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Abstract

We study systems of partial differential equations of Briot–Bouquet type. The existence of holomorphic
solutions to such systems largely depends on the eigenvalues of an associated matrix. For the noninteger
case, we generalise the well-known result of Gérard and Tahara [‘Holomorphic and singular solutions
of nonlinear singular first order partial differential equations’, Publ. Res. Inst. Math. Sci. 26 (1990),
979–1000] for Briot–Bouquet type equations to Briot–Bouquet type systems. For the integer case, we
introduce a sequence of blow-up like changes of variables and give necessary and sufficient conditions
for the existence of holomorphic solutions. We also give some examples to illustrate our results.
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1. Introduction

A Briot–Bouquet system usually refers to the following ordinary differential system

tU′ = F(t,U),

where U = (u1, . . . , um) ∈ Cm and F = ( f1, . . . , fm) is holomorphic satisfying
F(0, 0) = 0. Since the work of Briot and Bouquet [1], many authors have worked
on Briot–Bouquet systems (see, for example, [2, 3, 8, 10, 11] and [6] for an extensive
bibliography).

A nonlinear first-order partial differential system is said to be of Briot–Bouquet
type, if it takes the form

tUt = F(t, x,U,Ux), (1.1)

where x = (x1, . . . , xn) ∈ Cn, Ux = (u1,x1 , . . . , um,xn ) ∈ Cmn, F(t, x,U,V) is holomorphic
in a polydisc ∆ centred at the origin of C × Cn × Cm × Cmn, F(0, x, 0, 0) = 0 and
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∂ fi/∂u j,xk (0, x, 0, 0) = 0 for all i, j, k. Under these assumptions, we can rewrite (1.1)
as

tUt = A(x)t + Λ(x)U + G(t, x,U,Ux), (1.2)

where A(x) = (a1(x), . . . , am(x)), Λ(x) = [bi j(x)]m
i, j=1 is an m × m matrix and

G(t, x,U,V) =
∑

k+|α|+|β|≥2

ckαβ(x)tkUαVβ.

Let λi, 1 ≤ i ≤ m, be the eigenvalues of Λ(0).
There have been some studies of Briot–Bouquet type partial differential equations,

that is, the case m = 1. In [4], Gérard and Tahara studied holomorphic and singular
solutions to such partial differential equations. In particular, they proved the following
result.

Theorem 1.1. If λ1 < Z+, then a Briot–Bouquet type partial differential equation has a
unique solution u1(t, x) holomorphic near t = 0 satisfying u1(0, x) = 0.

Our first result is a generalisation to systems of partial differential equations of
Briot–Bouquet type. More precisely, we prove the following result.

Theorem 1.2. If λi < Z+ for 1 ≤ i ≤ m, then a Briot–Bouquet type partial differential
system has a unique solution U(t, x) holomorphic near t = 0 satisfying U(0, x) = 0.

When λi ∈ Z+ for some i, we also provide necessary and sufficient conditions for
the existence of holomorphic solutions of (1.2). For simplicity, we only carry out the
details for m = 1 and m = 2. Here, we state a typical result for m = 1. (Yamane [10]
also studied the integer case for m = 1, however his focus was quite different.)

When m = 1, we rewrite (1.2) as

tut = a(x)t + λ(x)u + G(t, x, u, ux). (1.3)

For notational purpose, write a1(x) = a(x). Suppose λ(0) = q ∈ Z+. We will perform
some blow-up like changes of variable to put (1.3) into the following prepared form

tūt = aq(x)t + (λ(x) − q + 1)ū + Ḡ(t, x, ū, ūx),

where aq(x) will be inductively obtained from the expression of G(t, x, u, ux). We then
obtain the following result.

Theorem 1.3. Assume λ(0) = q ∈ Z+ in (1.3).

(1) If λ(x) . q, then (1.3) has a unique solution u(t, x) holomorphic near t = 0
satisfying u(0, x) = 0 if aq(x)/(λ(x) − q + 1) is holomorphic, and otherwise there
are no solutions.

