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Abstract For Q the variance of some centred Gaussian random vector in a separable Banach space it
is shown that, necessarily, Q factors through �2 as a product of 2-summing operators. This factorization
condition is sufficient when the Banach space is of Gaussian type 2. The stochastic integral of a deter-
ministic family of operators with respect to a Q-Wiener process is shown to exist under a continuity
condition involving the 2-summing norm. A Langevin equation

dZt + ΛZt dt = dBt,

with values in a separable Banach space, is studied. The operator Λ is closed and densely defined. A
weak solution (Zt, Bt), where Zt is centred, Gaussian and stationary, while Bt is a Q-Wiener process, is
given when iΛ and iΛ∗ generate C0 groups and the resolvent of Λ is uniformly bounded on the imaginary
axis. Both Zt and Bt are stochastic integrals with respect to a spectral Q-Wiener process.
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1. Introduction

This paper will study a Langevin equation for stochastic processes with values in a
separable complex Banach space E. The one-dimensional Langevin equation is the Itô
differential equation

dZt + ρZt dt = dbt (1.1)

for t ∈ R, where the constant ρ > 0 describes a frictional resistance. We seek a pair of
processes (bt, Zt), defined on a probability space (Ω, F , P), which solve equation (1.1);
the process (bt)t∈R is required to be a complex Brownian motion on the line with b0 = 0
and the process (Zt)t∈R is required to be a complex-valued centred Gaussian stationary
stochastic process which is adapted to the filtration induced by bt and has almost surely
Hölder continuous sample paths. The concept of a stationary stochastic process was
introduced by Khinchin in [20].

It is well known, following Uhlenbeck and Ornstein’s paper [35], that solutions (bt, Zt)
of equation (1.1) exist. The stationary process Zt is unique in distribution and called the
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Ornstein–Uhlenbeck process with parameter ρ. We may write Zt as a stochastic spectral
integral

Zt =
1√
2π

∫ ∞

−∞

eiωt

ρ + iω
db̃ω, (1.2)

where (b̃ω)ω∈R is a given complex Brownian motion on the line defined on (Ω, F , P) with
b̃0 = 0. The process bt is given in terms of b̃ω by the condition b0 = 0 and the stochastic
spectral integral, for s < t,

bt − bs =
1√
2π

∫ ∞

−∞

eiωt − eiωs

iω
db̃ω. (1.3)

The formulae (1.2) and (1.3) were originally derived by mathematicians developing the
theory of linear filters on stationary stochastic processes. Of note are Blanc-Lapierre and
Fortet’s paper [1], which discusses the basic properties of filters, and Kolmogorov’s paper
[21], which discusses spectral representations of solutions to linear constant-coefficient
stochastic differential equations: formula (24) of Kolmogorov’s paper is a generalized
form of (1.2). See Chapter XI of [11] for a detailed description of the spectral theory of
scalar-valued stationary stochastic processes.

Adaptedness of the process Zt to the filtration induced by bt follows from the existence
of a time domain integral

Zt =
∫ t

−∞
e−ρ(t−u) dbu, (1.4)

which expresses Zt as a stochastic integral with respect to bt. All stochastic integrals are
interpreted in the Itô sense. The autocovariance of the process Zt is

Cov(Zs, Zt) =
e−ρ|s−t|

2ρ
. (1.5)

The Ornstein–Uhlenbeck process is Gaussian, strongly Markovian and stationary with
almost surely Hölder continuous sample paths.

For more information, particularly on the physical motivation for studying these pro-
cesses, we refer the reader to [14] or [33].

In § 4 of this paper we consider a generalization of the Langevin equation to the Banach
space valued case. We let E be a separable complex Banach space and consider the
stochastic differential equation

dZt + ΛZt dt = dBt (1.6)

for t ∈ R, where Λ is a closed operator from a norm dense domain D(Λ) ⊆ E to E.
We seek a pair of processes (Bt,Zt), defined on a probability space (Ω, F , P), which

are a weak solution to equation (1.6); the concept of a weak solution follows that of
Da Prato and Zabczyk, for which see [6], and is defined formally in § 4. The process
(Bt)t∈R is required to be an E-valued Q-Wiener process; our terminology for Wiener
processes follows that used in [6]. The process (Zt)t∈R is required to be an E-valued,
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centred Gaussian, stationary stochastic process with almost surely Hölder continuous
sample paths.

When generalizing results on scalar-valued random variables and stochastic processes
to the Banach space valued case, several problems arise concerning how to describe
concepts such as expectation, L2 boundedness, covariance and stationarity in a wider
setting. Section 2 of this paper uses ideas developed by Pisier in [32] to develop the
theory of Banach space valued random vectors with bounded variance.

Particular use is made of a norm on spaces of random vectors equal to the 2-absolutely
summing norm on an associated space of linear operators; this norm is denoted by π2.
Section 3 of this paper characterizes Gaussian random vectors and Q-Wiener processes
in a separable Banach space E using the π2 norm; it is shown that, necessarily, Q factors
through �2 as AA∗, where A is an operator from �2 to E with 2-summing adjoint. This
factorization condition is shown to be sufficient when E is of Gaussian type 2.

Section 3 also considers the theory of stochastic integration in a separable Banach
space for continuous deterministic integrands with respect to a Q-Wiener process. The
following theorem is proved.

Theorem 1.1. For E a separable Banach space, let Bt be an E-valued AA∗-Wiener
process defined on a probability space (Ω, F , P). Then for s < t, if (Tu)s�u�t is a non-
random family of bounded linear operators on E such that (A∗T ∗

u )s�u�t is continuous in
the π2 norm, the stochastic integral

∫ t

s

Tu dBu (1.7)

exists as the limit in the π2 norm of appropriate Riemann sums under refinement of
partitions. Furthermore,

π2

(∫ t

s

Tu dBu

)2

�
∫ t

s

π2(A∗T ∗
u )2 du. (1.8)

In cases where s is equal to −∞ and/or t is equal to ∞, we define the stochastic integral
in a way that is analogous to the improper Riemann integral, that is as the limiting value
of the integral as s decreases to −∞ and/or t increases to ∞, where this limiting value
exists.

Having formalized the framework under which Banach space valued stochastic pro-
cesses will be discussed, we prove the existence in § 4, under certain boundedness condi-
tions on Λ, of pairs of processes (Bt,Zt) which solve the Banach space valued Langevin
equation in the weak sense.

Theorem 1.2. Assume iΛ and iΛ∗ generate C0 groups of operators on E and the resol-
vent of Λ is uniformly bounded on the imaginary axis. Consider the stochastic spectral
integral

Zt =
1√
2π

∫ ∞

−∞
eiωt(Λ + iωI)−1 dB̃ω, (1.9)
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where B̃ω is a given E-valued Q-Wiener process defined on (Ω, F , P). Define Bt subject
to B0 = 0 and the stochastic spectral integral, for s < t,

Bt − Bs =
1√
2π

∫ ∞

−∞

eiωt − eiωs

iω
dB̃ω. (1.10)

The processes Zt and Bt converge as stochastic integrals and the pair (Bt,Zt) is a weak
solution of equation (1.6).

The process Zt is a generalization to the E-valued case of the classical Ornstein–
Uhlenbeck process. Such a generalization has been done previously, notably by Itô in [18];
the difference here is that our solution Zt is represented as a stochastic spectral integral,
rather than an integral in the time domain.

