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5Dipartimento di Fisica, Università di Milano, via Celoria 16, I-20133 Milano, Italy

6INAF – IASF Milano, via A. Corti 12, I-20133 Milano, Italy
7Technische Universität München, Physik-Department, James-Franck Str. 1, D-85741

Garching, Germany
8Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany

9INFN, Sezione di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
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Abstract. Galaxy-galaxy strong lensing in galaxy clusters is a unique tool for studying the sub-
halo mass distribution, as well as for testing predictions from cosmological simulations. We
describe a novel method that simulates realistic lensed features embedded inside the complexity
of observed data by exploiting high-precision cluster lens models. Such methodology is used to
build a large dataset with which Convolutional Neural Networks have been trained to identify
strong lensing events in galaxy clusters. In particular, we inject lensed sources around cluster
members using the images acquired by the Hubble Space Telescope. The resulting simulated
mock data preserve the complexity of observation by taking into account all the physical com-
ponents that could affect the morphology and the luminosity of the lensing events. The trained
networks achieve a purity-completeness level of ∼ 91% in detecting such events. The methodology
presented can be extended to other data-intensive surveys carried out with the next-generation
facilities.
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1. Introduction

Strong gravitational lensing proves highly effective in studying the galaxies and galaxy
clusters’ mass distribution by also acting as a powerful tool to test cosmological models.
For example, strong lensing has been used to: (i) estimate the Hubble constant exploiting
time-delay measurements (e.g. Suyu et al. 2017, 2020; Grillo et al. 2018; Millon et al. 2020;
Moresco et al. 2022); (ii) constrain the dark energy equation of state (e.g. Jullo et al. 2010;
Cao, Covone, & Zhu 2012; Collett & Auger 2014; Caminha et al. 2022); (iii) estimate the
dark matter fraction in massive early-type galaxies (e.g. Grillo 2010; Tortora et al. 2010;
Sonnenfeld et al. 2015); (iv) test cosmological simulations and/or dark matter properties
(e.g. Meneghetti et al. 2020, 2022); (v) analyze galaxy structures and their evolution (e.g.
Treu & Koopmans 2002; Auger et al. 2010; Sonnenfeld et al. 2013); (vi) study lensed
(magnified) high-redshift sources revealed by the cluster that acts as cosmic telescope
(Swinbank et al. 2009; Richard et al. 2011; Vanzella et al. 2020, 2021). In addition,
the total mass distribution of clusters can be studied with strong-lensing cluster-scaled
models which exploit an increasing number of multiple images of background sources
(e.g. Caminha et al. 2017, 2019; Acebron et al. 2018; Bergamini et al. 2019, 2021, 2023;
Lagattuta et al. 2019, 2022).

In this work, we explore the capabilities of deep learning methods to automatically
search for galaxy–galaxy strong lenses (GGSLs) in galaxy clusters. In these environ-
ments, due to the large-scale contribution of the cluster, the probability of GGSLs is
generally higher than in the field. Although these systems have been identified through
visual inspection of candidates (e.g. Le Fèvre & Hammer 1988; Jackson 2008; Sygnet et al.
2010; Pawase et al. 2014), in recent years deep learning techniques have been proven as
an efficient method to solve this problem automatically (e.g. Petrillo et al. 2017, 2019;
Metcalf et al. 2019; Li et al. 2020, 2021; Gentile et al. 2022; Cañameras et al. 2021;
Akhazhanov et al. 2022), preparing for the upcoming “Big Data Era” in astronomy inau-
gurated by the launch of the ESA satellite Euclid on July 2023 (Laureijs et al. 2014),
together with the upcoming surveys carried out with next-generation facilities, such as
the Vera Rubin Observatory (Ivezić et al. 2019). Indeed, deep learning methods, with
their capabilities to search for hidden correlations within high-dimensional datasets, are
able to successfully explore this huge amount of data in a few tens of seconds. Beyond
this performative result, this work is focused on the main requirement (maybe the most
important) for the training of deep learning techniques: the building of a suitable knowl-
edge space (KB) based on which a convolutional neural network (CNN, LeCun 1989,
1998), can detect GGSL in the dense environment of galaxy clusters. Indeed, GGSLs are
rare phenomena. For this reason, several efforts have been carried out in the last decades
to simulate these events. For example, lens galaxies can be extracted from semi-analytical
catalogs (e.g. with the Millennium Observatory project, as done by Metcalf et al. 2019,
or by Leuzzi et al. 2023) or by modeling the mass density profile of photometrically
selected galaxies (e.g. Petrillo et al. 2017, 2019; Li et al. 2020, 2021; Gentile et al. 2022;
Cañameras et al. 2021; Akhazhanov et al. 2022). On the other hand, lensed sources
can be simulated by describing their surface brightness distributions (e.g. Petrillo et al.
2017, 2019; Li et al. 2020, 2021; Gentile et al. 2022) or directly sampled from obser-
vations (e.g. Meneghetti et al. 2008, 2010; Metcalf et al. 2019) and then co-added to
real or synthetic images through ray-tracing techniques (e.g. GLAMER Metcalf & Petkova
2014; Petkova et al. 2014, GRAVLENS Keeton 2001). However, in this work, we exploit a
novel approach that simulates GGSLs in galaxy clusters by taking advantage of accu-
rate cluster deflection fields provided by high-precision cluster lens models constructed
by Bergamini et al. (2019, 2021) and Caminha et al. (2019). These models consider the
cluster-scale and the subhalo (i.e. the cluster members, CLMs) mass components for
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a given distribution of background sources. Thus, the GGSL simulation is driven by a
realistic description of the CLMs, which behaves as though they actually were the lenses
in lensing events, since the process takes into account all the physical components that
could affect the morphology, the brightness, and the frequency of the events.