(2) If λ(x) ≡ q, then (1.3) has infinitely many solutions u(t, x) holomorphic near t = 0
satisfying u(0, x) = 0 if aq(x) ≡ 0, and otherwise there are no solutions.

In Section 2, we prove Theorem 1.2. In Section 3, we first prove Theorem 1.3,
and then we prove similar results for m = 2. Using exactly the same approach, similar
results for arbitrary m can be proved, although the results will be lengthy to state.
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2. The noninteger case

We prove Theorem 1.2 in this section. The method of proof is along the same lines
as in [4], although with many changed details. For completeness and in preparation
for the integer case, we carry out the necessary details below.

Assume λi < Z+ for 1 ≤ i ≤ m. Suppose that the series

U =

∞∑
j=1

U jt j, U j = (U j,1, . . . ,U j,m) ∈ Cm,

solves (1.2) formally. Then

∞∑
j=1

jU jt j = A(x)t +

∞∑
j=1

Λ(x)U jt j +
∑

k+|α|+|β|≥2

ckαβ(x)gαβ(U,Ux)tk+|α|+|β|,

where gαβ(U, V) is determined by UαVβ, but does not contain t. Comparing the
coefficients of t j gives

(I − Λ(x))U1 = A(x), (2.1)

and
( jI − Λ(x))U j =

∑
k+|α|+|β|= j

ckαβ(x)gαβ(U,Ux) for j ≥ 2. (2.2)

Since |α| + |β| ≤ j, the coefficient gαβ(U,Ux) only contains Ui with i < j. Since none
of λi is a positive integer, the matrix ( jI −Λ(x)) is invertible in a small neighbourhood
of the origin. Hence we can solve for U j recursively using (2.1) and (2.2).

Write Da = {x ∈ Cn : |xi| < a, 1 ≤ i ≤ n}. For δ small enough,

|ckαβ(x)| < Ckαβ for x ∈ Dδ, (2.3)

and
∑

k+|α|+|β|≥2 CkαβtkUαVβ is convergent near the origin of C × Cm × Cmn. Moreover,

|A(x)| < A for x ∈ Dδ. (2.4)

By [6, Section 4, Proposition 1.1.1], there exists an ε > 0 such that for all j ≥ 1,

| jI − Λ(x)| > ε j for x ∈ Dδ. (2.5)

We also need the following lemma (see [5, Lemma 5.1.3]).

Lemma 2.1. Suppose u(x) is a holomorphic function on Dδ and r ∈ (0, δ). If

|u(x)| ≤
C

(δ − r)p on Dr,

then ∣∣∣∣∣∂u(x)
∂xi

∣∣∣∣∣ ≤ Ce(p + 1)
(δ − r)p+1 on Dr for 1 ≤ i ≤ n.
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[4] Systems of partial differential equations of Briot–Bouquet type 125

Set S = (Y, . . . ,Y) ∈ Cm and T = (eY, . . . , eY) ∈ Cmn. Consider the analytic equation

εY = At +
1

δ − r

∑
k+|α|+|β|≥2

Ckαβ

(δ − r)k+|α|+|β|−2 tkS αT β. (2.6)

By the implicit function theorem, (2.6) has a unique holomorphic solution of the form

Y =

∞∑
j=1

Y jt j,

where
Y1 = ε−1A, (2.7)

and

Y j = ε−1 1
δ − r

∑
k+|α|+|β|= j

Ckαβ

(δ − r)k+|α|+|β|−2 gαβ(S ,T ) for j ≥ 2. (2.8)

By induction on j, we can show that Y j is of the form

Y j =
C j

(δ − r) j−1 .

Comparing (2.1) and (2.2) with (2.7) and (2.8), and using (2.3), (2.4), (2.5) and
Lemma 2.1, we see inductively (see [4, Section 1]) that

|U j| ≤
Y j

j
,

∣∣∣∣∣∂U j

∂xk

∣∣∣∣∣ ≤ eY j for j ≥ 1.

Here |U j| = max{|U j,1|, . . . , |U j,m|} and |∂U j/∂xk| = max{|∂U j,1/∂x1|, . . . , |∂U j,m/∂xn|}.
This shows that U =

∑∞
j=1 U jt j is convergent and completes the proof of Theorem 1.2.

