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On Gap Properties and Instabilities of
p-Yang–Mills Fields

Qun Chen and Zhen-Rong Zhou

Abstract. We consider the p-Yang–Mills functional (p ≥ 2) defined as YM p(∇) := 1
p

R

M
‖R∇‖p .

We call critical points of YM p( · ) the p-Yang–Mills connections, and the associated curvature R∇ the

p-Yang–Mills fields. In this paper, we prove gap properties and instability theorems for p-Yang–Mills

fields over submanifolds in R
n+k and S

n+k.

1 Introduction

Let M be a compact Riemannian manifold and E a Riemannian vector bundle over

M with structure group G. Denote the space of E-valued p-forms by

Ω
p(E) = Γ(ΛpT∗M ⊗ E).

A connection ∇ on E is ∇ : Ω
0(E) → Ω

1(E) which satisfies

∇( f σ) = d f ⊗ σ + f∇σ, ∀ f ∈ C∞(M), σ ∈ Ω
0(E).

The space of connections on E is denoted by CE. For each ∇ ∈ CE, the curvature

2-form R∇ ∈ Ω
2(gE) is defined by R∇

X,Y := [∇X,∇Y ] − ∇[X,Y ], where gE is the

bundle of the Lie algebra of G over M on which there is an invariant metric, and this

induces a metric in Ω
2(gE). For p ≥ 2, we define the p-Yang–Mills functional as

(1.1) Y Mp(∇) :=
1

p

∫

M

‖R∇‖p.

We call critical points of Y Mp( · ) the p-Yang–Mills connections, and the associated

curvature R∇ the p-Yang–Mills fields. When p = 2, (1.1) is the usual Yang–Mills

functional.

At each minimizer ∇ of the p-Yang–Mills functional, the second variation is non-

negative:

(1.2)
d2

dt2
YM p(∇t )|t=0 ≥ 0
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for any smooth family of connections ∇t , with |t| < ε, ∇0
= ∇. In general, we call

a connection ∇ ∈ CE satisfying (1.2) weakly stable. Otherwise, we call ∇ is unstable.

The case p = 2, i.e., the usual Yang–Mills functional, has been intensively studied.

In the well-known papers [1,2], Bourguignon and Lawson obtained a series of results

on the stability and gap phenomena of Yang–Mills fields over S
n and other locally

homogeneous spaces. Among other things, they proved the following.

Theorem A ([2]) There are no weakly stable Yang–Mills fields over the Euclidean

sphere S
n for n ≥ 5.

Theorem B ([2]) Let R∇ be a Yang–Mills field over S
n ( n ≥ 5) which satisfies the

pointwise condition

‖R∇‖2 ≤
1

2

(

n

2

)

.

Then R∇ ≡ 0.

Xin [8] generalized the above instability result to Yang–Mills fields over compact

submanifold Mn of the Euclidean space R
n+k under an assumption on the second

fundamental form. Namely, he proved the following.

Theorem C ([8]) Let Mn be an n-dimensional compact submanifold in R
n+k with

the second fundamental form h(·, ·) satisfying the pointwise condition

∑

t

[

2〈h(et , ei), h(et , e j)〉 − 〈h(et , et ), h(ei , e j)〉
]

δkl + 2〈h(ei, e j), h(ek, el)〉 ≤ bδi jδkl

for 1 ≤ i, j, k, l ≤ n, where {ei} is local orthonormal frame on M and b < 0 is a

constant. Then any Yang–Mills field over M is unstable.

Instability of Yang–Mills fields over submanifolds of spheres S
n+k was obtained by

Shen [4], and by Kobayashi, Ohnita and Takeuchi [3]. Results for the case of convex

hypersurfaces in R
n+1 and compact symmetric spaces can also be found in [3].

Actually, the p-Yang–Mills functional (1.1) was first considered by Uhlenbeck [6]

who proved a weak compactness theorem for sequences of connections {∇n} with

uniformly bounded YM p(∇n). As a geometric variational model, the p-Yang–Mills

functional is a natural generalization of the usual Yang–Mills functional and has in-

terests in its own right. Recall the similar case of p-harmonic maps, where a satisfac-

tory theory of representing homotopy classes is established, and new simple proofs of

many well-known theorems in geometry such as the Cartan–Hadamard theorem, the

Preisman theorem, the Gromoll–Wolf (or Lawson–Yau) theorem and the Bochner–

Frankel theorems can be given by using the tools of p-harmonic maps, cf. [7]. On the

other hand, a good understanding of the p-Yang–Mills functionals should be helpful

for the study of the usual Yang–Mills functionals, as we have seen in [6], and similarly

in the well-known work [5] of Sacks and Uhlenbeck who used p-harmonic maps to

deduce significant results on the usual harmonic maps. Therefore, it seems natural
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and interesting to investigate the p-Yang–Mills functional (1.1). In this paper, we fo-

cus on instability and gap phenomena of p-Yang–Mills fields over submanifolds Mn

of the Euclidean spaces R
n+k and the spheres S

n+k.