Note we do not require that Zt be adapted to the filtration induced by Bt. We obtain
adaptedness in the important case where (−Λ) generates a C0 semigroup (e−Λt)t�0 of
exponential norm decay, however, by demonstrating the existence of a time domain inte-
gral

Zt =
∫ t

−∞
e−Λ(t−u) dBu, (1.11)

which expresses Zt as a stochastic integral with respect to Bt.
Section 4 also considers some specific examples of E-valued Langevin equations and

their weak solutions. Each example corresponds to an operator Λ for which neither Λ

nor (−Λ) generate C0 semigroups of exponential norm decay.

2. Banach space valued random vectors

In this section we develop the formalism we need to adequately deal with the theory of
Banach space valued random vectors and their covariances. The ideas largely derive from
Pisier’s paper [32]; further background information may be found in [10], [9] and [31].

Following [32] we use positive sesquilinear forms to define a norm on Banach space
valued random vectors equal to the 2-absolutely summing norm on equivalent operators
from the dual of that Banach space to a Hilbert space. This norm will enable us to bound
various stochastic integrals in § 4.

2.1. Definitions

We introduce some notation. For a complex vector space V , V̄ denotes V endowed
with the conjugate scalar multiplication (λ, v) �→ λ̄v. Write v̄ for v ∈ V viewed as an
element of V̄ .

Throughout this paper, all adjoints of linear operators are to be interpreted in the
Banach space sense.

Let E and F be Banach spaces, let B(E) and B(F ) be the spaces of all bounded linear
operators on E and F , respectively, and let B(E, F ) be the space of all bounded linear
operators from E to F . We shall consider certain classes of norms on spaces of operators
from E to F . Let A(E, F ) denote a subspace of B(E, F ) equipped with a norm α under

https://doi.org/10.1017/S0013091500001231 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001231


Ornstein–Uhlenbeck processes in Banach spaces 305

which A(E, F ) is a Banach space. We say A(E, F ) is a Banach operator ideal, and α is
an operator ideal norm, if

(i) for all ξ∗ ∈ E∗ and η ∈ F , the rank-one tensor ξ∗ ⊗ η ∈ A(E, F ) and

α(ξ∗ ⊗ η) = ‖ξ∗‖E∗‖η‖F ; (2.1)

(ii) for all u ∈ A(E, F ), S ∈ B(E) and T ∈ B(F ), the product TuS ∈ A(E, F ) and

α(TuS) � ‖T‖α(u)‖S‖. (2.2)

Here ‖ · ‖ denotes the usual operator norm. The most familiar example of a Banach
operator ideal is B(E, F ) equipped with ‖ · ‖; this is also the largest operator ideal in the
sense that, if α is an operator ideal norm on an operator ideal A(E, F ) and u ∈ A(E, F ),
we have

‖u‖ � α(u). (2.3)

For more information on operator ideals the reader is directed to [10].
We recall from, for example, [10] the definition of a 2-absolutely summing operator.

For E and F Banach spaces, the operator T : E → F is 2-summing if

π2(T ) = sup
{ξi}i

(∑
i

‖Tξi‖2
F

)1/2

< ∞, (2.4)

where the supremum is over all finite subsets {ξi}i of E satisfying

sup
{∑

i

|ξ∗(ξi)|2 : ξ∗ ∈ E∗, ‖ξ∗‖E∗ � 1
}

� 1. (2.5)

The constant π2(T ) is the 2-summing norm of T ; it is an operator ideal norm. We write
Π2(E, F ) for the space of all such T ; it forms a Banach space with norm π2 and so is
a Banach operator ideal. In the case where E and F are both Hilbert spaces, the space
Π2(E, F ) is the space of Hilbert–Schmidt operators from E to F .

Let E be a complex Banach space and H a complex Hilbert space. Let D(E, H) be a
Banach space of operators from E to H equipped with a norm δ satisfying:

(D1) δ is an operator ideal norm and D(E, H) is a Banach operator ideal;

(D2) δ(u) = supP δ(Pu) for all u ∈ D(E, H), where P is a finite rank orthogonal projec-
tion on H; and

(D3) if u ∈ D(E, H), then
‖u‖ � δ(u) � π2(u). (2.6)

It is straightforward to show that both B(E, H) and Π2(E, H) satisfy these properties.
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If δ is such a norm satisfying (D1)–(D3), we say δ is 2-convex if

δ

(∑
k

Pku

)2

�
∑

k

δ(Pku)2 (2.7)

for all u ∈ D(E, H) and each finite set of mutually orthogonal projections (Pk) on H. Note
that both operator norm ‖ · ‖ and 2-summing norm π2 are 2-convex; the fact that π2 is
2-convex is used repeatedly throughout this paper. For more information on 2-convexity
we direct the reader to § 2 of [32].

Type 2 is defined as follows. Let (Xk)k denote a sequence of independent real N(0, 1)
random variables. A Banach space E is of (Gaussian) type 2 if there exists a finite positive
constant C such that, for any finite sequence (ξk)k in E,

(
E

∥∥∥∥
∑

k

ξkXk

∥∥∥∥
2

E

)1/2

� C

(∑
k

‖ξk‖2
E

)1/2

. (2.8)

We denote the infimum of all allowable constants C by T2(E), the type 2 constant of E.
There are many important examples of type 2 Banach spaces; in particular the Lebesgue
spaces Lp and the Schatten–von Neumann spaces cp are of type 2 for 2 � p < ∞. For
more information on the notion of type, and the related notion of cotype, see [10] or [31].

2.2. A class of weakly measurable random vectors

In this discussion (Ω, F , P) will be a probability space, E will be a complex Banach
space, X will be a function from Ω to E, and K will be the collection of all positive
sesquilinear forms on E × E of norm less than or equal to one. We say X : Ω → E is
weakly (also known as Pettis) measurable if ξ∗X : Ω → C is Borel measurable for all
ξ∗ ∈ E∗. It is clear that the set of all weakly measurable functions from Ω to E forms a
vector space; this is known as the space of cylindrical random vectors.

Let L2(Ω) be the Hilbert space of complex-valued square-integrable functions on
(Ω, F , P), quotiented by functions which are zero almost surely. Denote by L2(Ω) the
corresponding seminormed space of square-integrable functions.

For X : Ω → E weakly measurable and K as above we may, following Pisier in [32],
define a seminorm δK via the formula

δK(X) = sup
ϕ∈K

(∫
Ω

ϕ(X(ω), X(ω))P(dω)
)1/2

. (2.9)

The only axiom of a seminorm which is unclear is the triangle inequality. However,
sesquilinearity and the Cauchy–Schwarz inequality enable us to prove [δK(X1 + X2)]2 �
[δK(X1) + δK(X2)]2. Denote the seminormed space of all weakly measurable X : Ω → E

with δK(X) < ∞ by L2
w(Ω; E, δK).

We may quotient L2
w(Ω; E, δK) by the set of all weakly measurable X : Ω → E with

δK(X) = 0 to obtain a normed space, which we denote by L2
w(Ω; E, δK). This space is

not, in general, complete; however, we may embed it isometrically in a Banach space of
operators. The following result follows from Proposition 2.1 of [32].
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Proposition 2.1. There is an isometric embedding

∧ : L2
w(Ω; E, δK) ↪→ Π2(E∗, L2(Ω)) (2.10)

given by the relation
X̂(ξ∗)(ω) = ξ∗(X(ω)). (2.11)

Proof. Referring to Proposition 2.1 of [32], we see that the relation (2.11) defines an
isometric embedding ∧ : L2

w(Ω; E, δK) ↪→ Π2(E∗,L2(Ω)) between seminormed spaces.
We may quotient by the appropriate null space to obtain an isometric embedding

between normed quotient spaces if, given a random vector X, δK(X) = 0 implies
π2(X̂) = 0. But this follows, since δK(X) = 0 if and only if ξ∗(X) = 0 almost surely, for
all ξ∗ in E∗, which occurs if and only if π2(X̂) = 0. �

We shall henceforth use the notation π2 to denote both the δK norm on L2
w(Ω; E, δK)

and the 2-summing norm on Π2(E∗, L2(Ω)). The space L2
w(Ω; E, δK) will now be referred

to as L2
w(Ω; E, π2).