As aforementioned, this work focuses on the simulation methodology. All the details
about the network implementations, the handling of train-test set splitting, together with
a full description of the CNN performances and the analysis of the results can be found
in Angora et al. (2020) and Angora et al. (2023). Thus, the paper extensively emphasizes
the simulation process and the KB building in Section 2, by just summarizing the CNN
results in Section 3; finally, we draw out conclusions in Section 4 and outline the future
perspectives in Section 5.

Throughout the paper, we adopt a flat ΛCDM cosmological model with ΩM=0.3,
ΩΛ= 0.7, and H0 = 70 km s−1 Mpc−1. All astronomical images are oriented north to the
top and east to the left. Unless otherwise specified, magnitudes are in the AB system.

2. Simulating GGSLs in Hubble images: building the KB

The simulation exploits the deflection angle maps of eight galaxy clusters obtained
from cluster lens models† provided by Bergamini et al. (2019, 2021) and Caminha et al.
(2019). The cluster sample spans a redshift range between 0.234 and 0.587 (it is fully
described in Table 1 of Angora et al. 2023). A complete description of the cluster-scale
lensing modeling can be found in Bergamini et al. (2021), here we summarize the main
points. The gravitational potential of each cluster is described through a parametric
model which includes: (i) the cluster-scale components, i.e. dark matter halo and the
smooth intracluster hot-gas mass (when available, e.g. Bonamigo et al. 2017, 2018),
(ii) the clumpy terms associated to the CLMs; (iii) any further massive objects in the
cluster outskirts or along the line of sight (LoS). We underline that the mass density
profile of the subhalos is modeled with a circular, singular dual-pseudo isothermal profile
(Limousin, et al. 2005; Eĺıasdóttir et al. 2007), calibrated by measuring stellar velocity
dispersions of a large sample of CLMs. Such lens models reproduce the observed positions
of many multiple images (ranging from ∼ 20 to ∼ 200) with a typical accuracy of <∼ 0.5′′.

In this work, we inject GGSLs in three images acquired by the Hubble Space Telescope
(HST) Advanced Camera for Survey (ACS), as part of the CLASH (Cluster Lensing And
Supernova survey with Hubble, Postman et al. 2012) and HFF (Hubble Frontier Fields,
Lotz et al. 2017) surveys. In particular, we exploit three ACS bands: F435W, F606W,
and F814W. However, this process can be applied to any image, acquired with any kind
of instrument as long as the related deflection field is available.

The simulation process is carried out by using a python package, PyLensLib

(Meneghetti 2022). It is graphically depicted in Figure 1, and summarizes as follows.

(0) Inputs: (i) the source, described as a Sérsic profile (Sérsic 1963, 1968) and with
a star-forming galaxy spectral energy distribution (SED, Kinney et al. 1996),
together with its intrinsic (F814W) magnitude and its redshift ‡; (ii) the angle
deflection maps (computed from the lens model given the source and lens red-

shift), �α, which describes the relation between the source real position (�β) and the

observed position �θ (see also right panels in Figure 1), through the lens equation:

�β = �θ− �α (1)

† The cluster lens models are publicly available at https://www.fe.infn.it/astro/lensing/.
‡ The adopted ranges of the Sérsic parameters can be found in Table 2 of Angora et al. (2023).
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Figure 1. A flow chart representing the simulation process. Left panel : the cluster MACSJ 1206
with the critical lines (in white) at z = 2.5 from the lens model built by Bergamini et al.
(2019), where a specific secondary critical line is selected (marked in red and zoomed-in the
10′′ inset axis). Central panels: the source is injected inside the caustic line corresponding to
the selected critical line; the simulated GGSL is obtained through ray-tracing. Right panels: the
corresponding geometric description of the lensing event.