Suppose Mn is a submanifold of Nn+k, and denote the second fundamental form

by h( · , · ). Set the index ranges 1 ≤ i, j ≤ n; n + 1 ≤ µ ≤ n + k, and choose

local orthonormal frames {e1, e2, . . . , en+k} on N such that {ei | i = 1, 2, . . . , n} is

tangent to M and {eµ | µ = n + 1, . . . , n + k} is normal to M. Let h(ei , e j) := h
µ
i jeµ

and Hµ :=
∑

i h
µ
ii ; here we use the Einstein summation convention. We will prove

the following results.

Theorem 3.1 Let Mn(n ≥ 5) be a submanifold of R
n+k satisfying either

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ (2 − n)δ jkδil

or

(Hµhµjl − hµjmhµml)δki − hµikhµjl ≤ −(2 − n)δikδ jl.

If a p-Yang–Mills field R∇ over M satisfies

‖R∇‖2 ≤
1

2

(

n

2

)

,

then R∇ ≡ 0.

If Mn
= S

n ⊂ R
n+1, then M satisfies the condition in the above theorem. There-

fore when p = 2, we obtain Theorem B. Thus Theorem 3.1 is a generalization of

a result in [2]. For the case of submanifolds of the Euclidean spheres we have the

following.

Theorem 3.2 Let Mn(n ≥ 5) be a submanifold of S
n+k satisfying either

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ bδ jkδil

or

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ −bδikδ jl

for some b ≤ 0. If a p-Yang–Mills field R∇ over M satisfies

‖R∇‖2 ≤
1

2

(

n

2

)

,

then R∇ ≡ 0.

For the instability of p-Yang–Mills fields, we will prove the following results in the

cases of submanifolds of R
n+k and S

n+k.

Theorem 4.1 Let Mn be a submanifold of R
n+k satisfying

Ci jklsr := (−Hµhµjl + 2hµjmhµml)δkiδsr + 2hµikhµjlδsr + 2(p − 2)hikhsrδ jl

≤ bδikδ jlδsr

for some constant b < 0. Then any p-Yang–Mills field over M is unstable.
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Remark When p = 2, our result is just Theorem C above (Xin [8]). For M = S
n,

we have Ci jklsr = (2p − n)δikδ jlδsr , so any p-Yang–Mills field over S
n with n > 2p is

unstable.

Theorem 4.3 Let Mn be a submanifold of S
n+k satisfying

Ci jklsr := (−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δkiδsr + 2h

µ
ikh

µ
jlδsr + 2(p − 2)hikhsrδ jl

< (n − 2p)δikδ jlδsr.

Then any p-Yang–Mills field over M is unstable.

2 Preliminaries

Denote by d∇ : Ω
p(gE) → Ω

p+1(gE) the exterior differential operator with respect to

∇, and by δ∇ its adjoint operator. The Laplacian is defined by ∆
∇

= d∇δ∇ +δ∇d∇.

Set D =
d
dt
∇t |t=0, where ∇t

= ∇ + At , At ∈ Ω
1(gE) with A0

= 0. The associated

curvature R∇
t

of ∇t is

R∇
t

= R∇ + d∇At +
1

2
[At ∧ At ].

Recall that for φ, ψ ∈ gE, [φ ∧ ψ]X,Y := [φX, ψY ] − [φY , ψX].

By direct computation, we have the following first variational formula:

(2.1)
d

dt
Y Mp(∇t ) =

∫

M

‖R∇
t

‖p−2
〈

d∇

( dAt

dt

)

+
[

At ∧
dAt

dt

]

,R∇
t
〉

.

It follows easily that

d

dt
Y Mp(∇t )|t=0 =

∫

M

〈δ∇(‖R∇‖p−2R∇),D〉.