3. The integer case

In this section, we study the case when some of the λi ∈ Z+ (see [7]). For simplicity,
we only write out the details in dimensions 1 and 2, although it will be clear that similar
results hold in higher dimensions.

3.1. The case m = 1. By assumption, λ1 = q ∈ Z+. Write λ(x) = q − ρ(x), with
ρ(0) = 0. Rewrite (1.3) as

tut = a(x)t + (q − ρ(x))u + G(t, x, u, ux), (3.1)

where
G(t, x, u, ux) =

∑
k+α+|β|≥2

ckαβ(x)tkuαuβx,

with β = ( β1, . . . , βn) and uβx = uβ1
x1 · · · u

βn
xn . As in the previous section, we first try to find

a formal solution u =
∑∞

j=1 u jt j to (3.1). The recursive formulas are exactly as in (2.1)
and (2.2).
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If q = 1, then (2.1) gives
ρ(x)u1 = a(x). (3.2)

If ρ(x) . 0, then (3.2) has a unique holomorphic solution if and only if a(x)/ρ(x) is
holomorphic. If ρ(x) ≡ 0, then u1 is solvable if and only if a(x) ≡ 0, in which case u1
is arbitrary. Since j − 1 + ρ(0) , 0 for j ≥ 2, the u j’s are determined by (2.2) as before.
From the proof of Theorem 1.2, we also see that every formal solution is convergent.

If q > 1, then we make the blow-up like change of variable

u = t
(
ũ +

a(x)
ρ(x) − q + 1

)
.

Note that a(x)/(ρ(x) − q + 1) is the leading coefficient u1. Therefore, there exists a
solution u(t, x) holomorphic near t = 0 satisfying u(0, x) = 0 for the original equation
if and only if there exists a solution ũ(t, x) holomorphic near t = 0 satisfying ũ(0, x) = 0
for the new equation, which will still be of Briot–Bouquet type. One readily checks
that the equation for ũ is of the form (after cancelling t on both sides)

tũt = a2(x)t + (q − 1 − ρ(x))ũ + G̃(t, x, ũ, ũx),

where
a2(x) =

∑
k+α+|β|=2

ckαβ(x)ϕ(x)αϕx(x)β, ϕ(x) =
a(x)

ρ(x) − q + 1
. (3.3)

After q − 1 such steps, (3.1) takes the following prepared form

tūt = aq(x)t + (1 − ρ(x))ū + Ḡ(t, x, ū, ūx),

where aq(x) can be obtained inductively as in (3.3). As above, if ρ(x) . 0, then (3.1)
has a unique holomorphic solution if and only if aq(x)/ρ(x) is holomorphic. And if
ρ(x) ≡ 0, then (3.1) has infinitely many holomorphic solutions if and only if aq(x) ≡ 0.

This completes the proof of Theorem 1.3.

3.2. The case m = 2. First suppose that only λ1 = q ∈ Z+. After a suitable linear
change of variables we can assume that Λ(x) is diagonal in a neighbourhood of x = 0.
Write Λ(x) = diag(q − ρ(x), η(x)), with ρ(0) = 0. Then (1.2) can be written as{

tut = a(x)t + (q − ρ(x))u + f (t, x, u, v, ux, vx),
tvt = b(x)t + η(x)v + g(t, x, u, v, ux, vx),

(3.4)

where
f (t, x, u, v, ux, vx) =

∑
k+α+|β|+γ+|δ|≥2

ckαβγδ(x)tkuαuβxvγvδx

and
g(t, x, u, v, ux, vx) =

∑
k+α+|β|+γ+|δ|≥2

dkαβγδ(x)tkuαuβxvγvδx,

with β = (β1, . . . , βn), uβx = uβ1
x1 · · · u

βn
xn , δ = (δ1, . . . , δn) and vδx = vδ1

x1 · · · v
δn
xn . Write

a1(x) = a(x) and b1(x) = b(x).
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Again, we try to find a formal solution using (2.1) and (2.2), which will be
convergent if it exists.