2.3. The Bochner spaces

At times we shall also consider the more usual Bochner Lp spaces. Following [9] we
say X : Ω → E is strongly (also known as Bochner) measurable if it is measurable
with respect to the Borel σ-algebra on E and takes values almost surely in a separable
subspace of E (we say it is almost surely separably valued).

If 1 � p < ∞ and X : Ω → E is a strongly measurable random vector, then its Bochner
Lp norm is given by

‖X‖p =
(∫

Ω

‖X(ω)‖p
EP(dω)

)1/p

. (2.12)

Denote by Lp(Ω; E) the set of all strongly measurable X : Ω → E with finite Bochner Lp

norm. This is a seminormed vector space whose null space is the subspace of all strongly
measurable X : Ω → E which are zero almost surely. Denote by Lp(Ω; E) the resulting
quotient space; this is a Banach space.

We may define analogous Lp(Ω; E) in the cases 0 < p < 1; the resulting spaces are
complete quasinormed spaces.

Note that if π2 is the weak L2 norm introduced in the last subsection and X lies in
L2(Ω; E), then

π2(X) � ‖X‖2. (2.13)

2.4. Expectation

Following [9], we say a weakly measurable random vector X : Ω → E is weakly (or
Dunford) integrable if ξ∗X ∈ L1(Ω) for all ξ∗ ∈ E∗. This occurs if and only if

sup
ξ∗∈E∗, ‖ξ∗‖�1

∫
Ω

|ξ∗X(ω)|P(dω) < ∞. (2.14)
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For a weakly integrable X : Ω → E and A ∈ F we see there exists∫
A

X(ω)P(dω) ∈ E∗∗ (2.15)

such that (∫
A

X(ω)P(dω)
)

(ξ∗) =
∫

A

ξ∗X(ω)P(dω) (2.16)

for all ξ∗ ∈ E∗. When A = Ω we refer to the integral as the weak expectation EX of X

with respect to P.
We note that if X ∈ L2

w(Ω; E, π2), then, by the Cauchy–Schwarz inequality, the above
condition holds; thus the weak expectation exists and is finite as an element of E∗∗.

It may be of course that ∫
A

X(ω)P(dω) ∈ E (2.17)

for all A ∈ F . In this case, following [9], we say X is Pettis integrable; in particular
EX ∈ E.

Finally, if X lies in the Bochner space L1(Ω; E), we say, following [9], that it is Bochner
(or strongly) integrable. Bochner integrability implies Pettis integrability.

The following result gives a sufficient condition for a Cauchy sequence in L2
w(Ω; E, π2)

to converge in that space; recall that, a priori, we only know that the limit exists as an
operator in Π2(E∗, L2(Ω)).

Proposition 2.2. If (Xn)n�1 is a sequence in L2(Ω; E) which is Cauchy in the π2

norm, then the sequence converges in L2
w(Ω; E, π2).

Proof. Viewing (Xn)n�1 as a sequence in the Banach operator ideal Π2(E∗, L2(Ω))
we see that, as it is a Cauchy sequence in the π2 norm, it must converge in Π2(E∗, L2(Ω))
to a limit operator X̂. By Theorem VIII.1.5 of [9], as (Xn)n�1 is a sequence in L2(Ω; E),
the operator X̂ has compact adjoint X̂∗ taking values in a separable subspace of E.
By Theorem III.2.2 of [9] the compact operator X̂∗ : L2(Ω) → E is representable, which
means there exists a weakly measurable X : Ω → E satisfying

X̂∗(f) =
∫

Ω

X(ω)f(ω)P(dω) (2.18)

for each f in L2(Ω). But this X is transparently the limit in L2
w(Ω; E, π2) of the sequence

(Xn)n�1. �

2.5. Covariance

Let E1 and E2 be Banach spaces and let X1 and X2 be elements of L2
w(Ω; E1, π2) and

L2
w(Ω; E2, π2), respectively. Assume EX1 = EX2 = 0, where expectation is defined in

the weak sense; we say X1 and X2 are centred.
Define the covariance of X1 and X2, Cov(X1, X2), to be the sesquilinear form on

E∗
1 × E∗

2 given by
Cov(X1, X2)(ξ∗

1 , ξ∗
2) = Eξ∗

1(X1)ξ∗
2(X2). (2.19)
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This definition of covariance is used in [26] and [28]. We note by the Cauchy–Schwarz
inequality that Cov(X1, X2) is bounded as a sesquilinear form.

Frequently we view Cov(X1, X2) as a linear operator from E∗
2 to E∗∗

1 ; in fact it is
the operator X̂∗

1 X̂2, where, as before, X̂1 : E∗
1 → L2(Ω) and X̂2 : E∗

2 → L2(Ω) are the
operators associated to X1 and X2. For more information on this subject the reader is
directed to Chapter 2 of [15].

If E is a Banach space and X is a centred element of L2
w(Ω; E, π2), we define the

variance of X, Var(X), to be Cov(X, X).

Remark 2.3. Throughout the rest of this paper we shall, to avoid measure-theoretic
complications (which are expanded on in [15] and [29]), assume all the Banach spaces
under consideration are separable. Thus, in particular, strong (Bochner) and weak (Pet-
tis) notions of measurability coincide. All the random vectors we consider in the rest
of the paper will be cylindrical; that is to say they will be measurable with respect to
the cylindrical σ-algebra on the Banach space, which, as the Banach space is separable,
coincides with the Borel σ-algebra.

3. Gaussian random vectors and Wiener processes

This section contains essential preliminary material for § 4. Background information on
the topics covered here may be found in [6], [7], [24] or [26]. We study Gaussian random
vectors, Wiener processes and stochastic integrals (for continuous deterministic inte-
grands) with values in a separable complex Banach space E. We observe that, for all
E-valued Q-Wiener processes on a probability space (Ω, F , P), Q factors through �2 with
2-summing factors.

For more general integrands, the theory of stochastic integration in a Banach space
becomes rather more involved; see, for example, [2] and [3], in which the theory is devel-
oped for Banach spaces of martingale type 2.

3.1. Gaussian random vectors

We will consider centred Gaussian random vectors taking values in a separable complex
Banach space E.

Recall that a complex random variable X is said to be complex centred Gaussian with
variance σ2 (we say X is complex N(0, σ2)) if

X =
1√
2
(XR + iXI), (3.1)

where XR and XI are independent real N(0, σ2) random variables. It is straightforward
to verify that if (Xk)k is a finite sequence of independent complex centred Gaussian
random vectors on some probability space and (zk)k is a finite sequence in C, then∑

k zkXk is a complex centred Gaussian random vector.
Let X be an E-valued cylindrical random vector defined on a probability space

(Ω, F , P). Following [26] we say X is centred Gaussian if, for every ξ∗ in E∗, ξ∗(X)
is a complex centred Gaussian random variable.
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The following result is a combination of the Itô–Nisio Theorem [19], a result on expo-
nential integrability of Gaussian random vectors, due independently to Fernique [12] and
Landau and Shepp [25] and the Karhunen–Loève representation of Gaussian measures
on separable Banach spaces.

Proposition 3.1.

