1}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4} C_{i j k l s} f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r t}^{b} \tag{4.9}
\end{equation*}
$$

By the assumption on $C_{i j k l s r}$, we obtain that

$$
\begin{aligned}
\sum_{A} I\left(D_{A}\right) & \leq \frac{1}{2} b \int_{M}\left\|R^{\nabla}\right\|^{p-4} \delta_{i k} \delta_{j l} \delta_{s r} f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r t}^{b} \\
& =\frac{b}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4} f_{i j}^{a} f_{i j}^{a} f_{s t}^{b} f_{s t}^{b} \\
& =2 b \int_{M}\left\|R^{\nabla}\right\|^{p}<0
\end{aligned}
$$

Therefore, R^{∇} is unstable. This completes the proof.

Corollary 4.2 Let M^{n} be a convex hypersurface of \mathbb{R}^{n+1} with principal curvature $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and mean curvature $H=\sum_{i} \lambda_{i}$ satisfying

$$
H \lambda_{j}>2 \lambda_{i} \lambda_{j}+2 \lambda_{j}^{2}+(2 p-4) \lambda_{i} \lambda_{k}, \quad \forall i, j, k=1,2, \ldots, n,
$$

then any p-Yang-Mills field R^{∇} over M is unstable. In particular, any p-Yang-Mills field over $\mathbb{S}^{n}(n>2 p)$ is unstable.

Proof Direct calculations show that for submanifold M^{n} in \mathbb{R}^{n+1}, the following holds:

$$
C_{i j k l s r}=\left[2 \lambda_{i} \lambda_{j}+2 \lambda_{j} \lambda_{l}-H \lambda_{j}+(2 p-4) \lambda_{i} \lambda_{s}\right] \delta_{i k} \delta_{j l} \delta_{s r}
$$

In particular, for $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}, C_{i j k l s r}=(2 p-n) \delta_{i k} \delta_{j l} \delta_{s r}$. The conclusions then follow from these and Theorem 4.1.

This result generalizes [8, Theorem 3] and [3, Theorem 5.3]. Now let us consider the case that M^{n} is a submanifold of the sphere \mathbb{S}^{n+k}. We note that the second formula in (4.1) becomes

$$
\begin{equation*}
\nabla_{e_{i}} V_{A}=\left(v_{A}^{\mu} h_{i j}^{\mu}+v_{A}^{n+k+1} \delta_{i j}\right) e_{j} \tag{4.10}
\end{equation*}
$$

Here $h_{i j}^{\mu}$ is a component of the second fundamental form of M in \mathbb{S}^{n+k}.

Theorem 4.3 Let M^{n} be a submanifold of \mathbb{S}^{n+k} satisfying

$$
\begin{aligned}
& C_{i j k l s r}:=\left(-H^{\mu} h_{j l}^{\mu}+2 h_{j m}^{\mu} h_{m l}^{\mu}\right) \delta_{k i} \delta_{s r}+2 h_{i k}^{\mu} h_{j l}^{\mu} \delta_{s r}+2(p-2) h_{i k} h_{s r} \delta_{j l} \\
&<(n-2 p) \delta_{i k} \delta_{j l} \delta_{s r} .
\end{aligned}
$$

Then any p-Yang-Mills field over M is unstable.
Proof Comparing to the proof of Theorem 4.1 and using (4.10), it follows that (4.6) becomes:

$$
\begin{align*}
& (p-2) \sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-4}\left\langle R^{\nabla}, d^{\nabla} D_{A}\right\rangle^{2}=(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p-2}\|\nabla\| R^{\nabla}\| \|^{2} \tag{4.11}\\
& \quad+\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{t s}^{b} f_{r q}^{b}+4(p-2) \int_{M}\left\|R^{\nabla}\right\|^{p}
\end{align*}
$$