If q > 1, then we consider the change of variables:

u = t
(
ũ +

a(x)
ρ(x) − q + 1

)
, v = t

(
ṽ +

b(x)
1 − η(x)

)
.

Similar to the m = 1 case, the system for (ũ, ṽ) takes the formtũt = a2(x)t + (q − 1 − ρ(x))ũ + f̃ (t, x, ũ, ṽ, ũx, ṽx),
tṽt = b2(x)t + (η(x) − 1)ṽ + g̃(t, x, ũ, ṽ, ũx, ṽx),

where
a2(x) =

∑
k+α+|β|+γ+|δ|≥2

ckαβγδ(x)ϕ(x)αϕx(x)βψ(x)γψx(x)δ (3.5)

and
b2(x) =

∑
k+α+|β|+γ+|δ|≥2

dkαβγδ(x)ϕ(x)αϕx(x)βψ(x)γψx(x)δ, (3.6)

with

ϕ(x) =
a(x)

ρ(x) − q + 1
, ψ(x) =

b(x)
1 − η(x)

.

After q − 1 steps, (3.4) takes the prepared form{
tūt = aq(x)t + (1 − ρ(x))ū + f̄ (t, x, ū, v̄, ūx, v̄x),
tv̄t = bq(x)t + (η(x) − q + 1)v̄ + ḡ(t, x, ū, v̄, ūx, v̄x),

(3.7)

where aq(x) and bq(x) are obtained inductively as in (3.5) and (3.6). Then arguing as
before, we obtain the following result.

Theorem 3.1. Assume that Λ(0) has one positive integer eigenvalue q. Let ρ(x) and
aq(x) be as in (3.7).

(1) If ρ(x) . 0, then (3.4) has a unique holomorphic solution (u(t, x), v(t, x)) near
(t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x)/ρ(x) is holomorphic, and
otherwise there are no solutions.

(2) If ρ(x) ≡ 0, then (3.4) has infinitely many holomorphic solutions (u(t, x), v(t, x))
near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x) ≡ 0, and otherwise
there are no solutions.

Suppose now that both λ1 = q ∈ Z+ and λ2 = p ∈ Z+, with q ≤ p. First suppose
that q < p. Then Λ(x) is diagonalisable in a neighbourhood of x = 0 and we can write
Λ(x) = diag(q − ρ(x), p − η(x)), with ρ(0) = η(0) = 0. Then (1.2) can be written as{

tut = a(x)t + (q − ρ(x))u + f (t, x, u, v, ux, vx),
tvt = b(x)t + (p − η(x))v + g(t, x, u, v, ux, vx).

(3.8)
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If q > 1, we consider the change of variables

u = t
(
ũ +

a(x)
ρ(x) − q + 1

)
, v = t

(
ṽ +

b(x)
η(x) − p + 1

)
.

Then the system for (ũ, ṽ) takes the formtũt = a2(x)t + (q − 1 − ρ(x))ũ + f̃ (t, x, ũ, ṽ, ũx, ṽx),
tṽt = b2(x)t + (p − 1 − η(x))ṽ + g̃(t, x, ũ, ṽ, ũx, ṽx),

where a2(x) and b2(x) are as in (3.5) and (3.6), but with ψ(x) = b(x)/(η(x) − p + 1).
After q − 1 such steps, (3.8) takes the prepared form{

tūt = aq(x)t + (1 − ρ(x))ū + f̄ (t, x, ū, v̄, ūx, v̄x),
tv̄t = bq(x)t + (p − q + 1 − η(x))v̄ + ḡ(t, x, ū, v̄, ūx, v̄x).

(3.9)

If aq(x)/ρ(x) is holomorphic, then we take p − q more steps and (3.8) takes the
prepared form tût = ap(x)t + (q − p + 1 − ρ(x))û + f̂ (t, x, û, v̂, ûx, v̂x),

tv̂t = bp(x)t + (1 − η(x))v̂ + ĝ(t, x, û, v̂, ûx, v̂x).
(3.10)

Then arguing as before, we obtain the following result.