(1) The critical lines (on the lens plane, see the left panel in Figure 1) are computed
from the deflection field by imposing that the magnification goes to infinity (the
elements of the magnification tensor can be computed from the convergence and
shear maps, i.e. the Jacobian matrix describing the image deformation).

(2) a secondary critical line is randomly extracted inside an (equivalent) Einstein
radius range: θE ∈ (0.2′′, 3.5′′) (prevent the sampling of the primary critical lines
and very small-scaled galaxies). These limits are compatible with the expected
Einstein radii distribution (see Figure 7 in Meneghetti et al. 2022).

(3) The selected secondary critical line is mapped into the corresponding caustic line
(on the source plane) using the lens equation 1 (see central panels in Figure 1).
The source is injected within a buffer surrounding the caustic (whose width is a
fraction of the source effective radius, 0.5re).

(4) Since the lens mapping preserves the surface brightness, i.e. I(�θ) = I(�β), the result-

ing surface brightness on the lens plane is computed as I(�θ= �β + �α). Finally,
the generated lensed system is convolved with the HST point spread function
(PSF) and coadded to the HST image. In this work, the PSFs are estimated with
morphofit (Tortorelli & Mercurio 2023).

In order to reproduce an observed Universe, the source intrinsic magnitude and redshift
are extracted by exploiting the COSMOS 2015 catalog (Laigle et al. 2016) complemented
with HST Deep Field North and South observations (Williams et al. 1996; Metcalfe et al.
2001). Specifically, we estimate the number counts (i.e. the number of galaxies per
squared degree per magnitude bin) in F814W down to 29 mag, and we fit a redshift

probability density function (PDF) in 6 magnitude bin, i.e. p(z|Δm) = az2e−(z/z0)
b

(Lombardi & Bertin 1999; Lombardi et al. 2005, see also Figure 3 in Angora et al.
2023). In this way, we can extract a source magnitude (in the range 22−−29) and, given
this magnitude, a corresponding redshift. In the COSMOS 2015 catalog the photometric
redshift limit is ∼ 7, which is suitable for our experiments since the reddest band is the
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Figure 2. Comparison between real (in the left panels, with green edges) and simulated (in
the right panels, with red edges) GGSLs. Note that in the panel I there is a combination of real
and simulated events: the blue arc is a true GGSL (with a source at z ∼ 2), whereas the red
arc is injected (z ∼ 6). References. Desprez et al. (2018): panels A, B, D, E and G; Diego et al.
(2015): panel C; Smith et al. (2005): panels F and H, Caminha et al. (2016): panel I.

F814W. On the other hand, we set a minimum value for the source redshift equals to
zsrc = zcls + 0.4, which is suggested by studying the lensing cross-section of galaxies in
galaxy clusters (Meneghetti et al. 2022). Figure 2 shows a comparison between real and
simulated GGSLs.

Finally, the building of KB is completed by selecting a pure sample of non-GGSL, i.e.
the negative class in the dataset. Lensing experts in our group visually inspected thousand
of cutouts centered on CLM centroids by excluding any thumbnail that contained strong
lensing features. This result has been carried out by exploiting a large spectroscopic
coverage part of the CLASH-VLT VIMOS (Rosati et al. 2014) program combined with
MUSE archival observations (Bacon et al. 2012, 2014, 2015). The resulting non-GGSL
sample comprises of ∼ 1500 objects. Therefore, the GGSL set in the KB is composed
of ∼ 3000 events, i.e. two times the number of non-GGSLs, with the aim to ensure a
large variety of lensing mock examples. This intentional mismatch is balanced during
the augmentation pre-processing phase, which leads to a balanced training set of ∼ 3800
images for each class. Cutouts have a side of 128 × 128 pixels (i.e. 3.84′′ by side).

3. Classification performances

The CNN classification performances have been measured with a set of metrics that can
be computed from the binary confusion matrix: the average efficiency (AE ), purity (pur),
completeness (compl), and the F1 - score. These estimators can completely describe the
CNN capability to disentangle the GGSLs from the negative class. In particular, the AE
is a global score measured by combining both classes, while the others refer to each class:
pur is related to the degree of contamination in the network predicted sample, compl is
the capability to identify all the sources, the F1 is the harmonic mean between purity
and completeness, which has been included to take into account the typical dichotomy
between these estimators.