(a) Let X = (Xk)k∈Z be a sequence of independent N(0, σ2) complex random vari-
ables on a probability space (Ω, F , P) and let (ξk)k∈Z be a sequence in a separable
complex Banach space E. The following are equivalent.

(i)
∑

kξkXk converges almost surely in E.

(ii)
∑

kξkXk converges in Lp(Ω; E) for some (and hence for all) 0 < p < ∞.

(iii)
∑

kξkXk converges in probability.

(b) If (Yk)k�1 is any sequence of cylindrical centred Gaussian random vectors, defined
on (Ω, F , P) with values in E, which is Cauchy in the π2 norm, then the sequence
converges in L2

w(Ω; E, π2) to a cylindrical centred Gaussian random vector.

(c) All cylindrical centred Gaussian random vectors with values in E are equal in
distribution to some random vector of the form

∑
k ξkXk, satisfying the equivalent

conditions (i), (ii) and (iii) of part (a).

Proof. (a) This is the Itô–Nisio Theorem; see the original paper [19], or pp. 29–36
of [24], for details.

(b) We will use the result, due to Fernique [12] and Landau and Shepp [25], that for
Z any centred Gaussian random vector with values in E, there exists α > 0 such that

E exp{α‖Z‖2
E} < ∞; (3.2)

in particular Z lies in L2(Ω; E).
It follows that (Yk)k�1 is a sequence in L2(Ω; E). Proposition 2.2 shows it converges

in L2
w(Ω; E, π2) to a limit Y . We shall show that Y is a centred Gaussian random vector.

The definition of the π2 norm shows that, for each ξ∗ in E∗, the sequence (ξ∗(Yk))k�1

converges in L2(Ω) to ξ∗(Y ). As each ξ∗(Yk) is a complex centred Gaussian random
variable, it follows that ξ∗(Y ) is a complex centred Gaussian random variable.

Since this holds for all ξ∗ in E∗, we deduce that Y is a centred Gaussian random
vector.

(c) The Karhunen–Loève representation of Gaussian measures, which is Proposition
2.6.1 of [24] and Proposition 3.6 of [26], now shows that all cylindrical centred Gaussian
random vectors with values in E are equal in distribution to some random vector of the
form

∑
k ξkXk, satisfying conditions (i), (ii) and (iii) of part (a). �

Proposition 3.1 has the following corollary.
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Corollary 3.2. Given a Gaussian random vector
∑

k ξkXk as in Proposition 3.1,
define a map A from the space of those complex sequences (xk)k∈Z, such that all but a
finite number of the xk are zero, to E by

(xk)k∈Z �→
∑

k

ξkxk; (3.3)

this extends to a bounded operator A : �2 → E with bounded adjoint A∗ ∈ Π2(E∗, �2).
Write AX for

∑
k ξkXk; this converges to an almost surely E-valued centred Gaussian

random vector satisfying π2(AX) = σπ2(A∗) and Var(AX) = σ2AA∗.

Proof. Writing AX for
∑

k ξkXk, we know from Proposition 3.1 that AX defines an
almost surely E-valued element of L2(Ω; E). As the π2 norm is weaker than Bochner L2

norm, it follows that AX lies in L2
w(Ω; E, π2); we now apply Proposition 2.1 to observe

that the map (ξ∗ �→ ξ∗(AX)) lies in Π2(E∗, L2(Ω)). But, for a finite sequence (ξ∗
j )j in

E∗,

∑
j

‖ξ∗
j (AX)‖2

L2(Ω) =
∑

j

E

∣∣∣∣
∑

k

ξ∗
j (ξk)Xk

∣∣∣∣
2

= σ2
∑
j,k

|ξ∗
j (ξk)|2

= σ2
∑

j

‖A∗(ξ∗
j )‖2

�2 , (3.4)

and so A∗ ∈ Π2(E∗, �2); furthermore, σπ2(A∗) = π2(AX). As A∗ is bounded it follows
that its adjoint A∗∗ : �2 → E∗∗ is bounded. We see, however, that A∗∗ is equal to ιA,
where ι denotes the isometric embedding of E into E∗∗. This implies that A is bounded
from �2 to E. Finally,

Var(AX)(ξ∗
1 , ξ∗

2) = σ2〈A∗(ξ∗
1), A∗(ξ∗

2)〉�2 , (3.5)

yielding Var(AX) = σ2AA∗ as required. �

For definiteness we ensure AX is always E valued by defining AX to be
∑

k ξkXk at
sample points where this sum converges, and zero on the null set where it diverges.

If E is of type 2, we may deduce more.

Corollary 3.3. Under the additional hypothesis that E is of type 2, the sum AX

converges to a centred Gaussian random vector if and only if A∗ ∈ Π2(E∗, �2).

Proof. If AX is centred Gaussian we know from Corollary 3.2 that A∗ ∈ Π2(E∗, �2).
Conversely, let us assume A∗ ∈ Π2(E∗, �2). Then by (0.6) on p. 67 of [32], which is based
on work in [13], we have

(
E

∥∥∥∥
∑

k

ξkXk

∥∥∥∥
2

E

)1/2

� σT2(E)π2(A∗) < ∞. (3.6)

We deduce that AX lies in L2(Ω; E) and so, by Proposition 3.1, is centred Gaussian. �
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Corollary 3.2 enables us to determine, for E a separable complex Banach space, a
factorization property for operators Q : E∗ → E∗∗ which are variances of centred Gaus-
sian random vectors in E. In the case where E is of type 2, Corollary 3.3 enables us to
characterize such operators Q precisely.

Corollary 3.4. Let E be a separable complex Banach space.

(a) Let Q be the variance of some centred Gaussian random vector in E, defined
on some probability space (Ω, F , P). Then Q factors as AA∗, where the operator
A : �2 → E has 2-summing adjoint.

(b) If, furthermore, E is of type 2, then conversely any operator AA∗, where A : �2 → E

has 2-summing adjoint, is the variance of some centred Gaussian random vector in
E.

Proof. (a) Let Q = VarZ, where Z is a centred Gaussian random vector in E, defined
on (Ω, F , P). By Proposition 3.1 (c) and Corollary 3.2, Z lies in L2(Ω; E) and is equal
in distribution to AX, where X is a sequence of independent N(0, 1) complex random
variables and A : �2 → E is an operator with 2-summing adjoint. Corollary 3.2 now
shows Var(AX) = AA∗. Thus Q = AA∗ as required.

(b) Taking A as given, by Corollary 3.3 the random vector AX, for X a sequence
of independent N(0, 1) complex random variables, is a centred Gaussian random vector
with variance AA∗. �

In [36], van Neerven discusses, for E a separable Banach space, which necessary and
sufficient conditions are needed for an operator E∗ → E∗∗ to be the variance of a cylin-
drical Gaussian measure on E. We see that Corollary 3.4 provides such conditions in
the case where E is of type 2. Similar results for type 2 spaces were obtained by Linde,
Tarieladze and Čobanjan in [27].

3.2. Wiener processes

We now consider E-valued Wiener processes where, as usual, E is a separable complex
Banach space. Let Q be the variance of some cylindrical centred Gaussian random vector
in E.

Following [6] or Chapter 5 of [7] we say an E-valued stochastic process (Bt)t∈R, defined
on a probability space (Ω, F , P), is a Q-Wiener process if

(i) for each t, Bt is measurable with respect to the cylindrical σ-algebra on E;

(ii) the process Bt has almost surely continuous sample paths and B0 = 0;

(iii) the process Bt has independent increments; and

(iv) for each s < t, Bt − Bs is a cylindrical centred Gaussian random vector satisfying

Var(Bt − Bs) = Q(t − s). (3.7)
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Condition (i) ensures that, for all ξ∗ ∈ E∗, the process ξ∗(Bt) is adapted to the filtration
induced on (Ω, F , P) by the process Bt.