Theorem 3.2. Assume that Λ(0) has two positive integer eigenvalues q and p, with
q < p. Let ρ(x) and aq(x) be as in (3.9) and η(x) and bp(x) be as in (3.10).

(1) If ρ(x) . 0 and η(x) . 0, then (3.8) has a unique holomorphic solution (u(t, x),
v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if both aq(x)/ρ(x)
and bp(x)/η(x) are holomorphic, and otherwise there are no solutions.

(2) If ρ(x) ≡ 0 and η(x) . 0, then (3.8) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x) ≡ 0
and bp(x)/η(x) is holomorphic, and otherwise there are no solutions.

(3) If ρ(x) . 0 and η(x) ≡ 0, then (3.8) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x)/ρ(x)
is holomorphic and bp(x) ≡ 0, and otherwise there are no solutions.

(4) If ρ(x) ≡ 0 and η(x) ≡ 0, then (3.8) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x) ≡ 0
and bp(x) ≡ 0, and otherwise there are no solutions.

Now we assume that λ1 = λ2 = q ∈ Z+. There are two issues we need to address.
The first is that even if Λ(0) is diagonalisable, Λ(x) is not necessarily diagonalisable
in a neighbourhood of x = 0. The second is that the eigenvalue functions of Λ(x) are
not necessarily univalent in a neighbourhood of x = 0.

First we assume that Λ(x) is diagonalisable in a neighbourhood of x = 0. Then (1.2)
can be written as {

tut = a(x)t + (q − ρ(x))u + f (t, x, u, v, ux, vx),
tvt = b(x)t + (q − η(x))v + g(t, x, u, v, ux, vx).

(3.11)
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If q > 1, then we consider the change of variables

u = t
(
ũ +

a(x)
ρ(x) − q + 1

)
, v = t

(
ṽ +

b(x)
η(x) − q + 1

)
.

Then the system for (ũ, ṽ) takes the formtũt = a2(x)t + (q − 1 − ρ(x))ũ + f̃ (t, x, ũ, ṽ, ũx, ṽx),
tṽt = b2(x)t + (q − 1 − η(x))ṽ + g̃(t, x, ũ, ṽ, ũx, ṽx),

where a2(x) and b2(x) are as in (3.5) and (3.6), but with ψ(x) = b(x)/(η(x) − q + 1).
After q − 1 such steps, (3.11) takes the prepared form{

tūt = aq(x)t + (1 − ρ(x))ū + f̄ (t, x, ū, v̄, ūx, v̄x),
tv̄t = bq(x)t + (1 − η(x))v̄ + ḡ(t, x, ū, v̄, ūx, v̄x).

(3.12)

Then arguing as before, gives the following result.

Theorem 3.3. Assume that Λ(0) has two equal positive integer eigenvalues q and Λ(x)
is diagonalisable in a neighbourhood of x = 0. Let ρ(x), η(x), aq(x) and bq(x) be as in
(3.12).

(1) If ρ(x) . 0 and η(x) . 0, then (3.11) has a unique holomorphic solution (u(t, x),
v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if both aq(x)/ρ(x)
and bq(x)/η(x) are holomorphic, and otherwise there are no solutions.

(2) If ρ(x) ≡ 0 and η(x) . 0, then (3.11) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x) ≡ 0
and bq(x)/η(x) is holomorphic, and otherwise there are no solutions.

(3) If ρ(x) . 0 and η(x) ≡ 0, then (3.11) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x)/ρ(x)
is holomorphic and bq(x) ≡ 0, and otherwise there are no solutions.

(4) If ρ(x) ≡ 0 and η(x) ≡ 0, then (3.11) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if aq(x) ≡ 0
and bq(x) ≡ 0, and otherwise there are no solutions.

Next assume that Λ(x) is not necessarily diagonalisable, but has univalent
eigenvalue functions, in a neighbourhood of x = 0. Then after a suitable linear change
of variables (1.2) can be written as{

tut = a(x)t + (q − ρ(x))u + ε(x)v + f (t, x, u, v, ux, vx),
tvt = b(x)t + (q − η(x))v + g(t, x, u, v, ux, vx).