Consequently, the Euler–Lagrange equation of YM p( · ) is

(2.2) δ∇(‖R∇‖p−2R∇) = 0.

From
dR∇

t

dt
= d∇

dAt

dt
+

1

2

d

dt
[At ∧ At ]

and (2.1) we have

d

dt
Y Mp(∇t ) =

∫

M

‖R∇
t

‖p−2
〈 dR∇

t

dt
,R∇

t
〉

.

Furthermore,

d2

dt2
Y Mp(∇t ) = (p − 2)

∫

M

‖R∇
t

‖p−4
〈 dR∇

t

dt
,R∇

t
〉 2

+

∫

M

‖R∇
t

‖p−2
∥

∥

∥

dR∇
t

dt

∥

∥

∥

2

+

∫

M

〈 d2R∇
t

dt2
,R∇

t
〉

‖R∇
t

‖p−2.
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Hence, we have the following second variational formula:

Ip(D) :=
d2

dt2
Y Mp(∇t )|t=0

= (p − 2)

∫

M

‖R∇‖p−4〈d∇D,R∇〉2 +

∫

M

‖R∇‖p−2‖d∇D‖2

+

∫

M

〈[D ∧ D],R∇〉‖R∇‖p−2.

(2.3)

Next, we derive a useful integral identity via the Weitzenböck formula. Let ϕ ∈
Ω

2(gE), and let ω be a linear map-valued 2-form with (ϕ ◦ ω)X,Y := 1
2
ϕe j ,ωX,Y e j

.

Denote by R and Ric the Riemannian curvature tensor and Ricci curvature operator

of M, respectively. Set

(Ric∧ I)X,Y := Ric(X) ∧Y + X ∧ Ric(Y ),

R
∇(ϕ)X,Y := [R∇

e j ,X
, ϕe j ,Y ] − [R∇

e j ,Y
, ϕe j ,X],

where (X ∧ Y )Z := 〈X,Z〉Y − 〈Y,Z〉X.

Lemma 2.1 For any p-Yang–Mills field R∇, we have
∫

M

‖R∇‖p−2‖∇R∇‖2 + (p − 2)

∫

M

‖R∇‖p−2‖∇‖R∇‖‖2

+

∫

M

‖R∇‖p−2〈R∇ ◦ (Ric∧I + 2R),R∇〉

+

∫

M

‖R∇‖p−2〈R(R∇),R∇〉 = 0.

(2.4)

Proof For any ϕ ∈ Ω
2(gE), we have the following Weitzenböck formula [2]:

∆
∇ϕ = ∇∗∇ϕ + ϕ ◦ (Ric∧I + 2R) + R

∇(ϕ).

It follows that

1

2
∆‖ϕ‖2

=
〈

∆
∇ϕ,ϕ〉 − ‖∇ϕ‖2 − 〈ϕ ◦ (Ric ∧ I + 2R), ϕ〉 − 〈R∇(ϕ), ϕ

〉

.

Consequently,

1

p
∆‖ϕ‖p

=
1

2
‖ϕ‖p−2

∆‖ϕ‖2 − (p − 2)‖ϕ‖p−2
∥

∥∇‖ϕ‖
∥

∥

2

= ‖ϕ‖p−2[〈∆∇ϕ,ϕ〉 − ‖∇ϕ‖2 − 〈ϕ ◦ (Ric∧I + 2R), ϕ〉

− 〈R∇(ϕ), ϕ〉] − (p − 2)‖ϕ‖p−2
∥

∥∇‖ϕ‖
∥

∥

2

= ‖ϕ‖p−2〈∆∇ϕ,ϕ〉 − ‖ϕ‖p−2‖∇ϕ‖2

− ‖ϕ‖p−2〈ϕ ◦ (Ric∧I + 2R), ϕ〉

− ‖ϕ‖p−2〈R∇(ϕ), ϕ〉 − (p − 2)‖ϕ‖p−2
∥

∥∇‖ϕ‖
∥

∥

2
.

(2.5)
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Now let ϕ = R∇. Then by (2.2) we have δ∇(‖R∇‖p−2R∇) = 0. Recall that R∇

satisfies the Bianchi identity: d∇R∇
= 0. From these we see that

∫

M

‖R∇‖p−2〈∆∇R∇,R∇〉 =

∫

M

〈d∇δ∇R∇, ‖R∇‖p−2R∇〉

=

∫

M

〈δ∇R∇, δ∇(‖R∇‖p−2R∇)〉

= 0.