We tested several CNN architectures; here, we summarize the results achieved by the
two best networks. The first is inspired by the work of Simonyan & Zisserman (2014), a
VGG-like (Visual Group Geometry) network. The second architecture was implemented
based on a posterior analysis of the results, it consists of three parallel networks, each of
them processes a single channel, for this reason, we named it SC-VGG. All the details
about these networks can be found in Angora et al. (2020, 2023).

Table 1 compares the classification performances of the two networks in terms of
the adopted statistical estimators. Moreover, we tested the CNN capabilities to iden-
tify GGSLs by exploiting just a band (last three columns in Table 1). Globally speaking,
all the studied configurations are purer than complete with respect to the identification
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Table 1. Classification performance comparison.

[%] VGG SC-VGG F435W F606W F814W

AE 87.7 89.4 87.2 86.1 86.8

pur 93.4 93.1 91.8 91.1 91.5

GGSL compl 88.6 91.7 89.8 88.8 89.3

F1 91.0 92.4 90.8 89.9 90.4

pur 76.7 81.4 77.5 75.4 76.6

non-GGSL compl 85.4 84.1 81.3 79.9 80.9

F1 81.1 82.8 79.3 77.6 78.7

Notes: Beyond the comparison between the two architectures, we show the results
achieved by networks trained with a single band (last three columns).

Figure 3. Simulation process in an euclidized image. Left panel : the euclidized FoV of the
cluster MACS J1206, together with the critical lines. The selected secondary critical line is in
red and is also shown in the upper-left inset axis. Central panel : the corresponding caustic (on
the source plane at z = 1.5) with the source (magRIZ = 23.0). Right panel : the resulting GGSLs
as a color-composite image.

of GGSLs, with purity measures ranging in 91.1 − 93.4; whereas the completeness fluctu-
ation range is lower (88.6 − 91.7). Opposite behavior regarding the non-GGSL class. The
SC-VGG shows more stable results for both classes by achieving the highest F1 -scores.
This is due to its capability to identify better high-z GGSLs since it is not affected by
the dropout problem (see the discussion in Angora et al. 2023).

Interestingly, we find that the network is able to classify GGSLs by also using just one
band, even if with performance lower than those achieved by combining the three filters.
It is not surprising that the best performances are carried out by using the bluer band
(F435W). Although this filter has a lower signal-to-noise ratio, the network exploits the
higher contrast between the lens (redder) and the lensed source (typically bluer).

4. Conclusion

In this work we outline the methodology with which a large dataset can be built
to train CNNs in order to identify GGSL in galaxy clusters. The presented simulation
process takes advantage of high-precision cluster deflection fields, which have been used
to generate high-realistic mock lensed features embedded in the cluster environment. The
resulting dataset reproduces the complexity of the lensing phenomenon by considering
all the physical components that characterize the lenses. The implemented CNNs are
able to classify GGSLs with a purity-completeness trade-off ∼ 91%.
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Figure 4. Cluster-scale simulation process in VST simulated image. Left panel : the VST FoV of
the cluster RX J2248, together with the primary critical lines. Central panel : the corresponding
caustic (on the source plane at z = 2.9) where the source location is shown as a yellow circle
(magRIZ = 25.0). Right panel : the resulting simulated arcs (in yellow boxes) as a color-composite
image. As comparison, two real arcs are enclosed by green boxes.

5. Future perspectives

This methodology has been tested with images acquired by the HST. Currently, we
are extending this process to other instruments. For example, Figure 3 shows a simulated
GGSL injected in the euclidized version of the HST FoV of the cluster MACS J1206. The
euclidization has been carried out with the tool HST2EUCLID (Bergamini et al. in prep.).

In addition, the same process can be exploited to simulate extended arc-like structures
on a cluster scale. We are simulating thousands of arcs by injecting sources near the
primary critical line. We plan to search for extended arcs in images acquired by the VLT
Survey Telescope (VST). In order to exploit the high-precision cluster deflection maps
(whose cluster lens models have been built with HST images), we implemented a tool
that transforms HST images into VST mock data. The simulation process (graphically
represented in Figure 4) is similar to that described in this work. In particular, in order
to obtain high-magnified lensed arcs, we select the regions where the magnification is
higher than 70. The right panel in Figure 4 shows a comparison between the injected arc
(inside yellow boxes) and two observed arcs (inside green boxes).
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