Proposition 3.1 and Corollaries 3.2 and 3.4 enable us to deduce various properties of
a Q-Wiener process.

Proposition 3.5. Let E be a separable Banach space and let Bt be an E-valued
Q-Wiener process defined on a probability space (Ω, F , P). Let Q factor as AA∗, where
A : �2 → E is some operator with 2-summing adjoint given by Corollary 3.4. For s < t,

(i) π2(Bt − Bs) = π2(A∗)(t − s)1/2; and

(ii) for T any bounded linear operator on E,

Var(T (Bt − Bs)) = TQT ∗(t − s). (3.8)

Proof. We observe Bt − Bs is a cylindrical centred Gaussian random vector satisfying
Var(Bt − Bs) = Q(t − s). Proposition 3.1 (c) and Corollary 3.2 show that Bt − Bs is
equal in distribution to a random vector of the form AX(s,t), where, for each s and t,
X(s,t) = (X(s,t)

k )k∈Z is a sequence of independent N(0, t − s) complex random variables.
Corollary 3.2 now gives the required results immediately. �

Remark 3.6. Given any such Q we may explicitly construct a Q-Wiener process.
Assume from Corollary 3.4 that Q factors as AA∗. Let bt = (b(k)

t )k∈Z be an independent
sequence of complex Brownian motions on the line, with b

(k)
0 = 0 for each k, defined on the

canonical probability space of continuous paths R → C equipped with Wiener measure.
The Ciesielski representation of Brownian motion, for which see [5] or pp. 10–13 of [33],
allows us to write

b
(k)
t (ω) = lim

n→∞

n∑
r=0

∑
s∈Z

frs(t)Z(k)
rs (ω) (3.9)

for each k, where the frs are tent-shaped functions of maximum value 2−(r+1)/2 supported
on [(2s − 2)2−r, (2s)2−r], the Z

(k)
rs are independent complex N(0, 1) random variables

and the limit is uniform on compact subsets of R almost surely. Set Zrs = (Z(k)
rs )k∈Z. By

applying the same arguments used to prove the existence of the Ciesielski representation
on pp. 10–13 of [33] we may define

Abt(ω) = lim
n→∞

n∑
r=0

∑
s∈Z

frs(t)AZrs(ω), (3.10)

which may be shown to be a Q-Wiener process.

3.3. Stochastic integration

We wish to develop the theory of stochastic integration of a continuous deterministic
family of operators with respect to a Q-Wiener process. For s < t, let (Tu)s�u�t be a
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non-random family of bounded linear operators on E and let Bt be a Q-Wiener process
in E. Consider a sequence (Pn)n�1 of refining partitions of [s, t]. Thus, if

Pn = {s = u
(n)
0 < u

(n)
1 < · · · < u

(n)
r(n)−1 < u

(n)
r(n) = t} (3.11)

for each n, we assume that Pn ⊆ Pn+1 for all n and supj(u
(n)
j+1 − u

(n)
j ) ↓ 0 as n tends to

infinity. We say the stochastic integral
∫ t

s

Tu dBu (3.12)

exists as a limit in L2
w(Ω; E, π2) if the sequence of Riemann sums

r(n)−1∑
j=0

T
u

(n)
j

(B
u

(n)
j+1

− B
u

(n)
j

) (3.13)

converges to a limit in L2
w(Ω; E, π2) as n tends to infinity, this limit being independent

of the choice of partitions (Pn)n�1.
We have the following theorem.

Theorem 3.7. For E a separable Banach space, let Bt be an E-valued AA∗-Wiener
process defined on a probability space (Ω, F , P). Then for s < t, if (Tu)s�u�t is a non-
random family of bounded linear operators on E such that (A∗T ∗

u )s�u�t is continuous in
the π2 norm, the stochastic integral

∫ t

s

Tu dBu (3.14)

exists as a limit in L2
w(Ω; E, π2), defining a centred Gaussian element of L2(Ω; E). Fur-

thermore,

π2

(∫ t

s

Tu dBu

)2

�
∫ t

s

π2(A∗T ∗
u )2 du. (3.15)

Proof. For a partition P = {s = u0 < u1 < · · · < ur = t} of the interval [s, t], put

I(P) =
r−1∑
j=0

Tuj
(Buj+1 − Buj

)

=
r−1∑
j=0

I(uj , uj+1), (3.16)

say. Consider a sequence (Pn)n�1 of refining partitions of [s, t]; with the notation of
(3.11), write

Mn = sup
j

(u(n)
j+1 − u

(n)
j ), (3.17)

so Mn ↓ 0 as n tends to infinity. Fix n and choose m > n.
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To simplify our notation write uj for u
(n)
j , the elements of Pn, and write r for r(n),

the number of elements of Pn plus one. As Pm is a refinement of Pn we may write it as

Pm = {s = u0 = u0
0 < u1

0 < · · · < u
k(0)
0 = u1 = u0

1 < · · · < u
k(r−1)
r−1 = ur = t}. (3.18)

Thus

I(Pm) − I(Pn) =
r−1∑
j=0

[k(j)−1∑
l=0

I(ul
j , u

l+1
j ) − I(u0

j , u
k(j)
j )

]

=
r−1∑
j=0

[k(j)−1∑
l=0

Tul
j
(Bul+1

j
− Bul

j
) − Tu0

j
(B

u
k(j)
j

− Bu0
j
)
]

=
r−1∑
j=0

[k(j)−1∑
l=0

Tul
j
(Bul+1

j
− Bul

j
) −

k(j)−1∑
l=0

Tu0
j
(Bul+1

j
− Bul

j
)
]

=
r−1∑
j=0

k(j)−1∑
l=0

(Tul
j
− Tu0

j
)(Bul+1

j
− Bul

j
). (3.19)

Now the norm π2 is 2-convex; see § 2 of this paper or § 2 of [32] for details of this concept.
This implies

‖I(Pm) − I(Pn)‖2
π2

�
r−1∑
j=0

k(j)−1∑
l=0

π2(A∗(T ∗
ul

j
− T ∗

u0
j
))2(ul+1

j − ul
j)

� sup
[α,β]⊆[s,t]:β−α�Mn

π2(A∗(T ∗
β − T ∗

α))2(t − s), (3.20)

and so, for all m > n,

‖I(Pm) − I(Pn)‖π2 � sup
[α,β]⊆[s,t]:β−α�Mn

π2(A∗(T ∗
β − T ∗

α))(t − s)1/2. (3.21)

We have assumed u �→ A∗T ∗
u is continuous in the π2 norm; as [s, t] is compact it follows

that u �→ A∗T ∗
u is uniformly continuous. Thus, fixing ε > 0, we may choose N(ε) such

that
sup

[α,β]⊆[s,t]:β−α�Mn

π2(A∗(T ∗
β − T ∗

α)) < ε (3.22)

whenever n � N(ε). Hence, for all m > n � N(ε),

‖I(Pm) − I(Pn)‖π2 < ε(t − s)1/2, (3.23)

which shows (I(Pn))n�1 is a Cauchy sequence of centred Gaussian random vectors in
L2

w(Ω; E, π2). By Proposition 3.1 (b) it therefore converges in L2
w(Ω; E, π2) to a centred