Also, corresponding to (4.7) we have

$$
\begin{align*}
& \sum_{A} \int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|d^{\nabla} D_{A}\right\|^{2}=\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\|\nabla R^{\nabla}\right\|^{2} \tag{4.12}\\
&+\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right)+4 \int_{M}\left\|R^{\nabla}\right\|^{p}
\end{align*}
$$

We note that (4.8) remains unchanged, that is, we still have

$$
\begin{equation*}
\sum_{A} \int_{M}\left\langle R^{\nabla},\left[D_{A} \wedge D_{A}\right]\right\rangle\left\|R^{\nabla}\right\|^{p-2}=-\int_{M}\left\langle\mathcal{R}^{\nabla}\left(R^{\nabla}\right), R^{\nabla}\right\rangle\left\|R^{\nabla}\right\|^{p-2} \tag{4.13}
\end{equation*}
$$

Putting (4.11), (4.12) and (4.13) into (4.2) gives

$$
\begin{aligned}
\sum_{A} I\left(D_{A}\right)= & -\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left\langle R^{\nabla} \circ(R i c \wedge I+2 R), R^{\nabla}\right\rangle \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-4}\left[(p-2) h_{i k}^{\mu} h_{s r}^{\mu} \delta_{j l} \delta_{q t}\right] f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r q}^{b} \\
& +\int_{M}\left\|R^{\nabla}\right\|^{p-2}\left(h_{i k}^{\mu} h_{i l}^{\mu} f_{k j}^{a} f_{l j}^{a}-h_{i k}^{\mu} h_{j l}^{\mu} f_{k j}^{a} f_{l i}^{a}\right) \\
& +(4 p-4) \int_{M}\left\|R^{\nabla}\right\|^{p}
\end{aligned}
$$

Similar to deriving (4.9), except that here we use Lemma 2.2(ii) instead of Lemma 2.2(i), we have

$$
\sum_{A} I\left(D_{A}\right)=\frac{1}{2} \int_{M}\left\|R^{\nabla}\right\|^{p-4} C_{i j k l s r} f_{i j}^{a} f_{k l}^{a} f_{s t}^{b} f_{r t}^{b}+(4 p-2 n) \int_{M}\left\|R^{\nabla}\right\|^{p}
$$

Since $C_{i j k l s r}<(n-2 p) \delta_{i k} \delta_{j l} \delta_{s r}$, it follows that

$$
\sum_{A} I\left(D_{A}\right)<(2 n-4 p) \int_{M}\left\|R^{\nabla}\right\|^{p}+(4 p-2 n) \int_{M}\left\|R^{\nabla}\right\|^{p}=0
$$

which means that R^{∇} is unstable.

References

[1] J.-P. Bourguignon, H. B.Lawson, and J. Simons, Stability and gap phenomena for Yang-Mills fields. Proc. Nat. Acad. Sci. U.S.A. 76(1979), no. 4, 1550-1553.
[2] J.-P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79(1981), no. 2, 189-230.
[3] S. Kobayashi, Y. Ohnita, and M. Takeuchi, On instability of Yang-Mills connections. Math. Z. 193(1986), no. 2, 165-189.
[4] C. L. Shen, Weak stability of Yang-Mills fields over submanifolds of the sphere. Arch. Math. 39(1982), no. 1, 78-84.
[5] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Ann. of Math. 113(1981), no.1, 1-24.
[6] K. Uhlenbeck, Connections with Lp bounds on curvature. Comm. Math. Phys.83(1982), no. 1, 31-42.
[7] S. W. Wei, Representing homotopy groups and spaces of maps by p-harmonic maps. Indiana Univ. Math. J.47(1998), no. 2, 625-670.
[8] Y. L. Xin, Instability theorems of Yang-Mills fields. Acta Math. Sci. 3(1983), no.1, 103-112.

School of Mathematics and Statistics	School of Mathematics and Statistics
Wuhan University	Central China Normal University
Wuhan 430072	Wuhan 430079
P. R.China	P. R.China
e-mail: qunchen@whu.edu.cn	e-mail: zrzhou@mail.ccnu.edu.cn