(3.13)

If q > 1, then we consider the change of variables

u = t
(
ũ +

a(x) + ε(x)b(x)/(η(x) − q + 1)
ρ(x) − q + 1

)
, v = t

(
ṽ +

b(x)
η(x) − q + 1

)
.

Then the system for (ũ, ṽ) takes the formtũt = a2(x)t + (q − 1 − ρ(x))ũ + ε(x)ṽ + f̃ (t, x, ũ, ṽ, ũx, ṽx),
tṽt = b2(x)t + (q − 1 − η(x))ṽ + g̃(t, x, ũ, ṽ, ũx, ṽx),
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where a2(x) and b2(x) are as in (3.5) and (3.6), but with

ϕ(x) =
a(x) + ε(x)b(x)/(η(x) − q + 1)

ρ(x) − q + 1
, ψ(x) =

b(x)
η(x) − q + 1

.

After q − 1 such steps, (3.13) takes the prepared form{
tūt = aq(x)t + (1 − ρ(x))ū + ε(x)v̄ + f̄ (t, x, ū, v̄, ūx, v̄x),
tv̄t = bq(x)t + (1 − η(x))v̄ + ḡ(t, x, ū, v̄, ūx, v̄x).

(3.14)

For a formal solution ū =
∑∞

j=1 ū j(x)t j, v̄ =
∑∞

j=1 v̄ j(x)t j, equation (2.1) gives{
ρ(x)ū1(x) = aq(x) + ε(x)v̄1(x),
η(x)v̄1(x) = bq(x).

A similar argument to those above yields the following result.

Theorem 3.4. Assume that Λ(0) has two equal positive integer eigenvalues q and the
eigenvalue functions of Λ(x) are univalent in a neighbourhood of x = 0. Let ρ(x), η(x),
ε(x), aq(x) and bq(x) be as in (3.14).

(1) If ρ(x) . 0 and η(x) . 0, then (3.13) has a unique holomorphic solution (u(t, x),
v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if both bq(x)/η(x)
and (aq(x) + ε(x)bq(x)/η(x))/ρ(x) are holomorphic, and otherwise there are no
solutions.

(2) If ρ(x) ≡ 0 and η(x) . 0, then (3.13) has infinitely many holomorphic solutions
(u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if bq(x)/η(x)
is holomorphic and aq(x) + ε(x)bq(x)/η(x) ≡ 0, and otherwise there are no
solutions.

(3) If η(x) ≡ 0, then (3.13) has infinitely many holomorphic solutions (u(t, x), v(t, x))
near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if bq(x) ≡ 0, and otherwise
there are no solutions.

Finally assume that Λ(x) does not have univalent eigenvalue functions in a
neighbourhood of x = 0. After a suitable linear change of variables, (1.2) can be
written as {

tut = a(x)t + (q − ρ(x))u + ε(x)v + f (t, x, u, v, ux, vx),
tvt = b(x)t + δ(x)u + (q − η(x))v + g(t, x, u, v, ux, vx),

(3.15)

where η(x)ρ(x) − δ(x)ε(x) is not identically zero.
If q > 1, then we consider the change of variables

u = t(ũ + ϕ(x)), v = t(ṽ + ψ(x)),

where ϕ(x) and ψ(x) satisfy{
(q − 1 − ρ(x))ϕ(x) + ε(x)ψ(x) = −a(x),
δ(x)ϕ(x) + (q − 1 − η(x))ψ(x) = −b(x).

(3.16)
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Note that this system is always solvable under our assumptions. The system for (ũ, ṽ)
then takes the formtũt = a2(x)t + (q − 1 − ρ(x))ũ + ε(x)ṽ + f̃ (t, x, ũ, ṽ, ũx, ṽx),

tṽt = b2(x)t + δ(x)δu + (q − 1 − η(x))ṽ + g̃(t, x, ũ, ṽ, ũx, ṽx),

where a2(x) and b2(x) are as in (3.5) and (3.6), but with ϕ(x) and ψ(x) as in (3.16).
After q − 1 such changes, (3.15) takes the prepared form{

tūt = aq(x)t + (1 − ρ(x))ū + ε(x)v̄ + f̄ (t, x, ū, v̄, ūx, v̄x),
tv̄t = bq(x)t + δ(x)ū + (1 − η(x))v̄ + ḡ(t, x, ū, v̄, ūx, v̄x).