Gaussian random vector. Proposition 3.1 (c) shows that this vector lies in L2(Ω; E).
If (Pn)n�1 and (P ′

n)n�1 are any two such sequences of partitions of [s, t], it is clear that
the sequence of partitions (Pn ∪ P ′

n)n�1 also yields a convergent sequence of Riemann
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sums; furthermore, the limits induced by (Pn)n�1, (P ′
n)n�1 and (Pn ∪ P ′

n)n�1 must coin-
cide. Thus the limit of the sequence (I(Pn))n�1 in L2

w(Ω; E, π2) is independent of the
choice of refining partitions. We deduce that the stochastic integral exists as a limit in
L2

w(Ω; E, π2).
Finally, by the 2-convexity of the norm π2, if s = u0 < u1 < · · · < ur = t is any

partition of [s, t], we have

π2

(r−1∑
j=0

Tuj (Buj+1 − Buj )
)2

�
r−1∑
j=0

π2(A∗T ∗
uj

)2(uj+1 − uj). (3.24)

Passing to the limit gives the required result. �

In cases where the lower limit is equal to −∞ and/or the upper limit is equal to ∞, we
define the corresponding stochastic integral to be the limit in L2

w(Ω; E, π2), where this
exists, of the stochastic integral over [s, t] as s decreases to −∞ and/or t increases to ∞.

Theorem 3.7 will be used in the next section to prove the existence of a solution to a
Banach space valued Langevin equation.

4. Ornstein–Uhlenbeck processes

We now study a Langevin equation for stochastic processes with values in a separable
complex Banach space E. Background information on diffusion processes may be found
in [33] or [34]. Information on semigroups of operators on Banach spaces may be found
in [8] or [17]. General information on infinite-dimensional stochastic differential equations
may be found in [6] or Chapter 5 of [7].

Itô studied infinite-dimensional Ornstein–Uhlenbeck processes in the time domain
(see [18]). More recently, Kolsrud studied Ornstein–Uhlenbeck processes from the stand-
point of Gaussian random fields in [22], Millet and Smoleński investigated the existence
and continuity of infinite-dimensional Ornstein–Uhlenbeck processes in [30], van Neerven
studied Ornstein–Uhlenbeck semigroups in [36] and Brzeźniak and van Neerven devel-
oped stochastic convolution and applied it to infinite-dimensional Ornstein–Uhlenbeck
processes in [4].

4.1. The Langevin equation

Let E be a separable complex Banach space and (Ω, F , P) be a probability space which
we assume rich enough to support all the random vectors under consideration. Consider
the E-valued stochastic differential equation

dZt + ΛZt dt = dBt (4.1)

for t ∈ R, where

(L1) the operator Λ is a closed operator from a norm dense domain D(Λ) ⊆ E to E.

We seek a pair of processes (Bt,Zt), each defined on (Ω, F , P).
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To ensure the existence of L2 bounded solutions to (4.1) we will impose some conditions
on Λ. We assume that

(L2) iΛ is the generator of a C0 group (eitΛ)t∈R of operators on E; by a corollary to
the Hille–Yosida Theorem, for which see § 12.3 of [17], this is equivalent to the
resolvent of Λ satisfying

‖(Λ + iωI)−n‖ � CΛ

(|ω| − αΛ)n
(4.2)

for some finite constants CΛ > 0 and αΛ � 0, all n ∈ N and all real ω such that
|ω| > αΛ;

(L3) the resolvent of Λ satisfies
‖(Λ + iωI)−1‖ � KΛ (4.3)

for some finite constant KΛ > 0 and all real ω; and

(L4) iΛ∗ is the generator of a C0 group (eitΛ∗
)t∈R of operators on E∗ (if E is reflexive,

this follows from (L2)).

For more information on these conditions, consult [8] or Chapters 11, 12 and 14 of [17].
Note that (L4), in the presence of (L2), is equivalent to the domain D(Λ∗) of Λ∗, the
adjoint of Λ, being norm dense in E∗; without (L4) we only know it is weak-∗ dense. For
details see § 1.4 of [8] or Chapter 14 of [17].

We interpret equation (4.1) in the following way. The process (Bt)t∈R is required to
be an E-valued Q-Wiener process. The process (Zt)t∈R is required to be an E-valued,
centred Gaussian, stationary stochastic process with almost surely Hölder continuous
sample paths. As Zt is stationary we may write Cov(Zt,Zs) = ΨZ(t − s) for some
function ΨZ , called the autocovariance function of the process. Finally, we require that
Bt and Zt satisfy

ξ∗(Zt − Zs) +
∫ t

s

Λ∗(ξ∗)(Zu) du = ξ∗(Bt − Bs) (4.4)

almost surely, for all ξ∗ ∈ D(Λ∗) and s < t. Following [6] or Chapter 5 of [7] we call the
pair (Bt,Zt) a weak solution of the Langevin equation.

Condition (L4), together with the separability of E and the Hahn–Banach Theorem,
implies there is a countable subset of D(Λ∗) which separates the points of E. This ensures
that, if we know ξ∗(Bt) and ξ∗(Zt) almost surely for all ξ∗ ∈ D(Λ∗), the processes Bt

and Zt are almost surely determined.
Note we do not require that Zt be adapted to the filtration induced by Bt; we will,

however, consider important circumstances in which this is the case.

4.2. Spectral solutions of the Langevin equation

This section states and proves an existence theorem for weak solutions of equation (4.1).
Consider

Zt =
1√
2π

∫ ∞

−∞
eiωt(Λ + iωI)−1 dB̃ω, (4.5)
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where B̃ω is a given E-valued Q-Wiener process defined on (Ω, F , P). This formula
is suggested by classical harmonic analysis. Consider also Bt defined by the condition
B0 = 0 and, for s < t,

Bt − Bs =
1√
2π

∫ ∞

−∞

eiωt − eiωs

iω
dB̃ω. (4.6)

All our stochastic integrals will be interpreted within the framework of Theorem 3.7.

Theorem 4.1. Assume that conditions (L1)–(L4) hold. The expression Zt above

(a) converges as a stochastic integral for each t ∈ R, defining an E-valued centred
Gaussian process on (Ω, F , P);

(b) is a stationary process with bounded autocovariance ΨZ given by

ΨZ(u) =
1
2π

∫ ∞

−∞
eiωu(Λ + iωI)−1Q[(Λ̄ − iωI)−1]∗ dω; (4.7)

and

(c) has almost surely Hölder continuous sample paths, of exponent α for every α < 1
2 .

The expression Bt above

(d) has increments Bt − Bs which converge as stochastic integrals for each s < t,
defining E-valued centred Gaussian random vectors on (Ω, F , P); and

(e) is an E-valued Q-Wiener process defined on (Ω, F , P).

Furthermore,

(f) the pair (Bt,Zt) is a weak solution of the E-valued Langevin equation (4.1).