(2.6)

Integrating (2.5) with ϕ = R∇ and using (2.6), we obtain (2.4).

Let us choose orthonormal frames {Xa} of gE, and let

R∇

ei ,e j
:= f a

i j Xa, (∇ek
R∇)ei ,e j

:= f a
i jkXa.

Lemma 2.2

(i) Let Mn be a submanifold of the Euclidean space R
n+k. Then

〈R∇ ◦ (Ric∧I + 2R),R∇〉 = [−(Hµh
µ
jl − h

µ
jmh

µ
ml)δki + h

µ
ikh

µ
jl] f a

ji f a
kl.

(ii) Let Mn be a submanifold of the sphere S
n+k. Then

(2.7) 〈R∇ ◦ (Ric∧I + 2R),R∇〉

= [−(Hµh
µ
jl − h

µ
jmh

µ
ml)δki + h

µ
ikh

µ
jl] f a

ji f a
kl + 2(n − 2)‖R∇‖2.

Proof (i) By using the Gauss equation, we can write the Riemannian curvature ten-

sor and the Ricci curvature of M as

Ri jkl = h
µ
ikh

µ
jl − h

µ
ilh

µ
jk and r jl = Hµh

µ
jl − h

µ
jih

µ
il,

respectively. Then

〈R∇ ◦ (Ric ∧ I + 2R),R∇〉 =
1

2
[−2rl j〈R

∇

e j ,ek
,R∇

ek,el
〉 + Ri jkl〈R

∇

e j ,ei
,R∇

ek,el
〉]

=
1

2

[

−2(Hµhµjl − hµjih
µ
il)〈R

∇

e j ,ek
,R∇

ek,el
〉

+ (h
µ
ikh

µ
jl − h

µ
ilh

µ
jk)〈R∇

e j ,ei
,R∇

ek,el
〉
]

= −(Hµhµjl − hµjih
µ
il) f a

jk f a
kl +

1

2
(hµikhµjl − hµilh

µ
jk) f a

ji f a
kl

= −(Hµh
µ
jl − h

µ
jih

µ
il) f a

jk f a
kl + h

µ
ikh

µ
jl f a

ji f a
kl

=
[

−(Hµh
µ
jl − h

µ
jmh

µ
mlδki + h

µ
ikh

µ
l j

]

f a
ji f a

kl.
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(ii) In this case, the Riemannian and Ricci curvature tensors can be written as

Ri jkl = (δikδ jl − δilδ jk) + (h
µ
ikh

µ
l j − h

µ
ilh

µ
jk) and r jl = (n − 1)δ jl + Hµh

µ
jl − h

µ
i jh

µ
il,

respectively, and (2.7) can be proved similarly.

Later on, we will need the following.

Lemma 2.3 ([2]) If ‖R∇‖2 ≤ 1
2

(

n
2

)

, then for n ≥ 3, we have

|〈[R∇

ek,ei
,R∇

ei ,e j
],R∇

e j ,ek
〉| ≤ 2(n − 2)||R∇||2.

Furthermore, when n ≥ 5 and R∇ 6= 0, the inequality is strict.

Proof This is a corollary of [2, Proposition 5.6].

3 Gap Phenomena of p-Yang–Mills Fields

First, let Mn be a submanifold of R
n+k. Suppose R∇ is a p-Yang–Mills field over M.

In this case, we have the following theorem on the gap phenomena of R∇.

Theorem 3.1 Suppose Mn (n ≥ 5) is a submanifold of R
n+k satisfying either

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ (2 − n)δ jkδil

or

(Hµhµjl − hµjmhµml)δki − hµikhµjl ≤ −(2 − n)δikδ jl.

If a p-Yang–Mills field R∇ over M satisfies

‖R∇‖2 ≤
1

2

(

n

2

)

,

then R∇ ≡ 0.

Proof By Lemma 2.1,

∫

M

‖R∇‖p−2‖∇R∇‖2 + (p − 2)

∫

M

‖R∇‖p−2
∥

∥∇‖R∇‖
∥

∥

2

= −

∫

M

‖R∇‖p−2〈R∇ ◦ (Ric ∧ I + 2R),R∇〉 −

∫

M

‖R∇‖p−2〈R∇(R∇),R∇〉

:= (I) + (II).