(3.17)

For a formal solution ū =
∑∞

j=1 ū j(x)t j, v̄ =
∑∞

j=1 v̄ j(x)t j, equation (2.1) gives{
ρ(x)ū1(x) − ε(x)v̄1(x) = aq(x),
−δ(x)ū1(x) + η(x)v̄1(x) = bq(x).

Arguing as before leads to the following result.

Theorem 3.5. Assume that Λ(0) has two equal positive integer eigenvalues q and the
eigenvalue functions of Λ(x) are not univalent in a neighbourhood of x = 0. Let ρ(x),
η(x), ε(x), δ(x), aq(x) and bq(x) be as in (3.17). Then (3.15) has a unique holomorphic
solution (u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) if both

η(x)aq(x) + ε(x)bq(x)
η(x)ρ(x) − ε(x)δ(x)

and
δ(x)aq(x) + ρ(x)bq(x)
η(x)ρ(x) − ε(x)δ(x)

are holomorphic, and otherwise there are no solutions.

This concludes our discussion of the case m = 2. As we can see from both the
proofs and the statements of the above theorems, similar results will hold in arbitrary
dimensions.

Remark 3.6. In [9], Tahara obtained a similar result for the case m = 1. Our approach
is very different to that of [9]. The main novelty is the introduction of a series of blow-
up like transformations which pinpoint the obstacles to the existence of holomorphic
solutions of systems of partial differential equations of Briot–Bouquet type.

Finally, we give some examples to illustrate our results. For simplicity, we focus on
Theorem 3.1.

Consider (3.4) with a(x) = b(x) = ρ(x) = η(x) = x, q = 2, f (t, x, u, v, ux, vx) = tu and
g(t, x, u, v, ux, vx) = tv. This gives the system{

tut = xt + (2 − x)u + tu,
tvt = xt + xv + tv.

(3.18)

With the change of variables

u = t
(
ũ +

x
x − 1

)
, v = t

(
ṽ +

x
1 − x

)
,
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the system (3.18) becomes 
tũt =

x
x − 1

t + (1 − x)ũ + tũ,

tṽt =
x

1 − x
t + (x − 1)ṽ + tṽ.

We can then conclude using Theorem 3.1(1) that (3.18) has a unique holomorphic
solution (u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) since
a2(x)/ρ(x) = 1/x − 1 is holomorphic. Similarly, if we choose a(x) = 1 instead of
a(x) = x in (3.18) then the new system has no holomorphic solutions (u(t, x), v(t, x))
near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) since a2(x)/ρ(x) = 1/(x(x − 1)) is
not holomorphic.

Consider (3.4) with a(x) = ρ(x) = f (t, x, u, v, ux, vx) = 0, q = 2, b(x) = η(x) = x and
g(t, x, u, v, ux, vx) = tv. This gives the system{

tut = 2u,
tvt = xt + xv + tv.

(3.19)

With the change of variables

u = tũ, v = t
(
ṽ +

x
1 − x

)
,

the system (3.19) becomes 
tũt = ũ,

tṽt =
x

1 − x
t + (x − 1)ṽ + tṽ.

We conclude using Theorem 3.1(2) that (3.19) has infinitely many holomorphic
solutions (u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) since
a2(x) ≡ 0. In fact u(t, x) can take the form of t2h(x) for any holomorphic function h(x).
Similarly, if we choose a(x) , 0 in (3.19), then the new system has no holomorphic
solutions (u(t, x), v(t, x)) near (t, x) = (0, 0) satisfying (u(0, x), v(0, x)) = (0, 0) since
a2(x) , 0.
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[5] L. Hörmander, Linear Partial Differential Operators (Springer, Berlin–Heidelberg, 1963).
[6] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé. A Modern Theory
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