Proof. (a) Assume Q factors as AA∗. Let us consider, for finite a < b,

Z
(a,b)
t =

1√
2π

∫ b

a

eiωt(Λ + iωI)−1 dB̃ω. (4.8)

By Theorem 3.7 this expression will converge as a stochastic integral to a centred Gaus-
sian element of L2(Ω; E) if the family (A∗[eiωt(Λ + iωI)−1]∗)a�ω�b is continuous in the
π2 norm. This in turn will follow if the family (eiωt(Λ + iωI)−1)a�ω�b is operator norm
continuous, since A∗ is 2-summing. But, for a � p < q � b,

eiqt(Λ + iqI)−1 − eipt(Λ + ipI)−1

= (eiqt − eipt)(Λ + ipI)−1 + eiqt((Λ + iqI)−1 − (Λ + ipI)−1)

= (eiqt − eipt)(Λ + ipI)−1 − eiqt(q − p)(Λ + ipI)−1(Λ + iqI)−1 (4.9)

by the resolvent equation. We have |eiqt − eipt| � (q − p)|t|; this and condition (L3) show
that

‖eiqt(Λ + iqI)−1 − eipt(Λ + ipI)−1‖ � KΛ(|t| + KΛ)(q − p), (4.10)
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which proves that (eiωt(Λ + iωI)−1)a�ω�b is continuous, indeed Hölder continuous, in
operator norm, as required. We deduce that Z

(a,b)
t defines a centred Gaussian element

of L2(Ω; E).
By Proposition 3.1 (b) the integral Z

(a,b)
t will converge in L2

w(Ω; E, π2) as a ↓ −∞ and
b ↑ ∞ if, for any ε > 0, there exists a positive finite N(ε) such that ‖Z

(m,n)
t ‖π2 < ε for

all n > m � N(ε). By Theorem 3.7 and condition (L2) we have

‖Z
(m,n)
t ‖2

π2
=

∥∥∥∥ 1√
2π

∫ n

m

eiωt(Λ + iωI)−1 dB̃ω

∥∥∥∥
2

π2

� 1
2π

∫ n

m

π2(((Λ + iωI)−1A)∗)2 dω

� π2(A∗)2

2π

∫ n

m

‖(Λ + iωI)−1‖2 dω

<
C2

Λπ2(A∗)2

2π(m − αΛ)
(4.11)

for all n > m > αΛ, as required. We deduce that Zt = lima↓−∞,b↑∞ Z
(a,b)
t converges in

L2
w(Ω; E, π2) to a centred Gaussian element of L2(Ω; E).
(b) Fix s < t. For finite a < b, using the notation Z

(a,b)
t from part (a),

Cov(Z(a,b)
t ,Z(a,b)

s ) =
1
2π

Cov
(∫ b

a

eiωt(Λ + iωI)−1 dB̃ω,

∫ b

a

eiω′s(Λ + iω′I)−1 dB̃ω′

)

=
1
2π

lim
L2

Cov
(r−1∑

j=0

eiωjt(Λ + iωjI)−1(B̃ωj+1 − B̃ωj
),

r−1∑
k=0

eiω′
ks(Λ + iω′

kI)−1(B̃ω′
k+1

− B̃ω′
k
)
)

=
1
2π

lim
L2

r−1∑
j=0

eiωj(t−s) Var((Λ + iωjI)−1(B̃ωj+1 − B̃ωj
)), (4.12)

where the L2 limit is taken to mean the limit in L2
w(Ω; E, π2) over refinements of appro-

priate partitions a = ω0 = ω′
0 < ω1 = ω′

1 < · · · < ωr = ω′
r = b of [a, b]. By Proposi-

tion 3.5 (ii) we see

Cov(Z(a,b)
t ,Z(a,b)

s ) =
1
2π

lim
L2

r−1∑
j=0

eiωj(t−s)(Λ + iωjI)−1Q[(Λ̄ − iωjI)−1]∗(ωj+1 − ωj)

=
1
2π

∫ b

a

eiω(t−s)(Λ + iωI)−1Q[(Λ̄ − iωI)−1]∗ dω. (4.13)

Letting a ↓ −∞ and b ↑ ∞ yields the required formula for the autocovariance; it is clear
that Zt is stationary.

(c) We have, for s < t,

Zt − Zs =
1√
2π

∫ ∞

−∞
(eiωt − eiωs)(Λ + iωI)−1 dB̃ω, (4.14)
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which, applying Theorem 3.7, yields

‖Zt − Zs‖2
π2

� π2(A∗)2

2π

∫ ∞

−∞
|eiωt − eiωs|2‖(Λ + iωI)−1‖2 dω. (4.15)

We now split the integral into separate parts with ranges |ω| < 2αΛ and |ω| � 2αΛ. Note
that

|eiωt − eiωs| � min(2, |ω|(t − s)) �
√

2|ω|1/2(t − s)1/2

and, for |ω| � 2αΛ, that (|ω| − αΛ)−1 � 2|ω|−1. Applying conditions (L2) and (L3) gives

‖Zt − Zs‖2
π2

� K2
Λπ2(A∗)2(t − s)

π

∫
|ω|<2αΛ

|ω| dω

+
4C2

Λπ2(A∗)2

2π

∫
|ω|�2αΛ

∣∣∣∣e
iωt − eiωs

iω

∣∣∣∣
2

dω

� 4
(

α2
ΛK2

Λ

π
+ C2

Λ

)
π2(A∗)2(t − s) (4.16)

by Plancherel’s Theorem applied to the indicator function of [s, t], as required. This
expression shows that the map t �→ Zt is Hölder continuous as a function R →
L2

w(Ω; E, π2) with exponent 1
2 . The fact that Zt is Gaussian enables us to now apply

Kolmogorov’s Continuity Lemma in its vector-valued form to deduce the existence of a
version of Zt with almost surely Hölder continuous sample paths of exponent α for every
α < 1

2 (see pp. 59–61 of [33] for details).
(d) Fix s < t. Keeping the notation of part (a) we define B

(a,b)
t − B

(a,b)
s , for finite

a < b, in the same manner as we defined Z
(a,b)
t . By Theorem 3.7 this will converge as a

stochastic integral to a centred Gaussian element of L2(Ω; E) if the family(
eiωt − eiωs

iω

)
a�ω�b

is continuous. But, for a � p < q � b,∣∣∣∣e
iqt − eiqs

iq
− eipt − eips

ip

∣∣∣∣ =
∣∣∣∣
∫ t

s

(eiqu − eipu) du

∣∣∣∣
�

(∫ t

s

|u| du

)
(q − p), (4.17)

and so we have continuity, indeed Hölder continuity, as required. Thus the stochastic
integral B

(a,b)
t − B

(a,b)
s defines a centred Gaussian element of L2(Ω; E).

To consider the case when a ↓ −∞ and b ↑ ∞ we note by Theorem 3.7 that

‖B
(a,b)
t − B(a,b)

s ‖2
π2

� π2(A∗)2

2π

∫ b

a

∣∣∣∣e
iωt − eiωs

iω

∣∣∣∣
2

dω. (4.18)

By Plancherel’s Theorem, applied to the indicator function of [s, t], this integral increases
to π2(A∗)2(t − s) as a ↓ −∞ and b ↑ ∞. It follows that, for any ε > 0, there exists a pos-
itive finite N(ε) such that ‖B

(m,n)
t − B

(m,n)
s ‖π2 < ε for all n > m � N(ε); consequently,

https://doi.org/10.1017/S0013091500001231 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001231


Ornstein–Uhlenbeck processes in Banach spaces 321

by Proposition 3.1 (b), the stochastic integral Bt − Bs = lima↓−∞,b↑∞(B(a,b)
t − B

(a,b)
s )

converges in L2
w(Ω; E, π2) to a centred Gaussian element of L2(Ω; E).

(e) For s < t, by part (d) above,

‖Bt − Bs‖2
π2

� π2(A∗)2(t − s). (4.19)

We may therefore apply Kolmogorov’s Continuity Lemma in the same manner as part (c)
to deduce almost sure sample path continuity.