Using Lemma 2.2(i) and the assumptions on h
µ
i j of M, we have

(I) ≤ 2(2 − n)

∫

M

‖R∇‖p.
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From Lemma 2.3, and noting that 〈R∇(R∇),R∇〉 = 〈[R∇
ek,ei
,R∇

ei ,e j
],R∇

e j ,ek
〉, we see

that if R∇ is not identically zero, then

(II) < 2(n − 2)

∫

M

‖R∇‖p.

Combining these we deduce that

∫

M

‖R∇‖p−2‖∇R∇‖2 + (p − 2)

∫

M

‖R∇‖p−2
∥

∥∇‖R∇‖
∥

∥

2
< 0,

which is a contradiction. Thus, R∇ ≡ 0.

In a similar way, we can prove the following.

Theorem 3.2 Let Mn (n ≥ 5) be a submanifold of S
n+k satisfying either

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ bδ jkδil

or

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl ≤ −bδikδ jl

for some b ≤ 0. If a p-Yang–Mills field R∇ over M satisfies

‖R∇‖2 ≤
1

2

(

n

2

)

,

then R∇ ≡ 0.

We remark that if we let Mn
= Sn ⊂ R

n+1 in Theorem 3.1, then it is easy to see

that

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl = (n − 2)δ jlδki .

Therefore, Theorem 3.1 generalizes the theorem of Bourguignon and Lawson men-

tioned above (Theorem B). More generally, for convex hypersurfaces Mn of R
n+1,

if we write hn+1
i j := hi j = λiδi j where λi is the i-th principal curvature of M,

i = 1, 2, . . . , n, H := λ1 + λ2 + · · · + λn, then

(Hµh
µ
jl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl = (Hλ j − λ jλl − λiλ j)δ jlδki .

We thus obtain the following.

Corollary 3.3 Suppose Mn (n ≥ 5) is a convex hypersurface of R
n+1 satisfying

λ j(H − λi − λ j) ≤ n − 2, i, j = 1, 2, . . . , n,

where λi is the i-th principal curvature and H is the mean curvature of M. Then any

p-Yang–Mills field R∇ over M with ‖R∇‖2 ≤ 1
2

(

n
2

)

must identically vanish.
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Similarly, we also have the following.

Corollary 3.4 Suppose Mn (n ≥ 5) is a convex hypersurface of S
n+1 satisfying

λ j(H − λi − λ j) ≤ 0, i, j = 1, 2, . . . , n,

where λi is the i-th principal curvature and H is the mean curvature of M. Then any

p-Yang–Mills field R∇ over M with ‖R∇‖2 ≤ 1
2

(

n
2

)

must identically vanish.

4 Instability of p-Yang–Mills Fields

In this section, we will prove some results on instability of p-Yang–Mills fields R∇

over submanifolds Mn of R
n+k and S

n+k.

Theorem 4.1 Let Mn be a submanifold of R
n+k satisfying

Ci jklsr := (−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δkiδsr + 2h

µ
ikh

µ
jlδsr + 2(p − 2)hikhsrδ jl ≤ bδikδ jlδsr

for some constant b < 0. Then any p-Yang–Mills field over M is unstable.

Proof We first note that for tangent vectors V,X to M, let D = iV R∇. Then DX =

(iV R∇)X = R∇
V,X , and

(d∇D)ei ,e j
= (∇ei

D)e j
− (∇e j

D)ei

= (∇ei
R∇)V,e j

− (∇e j
R∇)V,ei

+ R∇

∇ei
V,e j

− R∇

∇e j
V,ei
.

Now take the standard orthonormal basis {EA | A = 1, 2, . . . , n + k} of R
n+k, and

choose VA := vi
Aei to be the tangent part of EA. Here the indices A,B,C run from 1

to n + k. We note that

(4.1) vB
AvC

A = δBC , ∇ei
VA = v

µ
Ah

µ
i je j .

Then for DA := iVA
R∇, A = 1, 2, . . . , n + k, it follows from (2.3) that

(4.2)
∑

A

Ip(DA) = (p − 2)
∑

A

∫

M

‖R∇‖p−4〈R∇, d∇DA〉
2

+
∑

A

∫

M

‖R∇‖p−2‖d∇DA‖
2 +

∑

A

∫

M

〈R∇, [DA ∧ DA]〉‖R∇‖p−2.