By a calculation similar to that of part (b),

Var(Bt − Bs) =
1
2π

∫ ∞

−∞

∣∣∣∣e
iωt − eiωs

iω

∣∣∣∣
2

dωQ

= (t − s)Q (4.20)

by Plancherel’s Theorem applied to the indicator function of [s, t]; also, for s < t < u < v,

Cov(Bt − Bs,Bv − Bu) =
1
2π

∫ ∞

−∞

(eiωt − eiωs)(e−iωv − e−iωu)
|iω|2 dωQ

= 0 (4.21)

again by Plancherel’s Theorem, this time applied to the indicator functions of the disjoint
intervals [s, t] and [u, v]. We deduce that Bt is a Q-Wiener process as required.

(f) For ξ∗ ∈ D(Λ∗) and s < t we calculate

ξ∗(Zt − Zs) +
∫ t

s

Λ∗(ξ∗)(Zu) du

=
1√
2π

ξ∗
(∫ ∞

−∞
(eiωt − eiωs)(Λ + iωI)−1 dB̃ω

)

+
1√
2π

∫ t

s

Λ∗(ξ∗)
(∫ ∞

−∞
eiωu(Λ + iωI)−1 dB̃ω

)
du

=
1√
2π

∫ ∞

−∞

(
eiωt − eiωs

iω

)
iωξ∗(Λ + iωI)−1 dB̃ω

+
1√
2π

∫ ∞

−∞

(∫ t

s

eiωu du

)
Λ∗(ξ∗)(Λ + iωI)−1 dB̃ω, (4.22)

where the change in the order of integration in the second integral is justified by the
almost sure Hölder continuity of the sample paths of Zu and the fact that, for each u,
Zu is the limit in L2

w(Ω; E, π2) of a sequence of Riemann sums. This gives

ξ∗(Zt − Zs) +
∫ t

s

Λ∗(ξ∗)(Zu) du

=
1√
2π

∫ ∞

−∞

(
eiωt − eiωs

iω

)
(iωξ∗ + Λ∗(ξ∗))(Λ + iωI)−1 dB̃ω

=
1√
2π

∫ ∞

−∞

(
eiωt − eiωs

iω

)
(iωξ∗ + ξ∗Λ)(Λ + iωI)−1 dB̃ω; (4.23)
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we know that Λ∗(ξ∗) = ξ∗Λ because the range of the resolvent satisfies

(Λ + iωI)−1(E) ⊆ D(Λ) (4.24)

for all ω ∈ R. Thus

ξ∗(Zt − Zs) +
∫ t

s

Λ∗(ξ∗)(Zu) du =
1√
2π

∫ ∞

−∞

(
eiωt − eiωs

iω

)
ξ∗(dB̃ω)

=
1√
2π

ξ∗
(∫ ∞

−∞

eiωt − eiωs

iω
dB̃ω

)

= ξ∗(Bt − Bs), (4.25)

which is justified by the convergence in L2
w(Ω; E, π2) of the stochastic integral Bt − Bs.

We deduce that (Bt,Zt) is a weak solution of the E-valued Langevin equation (4.1). �

The proof of Theorem 4.1 (f) naturally generalizes the corresponding proof in the
scalar-valued case (for details of this, see Chapter XI, § 10 of [11]).

4.3. A sufficient condition for adaptedness and uniqueness

We now consider a condition on Λ under which Zt is adapted to the filtration induced
by Bt, and Zt is unique in distribution. The following corollary to Theorem 4.1 mirrors
results in Itô’s paper [18].

Corollary 4.2. Let (Bt,Zt) be a weak solution of the E-valued Langevin equa-
tion (4.1). Assume, as well as (L1)–(L4), that the operator (−Λ) generates a C0 semigroup
(e−Λt)t�0 of exponential norm decay. Then the process Zt is adapted to the filtration
induced by Bt; furthermore, if (B′

t,Z
′
t) is also a weak solution, then Z ′

t is identical in
distribution to Zt.

Proof. Firstly let (Bt,Zt) and (Bt,Z
′
t) be weak solutions of the E-valued Langevin

equation. Setting Θt = Z ′
t − Zt we see that Θt is an E-valued, centred Gaussian, sta-

tionary stochastic process with almost surely Hölder continuous sample paths defined on
(Ω, F , P) which satisfies

ξ∗(Θt − Θs) +
∫ t

s

Λ∗(ξ∗)(Θu) du = 0 (4.26)

almost surely, for all ξ∗ ∈ D(Λ∗) and s < t. Itô’s paper [18] now shows, for s < t,

Θt = e−Λ(t−s)Θs. (4.27)

The condition that (e−Λt)t�0 is of exponential norm decay, together with the requirement
that Θt be stationary, now implies Θt = 0 almost surely, we simply let t tend to infinity
in (4.27).
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Now, by [18], if Bt is any E-valued Q-Wiener process, then the process

Zt =
∫ t

−∞
e−Λ(t−u) dBu (4.28)

is such that (Bt,Zt) is a weak solution of the E-valued Langevin equation.
Combining these results we see that, given Bt, the process Zt is almost surely unique

and is given almost surely by the stochastic integral (4.28).
The stochastic integral (4.28) shows that Zt is adapted to the filtration induced by Bt.

Furthermore, we see that, whenever (Bt,Zt) and (B′
t,Z

′
t) are weak solutions, Zt must

be expressible almost surely in the form (4.28) as a stochastic integral with respect to
Bt, and Z ′

t must be expressible almost surely in the form (4.28) as a stochastic integral
with respect to B′

t. We deduce, as Bt and B′
t have the same distribution, that Zt and

Z ′
t have the same distribution. �

Remark 4.3. We pose two questions. Under what precise conditions is the Ornstein–
Uhlenbeck process Zt unique in distribution? Under what precise conditions is Zt adapted
to the filtration induced by the Q-Wiener process Bt? Corollary 4.2 provides a sufficient
condition for both adaptedness and uniqueness.

4.4. Examples

Let 1 < p < ∞ and ε > 0. Define

E = {f ∈ Lp(R) : f̂(ζ) = 0 for all |ζ| � ε}, (4.29)

where f̂ denotes the Fourier transform of f . The continuity of the Riesz projection on
Lp(R) [23, Section V.B] shows that E is a closed complemented subspace of Lp(R); it is
therefore a reflexive Banach space.

We consider various possibilities for Λ, each defined via Fourier multipliers.

(i) (̂eitΛf)(ζ) = eitζ f̂(ζ), so (eitΛf)(x) = f(x + t) for all x ∈ R and (eitΛ)t∈R is a C0

group of translation operators on Lp(R) with Λ = −i(d/dx).

(ii) (̂eitΛf)(ζ) = eit|ζ|f̂(ζ), so (eitΛf)(x) = (R+f)(x + t) + (R−f)(x − t) for all x ∈ R,
where R+ and R− denote the positive and negative Riesz projections.

(iii) (̂eitΛf)(ζ) = eit log |ζ|f̂(ζ), implying eitΛ = ∆it, where ∆ = −d2/dx2 is the Laplace
operator. The Laplacian is essentially self-adjoint on C∞

c (R) (see Chapter 4 of [8]
for details), which enables us to define its imaginary powers by Fourier multipli-
ers as described. These imaginary powers (∆it)t∈R form a C0 group on Lp(R) of
polynomial growth (see [16] for details).

All the (eitΛ)t∈R considered here restrict to E, yielding C0 groups. The condition on
each f in E that f̂(ζ) = 0 for all |ζ| � ε implies, in all cases, that the resolvent of Λ is
bounded on the imaginary axis; conditions (L2)–(L4) are therefore satisfied. In addition,
neither Λ nor (−Λ) generate C0 semigroups of exponential norm decay.
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Thus, given any such Λ and any Q which is the variance of some centred Gaussian
random vector in E, the E-valued Langevin equation (4.1) associated to Λ and Q has a
weak solution as described in Theorem 4.1.
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