Since for i = 1, 2, . . . , n and A = 1, 2, . . . , n + k,

(d∇DA)ei ,e j
= (∇ei

R∇)VA,e j
− (∇e j

R∇)VA,ei
+ R∇

∇ei
VA,e j

− R∇

∇e j
VA,ei

= vl
A(∇ei

R∇)el,e j
− vl

A(∇e j
R∇)el,ei

+ v
µ
Ah

µ
ilR

∇

el,e j
− v

µ
Ah

µ
jlR

∇

el,ei
,

(4.3)
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we have

〈R∇, d∇DA〉 =
1

2
〈R∇

ei ,e j
, (d∇DA)ei ,e j

〉

=
1

2
vl

A〈R
∇

ei ,e j
, (∇ei

R∇)el,e j
〉 −

1

2
vl

A〈R
∇

ei ,e j
, (∇e j

R∇)el,ei
〉

+
1

2
v
µ
Ah

µ
il〈R

∇

ei ,e j
,R∇

el,e j
〉 −

1

2
v
µ
Ah

µ
jl〈R

∇

ei ,e j
,R∇

el,ei
〉

= vl
A〈R

∇

ei ,e j
, (∇ei

R∇)el,e j
〉 + v

µ
Ah

µ
il〈R

∇

ei ,e j
,R∇

el,e j
〉,

from which with (4.1) we have

∑

A

〈R∇, d∇DA〉
2
=

∑

l

〈R∇

ei ,e j
, (∇ei

R∇)el,e j
〉2

+ h
µ
ilh

µ
tm〈R

∇

ei ,e j
,R∇

el,e j
〉〈R∇

et ,es
,R∇

em,es
〉.

(4.4)

Using the second Bianchi identity, we have

〈R∇

ei ,e j
, (∇ei

R∇)el,e j
〉 = −〈R∇

ei ,e j
, (∇el

R∇)e j ,ei
〉 − 〈R∇

ei ,e j
, (∇e j

R∇)ei ,el
〉

= 〈R∇

ei ,e j
, (∇el

R∇)ei ,e j
〉 − 〈R∇

e j ,ei
, (∇e j

R∇)el,ei
〉,

which implies

∑

i j

〈R∇

ei ,e j
, (∇ei

R∇)el,e j
〉 =

1

2

∑

i j

〈R∇

ei ,e j
, (∇el

R∇)ei ,e j
〉 = 〈R∇,∇el

R∇〉.

Putting this into (4.4) then yields

∑

A

〈R∇, d∇DA〉
2
=

∑

l

〈R∇,∇el
R∇〉2 + h

µ
ilh

µ
tm〈R

∇

ei ,e j
,R∇

el,e j
〉〈R∇

et ,es
,R∇

em,es
〉

= ‖R∇‖2‖∇
∥

∥R∇‖
∥

∥

2
+ h

µ
ilh

µ
tm〈R

∇

ei ,e j
,R∇

el,e j
〉〈R∇

et ,es
,R∇

em,es
〉.

Hence

(p − 2)
∑

A

∫

M

‖R∇‖p−4〈R∇, d∇DA〉
2
= (p − 2)

∫

M

‖R∇‖p−2‖∇‖R∇‖‖2

+ (p − 2)

∫

M

‖R∇‖p−4h
µ
ilh

µ
tm〈R

∇

ei ,e j
,R∇

el,e j
〉〈R∇

et ,es
,R∇

em,es
〉.

(4.5)

The second term on the right-hand side can be written as

(p − 2)

∫

M

‖R∇‖p−4h
µ
ilh

µ
tm f a

i j f a
l j f b

ts f b
ms = (p − 2)

∫

M

‖R∇‖p−4h
µ
ikhµsrδ jlδqt f a

i j f a
kl f b

st f b
rq.
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Inserting this into (4.5) yields:

(p − 2)
∑

A

∫

M

‖R∇‖p−4〈R∇, d∇DA〉
2
= (p − 2)

∫

M

‖R∇‖p−2‖∇‖R∇‖‖2

+

∫

M

‖R∇‖p−4[(p − 2)h
µ
ikhµsrδ jlδqt ] f a

i j f a
kl f b

st f b
rq.

(4.6)

Now we compute the second term on the right-hand side of (4.2). By (4.3),

∑

A

‖d∇DA‖
2
=

1

2

∑

A

〈(d∇DA)ei ,e j
, (d∇DA)ei ,e j

〉

= f a
i jk f a

i jk − f a
k ji f a

ki j + hµikhµil f a
k j f a

l j − hµikhµjl f a
k j f a

li .

Since from the Bianchi identity we have f a
k ji f a

ki j =
1
2

f a
i jk f a

i jk = ‖∇R∇‖2, therefore

∑

A

‖d∇DA‖
2
= ‖∇R∇‖2 + (h

µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li ).

Consequently,

∑

A

∫

M

‖R∇‖p−2‖d∇DA‖
2

=

∫

M

‖R∇‖p−2‖∇R∇‖2 +

∫

M

‖R∇‖p−2(h
µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li ).

(4.7)

As for the third term on the right-hand side of (4.2), we first note that

〈R∇, [DA ∧ DA]〉 =
1

2
〈R∇

e j ,ek
, [DA ∧ DA]e j ,ek

〉

= 〈R∇

e j ,ek
, [DA,e j

,DA,ek
]〉 = −〈R∇

e j ,ek
, [DA,ek

,DA,e j
]〉

= −〈R∇

e j ,ek
, [R∇

VA,ek
,R∇

VA,e j
]〉 = −vi

Avl
A〈R

∇

e j ,ek
, [R∇

ei ,ek
,R∇

el,e j
]〉

= −〈R∇

e j ,ek
, [R∇

ei ,ek
,R∇

ei ,e j
]〉 = 〈R∇(R∇),R∇〉.

Hence,

(4.8)
∑

A

∫

M

〈R∇, [DA ∧ DA]〉‖R∇‖p−2
=

∫

M

〈R∇(R∇),R∇〉‖R∇‖p−2.
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Substituting (4.6), (4.7) and (4.8) into (4.2) yields

∑

A

Ip(DA) = (p − 2)

∫

M

‖R∇‖p−2
∥

∥∇‖R∇‖
∥

∥

2
+

∫

M

‖R∇‖p−2‖∇R∇‖2

+

∫

M

‖R∇‖p−2(h
µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li )

+

∫

M

‖R∇‖p−4[(p − 2)h
µ
ikhµsrδ jlδqt ] f a

i j f a
kl f b

st f b
rq

+

∫

M

〈R∇(R∇),R∇〉‖R∇‖p−2.

By Lemma 2.1, we obtain that

∑

A

I(DA) = −

∫

M

‖R∇‖p−2〈R∇ ◦ (Ric ∧ I + 2R),R∇〉

+

∫

M

‖R∇‖p−4[(p − 2)hµikhµsrδ jlδqt ] f a
i j f a

kl f b
st f b

rq

+

∫

M

‖R∇‖p−2(h
µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li ).

Using Lemma 2.2(i), we then have

∑

A

I(DA) =

∫

M

‖R∇‖p−2[−(Hµhµjl − hµjmhµml)δki + hµikhµjl] f a
i j f a

kl

+

∫

M

‖R∇‖p−4[(p − 2)h
µ
ikhµsrδ jlδqt ] f a

i j f a
kl f b

st f b
rq

+

∫

M

‖R∇‖p−2(hµikhµil f a
k j f a

l j − hµikhµjl f a
k j f a

li )

=

∫

M

‖R∇‖p−2[(−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δki + 2h

µ
ikh

µ
jl] f a

i j f a
kl

+

∫

M

‖R∇‖p−4[(p − 2)hµikhµsrδ jlδqt ] f a
i j f a

kl f b
st f b

rq

=
1

2

∫

M

‖R∇‖p−4[(−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δki + 2h

µ
ikh

µ
jl] f a

i j f a
kl f b

st f b
rq

+

∫

M

‖R∇‖p−4[(p − 2)hµikhµsrδ jlδqt ] f a
i j f a

kl f b
st f b

rq

=
1

2

∫

M

‖R∇‖p−4[(−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δkiδsrδtq + 2h

µ
ikh

µ
jlδsrδtq

+ 2(p − 2)hµikhµsrδ jlδqt ] f a
i j f a

kl f b
st f b

rq
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=
1

2

∫

M

‖R∇‖p−4[(−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δkiδsr + 2h

µ
ikh

µ
jlδsr

+ 2(p − 2)h
µ
ikhµsrδ jl] f a

i j f a
kl f b

st f b
rt .

Let Ci jklsr := (−Hµh
µ
jl + 2h

µ
jmh

µ
ml)δkiδsr + 2h

µ
ikh

µ
jlδsr + 2(p − 2)h

µ
ikhµsrδ jl. Then

(4.9)
∑

A

I(DA) =
1

2

∫

M

‖R∇‖p−4Ci jklsr f a
i j f a

kl f b
st f b

rt .

By the assumption on Ci jklsr , we obtain that

∑

A

I(DA) ≤
1

2
b

∫

M

‖R∇‖p−4δikδ jlδsr f a
i j f a

kl f b
st f b

rt

=
b

2

∫

M

‖R∇‖p−4 f a
i j f a

i j f b
st f b

st

= 2b

∫

M

‖R∇‖p < 0.

Therefore, R∇ is unstable. This completes the proof.

Corollary 4.2 Let Mn be a convex hypersurface of R
n+1 with principal curvature

λ1, λ2, . . . , λn and mean curvature H =
∑

i λi satisfying

Hλ j > 2λiλ j + 2λ2
j + (2p − 4)λiλk, ∀i, j, k = 1, 2, . . . , n,

then any p-Yang–Mills field R∇ over M is unstable. In particular, any p-Yang–Mills

field over S
n (n > 2p) is unstable.

Proof Direct calculations show that for submanifold Mn in R
n+1, the following

holds:

Ci jklsr = [2λiλ j + 2λ jλl − Hλ j + (2p − 4)λiλs]δikδ jlδsr.

In particular, for S
n ⊂ R

n+1, Ci jklsr = (2p − n)δikδ jlδsr. The conclusions then follow

from these and Theorem 4.1.

This result generalizes [8, Theorem 3] and [3, Theorem 5.3]. Now let us consider

the case that Mn is a submanifold of the sphere S
n+k. We note that the second formula

in (4.1) becomes

(4.10) ∇ei
VA = (v

µ
Ah

µ
i j + vn+k+1

A δi j)e j .

Here hµi j is a component of the second fundamental form of M in S
n+k.
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Theorem 4.3 Let Mn be a submanifold of S
n+k satisfying

Ci jklsr := (−Hµhµjl + 2hµjmhµml)δkiδsr + 2hµikhµjlδsr + 2(p − 2)hikhsrδ jl

< (n − 2p)δikδ jlδsr.

Then any p-Yang–Mills field over M is unstable.

Proof Comparing to the proof of Theorem 4.1 and using (4.10), it follows that (4.6)

becomes:

(4.11) (p − 2)
∑

A

∫

M

‖R∇‖p−4〈R∇, d∇DA〉
2
= (p − 2)

∫

M

‖R∇‖p−2‖∇‖R∇‖‖2

+

∫

M

‖R∇‖p−4[(p − 2)h
µ
ikhµsrδ jlδqt ] f a

i j f a
kl f b

ts f b
rq + 4(p − 2)

∫

M

‖R∇‖p.

Also, corresponding to (4.7) we have

(4.12)
∑

A

∫

M

‖R∇‖p−2‖d∇DA‖
2
=

∫

M

‖R∇‖p−2‖∇R∇‖2

+

∫

M

‖R∇‖p−2(h
µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li ) + 4

∫

M

‖R∇‖p.

We note that (4.8) remains unchanged, that is, we still have

(4.13)
∑

A

∫

M

〈R∇, [DA ∧ DA]〉‖R∇‖p−2
= −

∫

M

〈R∇(R∇),R∇〉‖R∇‖p−2.

Putting (4.11), (4.12) and (4.13) into (4.2) gives

∑

A

I(DA) = −

∫

M

‖R∇‖p−2〈R∇ ◦ (Ric ∧ I + 2R),R∇〉

+

∫

M

‖R∇‖p−4[(p − 2)hµikhµsrδ jlδqt ] f a
i j f a

kl f b
st f b

rq

+

∫

M

‖R∇‖p−2(h
µ
ikh

µ
il f a

k j f a
l j − h

µ
ikh

µ
jl f a

k j f a
li )

+ (4p − 4)

∫

M

‖R∇‖p.

Similar to deriving (4.9), except that here we use Lemma 2.2(ii) instead of Lemma

2.2(i), we have

∑

A

I(DA) =
1

2

∫

M

‖R∇‖p−4Ci jklsr f a
i j f a

kl f b
st f b

rt + (4p − 2n)

∫

M

‖R∇‖p.
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Since Ci jklsr < (n − 2p)δikδ jlδsr , it follows that

∑

A

I(DA) < (2n − 4p)

∫

M

‖R∇‖p + (4p − 2n)

∫

M

‖R∇‖p
= 0,

which means that R∇ is unstable.
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